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Abstract: This study studies a sensor scheduling problem for the state estimation of a stochastic discrete-time system where
the measurements are to be sent from multiple sensors to a centralised estimator through a lossy channel. By adopting a
carrier sense multiple access/collision avoidance (CSMA/CA) protocol, the packet loss rate of the channel increases with
the number of competing sensors for data communication. To increase the channel utilisation, it requires to smartly select
informative sensors to transmit their measurements. Depending on the availability of the acknowledgment (ACK) messages
from the estimator, both online and offline algorithms for scheduling sensor communication are proposed to optimise the
expected performance of minimum mean-square error state estimator. Particularly, the online scheduling uses the ACK
to trigger the sensor communication while the offline version adopts a random transmission framework and only decides
the probability of sending measurements for each sensor in an offline manner. The optimal online scheduler is given by
the solution of an integer programming, which is approximated by a practically solvable optimisation. Simulations are
included to demonstrate the effectiveness of the proposed algorithms.
1 Introduction

Networked estimation and control systems have received signif-
icant interests in recent years [1] due to their great potentials
in numerous applications, including autonomous vehicles, large
scale monitoring, industrial automation and so on. To increase the
channel utilisation, this paper considers a sensor scheduling prob-
lem over a lossy network for the networked state estimation of
a discrete-time system with multiple sensors. Notably, we focus
on a lossy network under the popular CSMA/CA communication
protocol [2], which results in a striking property that the more sen-
sors competing for the channel resources for data transmission, the
higher the packet loss rate of the channel will be, and vice versa.
This essentially suggests that the use of more sensors for simulta-
neously transmitting their measurements does not always lead to
a better estimator. Thus, it is important to design a scheduler to
select informative sensors for communication. Under different net-
work scenarios, both online and offline scheduling algorithms are
proposed in this work to optimise the expected performance of the
minimum mean-square estimation error estimator.

The lossy channel with time-varying packet loss rates has been
studied in the literature. For example, Pollin et al. [3], Ling
et al. [4] and Cao et al. [5] proposed the SDTMC model to
investigate the channel property, while Wang et al. [6] adopted
a MDTMC model. However, they mainly analysed the throughout
capacity of the channel, the power consumption and other channel
parameters, and did not work on the state estimation problem. Only
Cao et al. [5] proposed a model to compute the packet loss rate in
data saturated case. While in most applications, especially for the
systems under a periodic sampling mechanism, data flow is usually
not saturated. Thus we establish a new channel model to com-
pute the packet loss rate for the periodically sampled systems by
adopting the CSMA/CA communication protocol [2], and develop
a recursive algorithm to compute the minimum mean-square error
(MMSE) estimator with multiple sensors.

The state estimation problem over a lossy channel has been
investigated in the case of a single sensor. However, these works do
not consider the sensor scheduling issue. By modelling the packet
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loss as an independent and identical distributed (i.i.d.) process,
Sinopoli et al. [7] derived the MMSE estimator and proved the
existence of a critical packet loss rate, above which the mean of
the state estimation error covariance matrix will diverge to infinity.
This seminal work has ushered an increasing interest in the quan-
tification of the critical packet loss rate. Under the same packet loss
model, Mo and Sinopoli [8, 9] exactly quantified the critical value
for the system with distinguished eigenvalues and non-degenerate
system, respectively. Huang and Dey [10] worked on a similar
estimation problem with Markovian packet losses, and a so-called
peak stability is introduced. You et al. [11] extended this work,
and introduced a new concept of stability in stopping times, based
on which the necessary and sufficient conditions for the stability of
the MMSE estimator of second-order systems and certain higher
order systems are explicitly expressed by simple inequalities. Since
sensors might be built with some computing capacities, Schenato
[12] focused on the stability of the MMSE estimate over the lossy
channel by transmitting the output of the Kalman filter in the trans-
mitter side. This leads to a simple characterisation of the necessary
and sufficient condition for the stability of the MMSE estimator.
The idea was further explored in [13] by transmitting a temporal
linear combination of the current and finite previous measurements.

In some networked sensing applications, especially under wire-
less connections, only limited energy is available for data collection
and transmission. Consequently, it is not the best for every sensor
to transmit its measurement at each sampling time. Thus, it has
to decide whether to send its current packet to the estimator. This
decision-making process is referred to as sensor scheduling, which
has been a hot research topic for many years. Walsh and Ye [14]
studied the stability problem of sensor scheduling for the close-loop
control. Gupta et al. [15] proposed a stochastic scheduling scheme
for the networked state estimation, and provide an ‘optimal’ prob-
ability distribution for selecting sensors at each sampling time. Shi
et al. [16] considered a system with a single sensor by examining
whether to send its data to a remote estimator for the purpose
of saving communication energy. They studied two scheduling
schemes under different sensor capacities. If the sensor has suffi-
cient computation capability and under a communication constraint,
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Fig. 1 N-sensors network
an optimal scheduling scheme is found to achieve the MMSE. To
the contrary, if the sensor has limited computation capability, they
provided a scheduling scheme that guarantees the MMSE within
a certain level. Similarly, an optimal periodic schedule under both
communication and power constrains was given in [17]. Related
works include [18–22], to name a few.

However, all the aforementioned works assume that the packet
loss process is independent of the channel input. Differently, the
packet loss rate of the channel in this work is modelled as an
increasing function in the number of active sensors competing for
the channel, which is justified by the CSMA/CA protocol. From
this perspective, our formulation is novel, but requires a smart
design for scheduling the sensor communication. To this purpose,
both online and offline scheduling are considered by depending on
whether the acknowledgment (ACK) messages is available or not,
which covers the most network estimation situations. In compar-
ison, the contribution of this work includes the development of
a new model for the lossy channel, the derivation of the corre-
sponding state estimation algorithm, and the design of two types
of schedulers to increase the channel utilisation, which is impor-
tant to the wireless sensor network. It is worth to mentioning that
it is N-P hard to find an optimal online scheduler. However, we
well approximate the N-P problem by a practically solvable opti-
misation. The offline scheduling can be obtained by the standard
Newton gradient algorithm.

The rest of the paper is organised as follows. In Section 2, the
problem under consideration is formulated and the MMSE estima-
tor is derived. In Section 3, the channel model under time-varying
packet loss rates is proposed. The online and offline scheduling
under different scenarios are given in Section 4 and 5, respectively.
To validate the performance of the scheduling schemes, simula-
tions are included in Section 6. Concluding remarks are made in
Section 7.

2 Problem statement

Consider a spatially large linear system with distributed sensing as
follows

xk+1 = Axk + wk ,

yk (i) = Cixk + vk (i), i ∈ {1, 2, . . . , N }, (1)

where xk ∈ Rn is the state with initial condition being Gaus-
sian distributed, i.e. x0 ∼ N (x̄0, P0). wk ∼ N (0, Q) is the process
noise, yk (i) ∈ Rmi is the measurement from the ith sensor and
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vk (i) ∼ N (0, Ri) is the associated measurement noise. All the sen-
sors are spatially deployed, and are connected to a centralised
estimator via a lossy channel. It is assumed that x0, wk and vk (i)
are independent for all k and i. To make the problem interesting,
(A, C) is observable, where C = [CT

1 CT
2 . . . CT

N ]T.
We are concerned with a networked state estimation problem

where all the sensors use a shared communication link to trans-
mit their measurements to a remote state estimator for computing
the MMSE state estimate. See Fig. 1 for an illustration where the
communication law is based on the CSMA/CA protocol in IEEE
802.15.4 Standard [2]. Due to the limited communication resources,
a network manager is deployed to select the ‘informative’ sensor
measurements to transmit to the remote estimator at every sampling
time, while the rest of sensor measurements are discarded. Since
the communication network often operates in uncertain environ-
ments, we have to consider some detrimental factors, e.g. packet
loss, delay, network congestion and so on, when designing the net-
worked systems. However, we restrict ourselves to the packet loss
problem purely caused by the CSMA/CA protocol in this work.

Let sk (i) be the scheduling switch for the ith sensor node at
time k , i.e. sk (i) = 1 if yk (i) is transmitted; sk (i) = 0 otherwise.
Let γk (i) be the packet loss indicator for the transmission of yk (i).
In particular, γk (i) = 1 if yk (i) is received, and 0 otherwise. When
yk (i) is not transmitted, we take the convention that γk (i) = 0. It
is clear that yk (i) is both transmitted and received if and only if
ξk (i) = γk (i)sk (i) = 1.

Define the packets receiving matrix ϒk as

ϒk = diag{ξk (1) · I1, . . . , ξk (N ) · IN } (2)

where Ii ∈ Rmi×mi is an identity matrix and
∑N

i=1 mi = m. Fur-
thermore, the sensor observations are collectively written as yk =
[yk (1)T, . . . , yk (N )T]T.

At time k , it is clear that the remote state estimator obtains the
following information

Fk = {ϒtyt , ϒt , t ≤ k}.
Denote by x̂k+1|k an estimate of xk+1 conditioned on Fk , i.e.
x̂k+1|k := E{xk+1|Fk }, and the corresponding estimation error
covariance by

Pk+1 := Pk+1|k = E{(xk+1 − x̂k+1|k )(xk+1 − x̂k+1|k )T|Fk },
where the expectation E{·} is taken over the distributions of x0, wk
and vk (i). It is obvious that Pk+1 is a random matrix depending
on all {ϒt , t ≤ k}.
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In fact, the above quantities can be recursively computed by a
Kalman-like algorithm.

Theorem 1: The MMSE estimate of the networked system in (1)
is recursively computed by

x̂k|k = x̂k|k−1 + Kkϒk (yk − Cx̂k|k−1); (3)

Pk|k = Pk|k−1 − Kkϒk CPk|k−1, (4)

where the Kalman gain

Kk = Pk|k−1CTϒk (ϒk CPk|k−1CTϒk + R)−1 (5)

and R = diag(R1, . . . , RN ).

Proof: As in [7], the absence of observation corresponds to the
limiting case that the measurement noise level goes to infinity. This
implies that the measurement noise distribution can be given by

p(vi
k |γ i

k ) ∼
{

N (0, Ri), if ξk (i) = 1;
N (0, σ 2Ii), if ξk (i) = 0,

(6)

where σ is arbitrarily large. Then, the MMSE estimator is com-
puted by

x̂k|k = x̂k|k−1 + Pk|k−1CT(CPk|k−1CT + ϒk R

+ (I − ϒk )σ
2)−1(yk − Cx̂k|k−1), (7)

Pk|k = Pk|k−1 − Pk|k−1CT(CPk|k−1CT + ϒk R

+ (I − ϒk )σ
2)−1CPk|k−1. (8)

Without loss of generality, suppose that ξk (1) = 1, . . . , ξk (i) = 1
and ξk (i + 1) = 0, . . . , ξk (N ) = 0. Rewrite

[
CT

1 . . . CT
i

]T
and[

CT
i+1 . . . CT

N

]T
as C̄1 and C̄2, respectively. Similarly, we

rewrite diag(R1, . . . , Ri) as R̄1 and diag(Ri+1, . . . , RN ) as R̄2.
It follows that

CPk|k−1CT + ϒk R + (I − ϒk )σ
2

=
[

C̄1Pk|k−1C̄T
1 + R̄1 C̄1Pk|k−1C̄T

2
C̄2Pk|k−1C̄T

1 C̄2Pk|k−1C̄T
2 + σ 2I2

]
.

One can easily derive that

lim
σ→∞(CPk|k−1CT + ϒk R + (I − ϒk )σ

2)−1

=
[
(C̄1Pk|k−1C̄T

1 + R̄1)
−1 0

0 0

]

= ϒk (ϒk CPk|k−1CTϒk + R)−1ϒk . (9)

Letting σ → ∞ in (7) and (8), the rest of the proof is trivial. �

The difficulty in computing the MMSE estimator above is that
the estimator gains Kk becomes random and depends on ϒk . To
simplify state estimation, the sub-optimal estimates can be obtained
by using a constant estimator gain Ks = [Ks(1), Ks(2), . . . , Ks(N )]
which can be computed in an offline manner and is independent
of ϒk . Similar to that of [7, 23], two common choices of Ks are
shown below:

i. The first one is the steady-state Kalman gain without packet
loss, i.e. Ks = P∞CT(CP∞CT + R)−1, where P∞ = AP∞AT +
Q − AP∞CT(CP∞CT + R)−1CP∞AT.
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ii. The second one is the steady-state gain from a modified alge-
braic Riccati equation. Since there are 2N cases of packet receiving
process for N sensors at each sampling time, then

Ks =
2N∑
i=1

αiP
s∞C̄T

i (C̄iP
s∞C̄T

i + R̄i)
−1,

where αi denotes the probability of the ith case, and C̄i, R̄i are the
measurement matrix and the noise level correspond to the ith case.
Moreover

Ps∞ = APs∞AT + Q −
2N∑
i=1

αiAPs∞C̄T
i (C̄iP

s∞C̄T
i + R̄i)

−1C̄iP
s∞AT.

Then, the resulting estimate is given below

x̂k+1|k = Ax̂k|k−1 +
N∑

i=1

ξk (i)Ks(i)(yk (i) − Cix̂k|k−1), (10)

Pk+1 =
N∑

i=1

Ks(i)RiK
T
s (i) +

(
A −

N∑
i=1

ξk (i)Ks(i)Ci

)
Pk

×
(

A −
N∑

i=1

ξk (i)Ks(i)Ci

)T

+ Q. (11)

To differentiate from the steady-state estimator gain Ks, the esti-
mator gains Kk in (5) is called time-varying Kalman gains. Denote
the probability of packet loss rate when M sensors simultane-
ously access the communication link within one sampling period
by Pl(M ), i.e.

Pl(M ) = Prob

⎧⎨
⎩γk (i) = 0|sk (i) = 1,

N∑
j=1

sk (j) = M

⎫⎬
⎭

for all i ∈ {1, 2, . . . , N }.
Consider that Pl(M ) is a monotonically increasing function of

M , the total throughput of the communication link is given by

θ(M ) = M · (1 − Pl(M )).

Clearly, it increases in M when M is small, but decreases when
M is large. This property is consistent with the popular CSMA/CA
protocols.

To optimally utilise the channel for the above state estima-
tion problem, the sensors need to be scheduled for competing the
channel. In this paper, the following two scheduling schemes are
proposed, respectively.

(a) Online scheduling: In this case, the communication link has an
acknowledgement (ACK) message for every transmitted packet and
the ACK message is successfully broadcast back to all the sensors,
i.e. the ith sensor knows ξk−1(j) at time k for all j ∈ {1, . . . , N }.
With the ACK messages, every sensor can recursively compute Pk
at time k .

At every time, an optimal scheduler sk = [sk (1),
sk (2), . . . , sk (N )] is designed to minimise the trace of the mean
of the estimation error covariance matrix at time k + 1 as defined
below

πk+1 = Tr(E{Pk+1|Pk , sk }), (12)

where the expectation is taken over the packet loss processes γk (i),
and Tr(·) denotes the trace operation of a matrix. Since each sen-
sor can receive the ACK, they know the whole packet receiving
information ϒk , and will reach a consensus on the decision sk .
(b) Offline scheduling: The online scheduling method requires a
feedback channel to transmit ACK message from the estimator to
IET Control Theory Appl., 2015, Vol. 9, Iss. 16, pp. 2458–2465
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all sensors. This might not be feasible in some applications. For
example, in wireless sensor networks, the ACK broadcasting is
usually avoided to save energy or might be lost. Without ACK, the
sensors cannot execute the online scheduling. Instead, we resort to
an offline scheduling by using either a deterministic or probabilistic
schedule, which can be designed in an offline manner for a given
communication link.

The offline scheduling problem we consider here assumes that
a constant estimator gain is used and that sk (i) are both tempo-
rally and spatially independent across k and i. The objective is
to compute the transmitting probability vector p = {p1, p2, . . . , pN }
with

pi = Prob{sk (i) = 1}
to minimise the trace of the mean of the steady-state estimation
error covariance matrix

π = Tr(P̄∞), (13)

where pi denotes the probability for selecting sensor i for commu-
nication and

P̄∞ = lim
k→∞

E{Pk }.

3 Channel modelling under IEEE 802.15.4
standard

If the packet loss rate is independent of the channel input, it is
obviously optimal for all the sensors transmitting their measure-
ments at each sampling period. However, it generically does not
hold, and the packet loss should be dependent on the channel input
due to the possible packet congestion and collision. In this section,
we adopt the CSMA/CA protocols to establish a new packet loss
model, and focus on the often used IEEE 802.15.4 wireless com-
munication standard [2]. Then, an interesting phenomenon is that
the packet loss rate of the channel increases with the number of
competing sensors for data communication. This implies that the
sensor scheduling is required for the data communication.

To formalise the problem, the CSMA/CA protocol for this stan-
dard is depicted in Fig. 2 [24]. Now, we evaluate the packet loss
rate Pl(M ) when M sensors are competing for the communication
channel and need the following assumptions. Note that the variable
d in this section means the backoff time (the number of backoffs).

A1: A star topology is considered in Fig 1, which means that only
one sensor is allowed to transmit at the same time.
A2: All the sensors compete for the channel synchronously.
A3: In a sampling period, each sensor has only one measurement
(packet) to transmit.
A4: The sampling interval is greater than the maximum transmis-
sion delay.
A5: When the studied sensor has experienced d times of manda-
tory backoffs, all other competing sensors’ mandatory backoff time
is d [This assumption comes from the statistic point of view: when
the studied sensor has experienced d times of mandatory backoffs,
the expected backoff time for the rest sensors is also d.].

Following notations will be used in modelling as well.

• MBK is the maximum number of mandatory backoffs;
• Sd is the probability of successful transmission with d times of
mandatory backoffs;
• Nd is the number of sensors that still in competition after d times
of mandatory backoffs;
• Psens(d) is the probability of making a CCA after d times of
mandatory backoffs;
• PCCA(d) is the probability of successful transmission after d
times of mandatory backoffs;
• min BE is the Mac-layer’s minimum CSMA backoff exponent;
• max BE is the Mac-layer’s maximum CSMA backoff exponent;
• L is the length of a packet.
IET Control Theory Appl., 2015, Vol. 9, Iss. 16, pp. 2458–2465
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Fig. 2 Principle of Mac-layer’s CSMA/CA protocol

Since the sensors quit the channel competition after a successful
transmission or packet loss, the number of sensors in competi-
tion decreases with the increment of mandatory backoffs times.
Thus Psens(d), PCCA(d), Nd and Sd change as d increases, and are
computed in the following way:

(a) Evaluation of Psens(d). After d times of mandatory backoffs,
there are 2min{min BE+d,max BE} time slots to make a CCA. The prob-
ability of making a CCA after k times of mandatory backoffs is

Psens(d) = 2− min{min BE+d,max BE}. (14)

(b) Evaluation of PCCA(d). Suppose that a competing sensor has
experienced d times of mandatory backoffs till time t. Usually,
there are two situations for another mandatory backoff.
i. There is another sensor starting transmission at time t′ ∈ {t −
L + 1, t − L + 2, . . . , t, t + 1}. Then, the transmission will fail due
to channel occupation.
ii. There are more than one sensors starting CCA at time t. Then,
the transmission will fail for packet collision.
Using Assumption A5, it follows that

1 − PCCA(d) = (L + 1)[1 − (1 − Psens(d))Nd−1]PCCA(d)

+ {1 − (L + 1)[1 − (1 − Psens(d))Nd−1]
× PCCA(d)}(1 − (1 − Psens(d))Nd−1). (15)
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Remark 1: The first term in the right side of (15) is the probability
of case (i), and the second term denotes the probability of case (ii).

Solving (15) results in that

PCCA(d) = Pns

1 + (L + 1)(1 − Pns)Pns
, (16)

where Pns = (1 − Psens(d))Nd−1.
(c) Evaluation of Nd . Nd denotes the expected number of sensors
that are still in competition after d times of mandatory backoffs. By
A5, the sensors that quit competition can be viewed as completing
their transmission. Moreover, for d ∈ {0, . . . , MBK},

Td = 2min{min BE+d,max BE}−1

is the expected time interval between the dth mandatory backoff
and next CCA. The number of senors quit competition during time
interval Td is Nd − Nd+1. Let

Qd =
(

1 − (1 − Psens(d))Nd−1
)

PCCA(d)

be the probability that a sensor successfully transmits its packet
after d times of mandatory backoffs. Base on the Mac-layer’s law,
the time interval required by transmitting a packet is L + 2. Thus
the maximum packet flow rate is (1/L + 2), and Nd+1 is given
by [This is the expected number of competing sensors.]

Nd+1 =

⎧⎪⎪⎨
⎪⎪⎩

Nd − Td

L + 2
if Qd >

1

L + 2

Nd − TdQd if Qd ≤ 1

L + 2
,

(17)

where N0 = M .
(e) Evaluation of Sd . The probability of successful transmission
with exact d times of mandatory backoffs is simply given by

Sd = PCCA(d)

d∏
j=0

(1 − PCCA(j)). (18)

(e) Evaluation of Pl(M ). The packet loss rate Pl(M ) is computed
by

Pl(M ) = 1 −
MBK∑
d=0

Sd . (19)

In the sequel, the above quantities will be used to design the
scheduling algorithms.

4 Online scheduling

In this section, we solve the online scheduling problem under a con-
stant estimator gain. To this purpose, we compute E{Pk+1|Pk , sk }
in the following result.

Lemma 1: Given an arbitrary scheduling sk , let M = ∑N
i=1 sk (i).

Then,

E{Pk+1|Pk , sk } = APk AT + Q + (1 − Pl(M ))

N∑
i=1

sk (i)(Ks(i)

× (CiPk CT
i + Ri)K

T
s (i) − Ks(i)CiPk AT

− APk CT
i KT

s (i)) + (1 − Pl(M ))2
N∑

i=1

∑
j �=i

× sk (i)sk (j)Ks(i)CiPk CT
j KT

s (j) (20)
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Proof: If sk (i) = sk (j) = 1, then γk (i) and γk (j) are uncorrelated
for i �= j and thus

E{ξk (i)ξk (j)|sk (i), sk (j)}
= sk (i)sk (j)Prob(γk (i) = γk (j) = 1|sk (i) = sk (j) = 1)

= sk (i)sk (j)(1 − Pl(M ))2. (21)

It is clear that the above also holds if sk (i) = 0 or sk (j) = 0.
Similarly, we have that

E{ξk (i)|sk (i)} = sk (i)(1 − Pl(M )). (22)

In light of (11), we obtain that

E{Pk+1|Pk , sk }

= APk AT + Q +
N∑

i=1

E{ξk (i)|sk (i)}Ks(i)RiK
T
s (i)

−
N∑

i=1

E{ξk (i)|sk (i)}(Ks(i)CiPk AT

+ APk CT
i KT

s (i)) +
N∑

i=1

E{ξ2
k (i)|sk (i)}Ks(i)CiPk CT

i KT
s (i)

+
N∑

i=1

∑
j �=i

E{ξk (i)ξk (j)|sk (i), sk (j)}Ks(i)CiPk CT
j KT

s (j). (23)

Since ξ2
k (i) = ξk (i), substituting (21) and (22) into (23), we obtain

(20). �

Using Lemma 1 and sk (i) = s2
k (i), we can write πk+1 as a

quadratic function of sk , i.e. πk+1 = sT
k Ak sk + ck for some N × N

matrix Ak and a scalar ck (cf. Theorem 2). Since Pl(M ) depends
only on the sum of sk (i), we can minimise πk+1 in two steps.
For each M ∈ {1, . . . , N }, we minimise πk+1 under the constraint
that

∑N
i=1 sk (i) = M . Then, the minimum of πk+1 is obtained by

ranging all feasible M . The first step needs to be solved using a
relaxation by converting the integer optimisation problem to a real-
valued optimisation problem. One difficulty, as far as relaxation is
considered, is that the matrix Ak may have negative diagonal ele-
ments. This is fixed by adding a sufficiently large positive diagonal
matrix αk · I to Ak . We formally write the result in the following
theorem.

Theorem 2: Under a constant estimator gain Ks = [Ks(1), Ks(2), . . . ,
Ks(N )], the optimal sk for minimising πk+1 in (12) can be obtained
by solving the following optimisation problem

min
1≤M≤N

{
min∑N

i=1 sk (i)=M
sT

k (Ak + αk I )sk

}
+ (ck − αk M ) (24)

where ck = Tr(APk AT + Q), I is an N × N identity matrix, Ak is
an N × N symmetric matrix with elements

ak ,ij = (1 − Pl(M ))2Tr(Ks(i)CiPk CT
j KT

s (j)), i �= j

ak ,ii = (1 − Pl(M ))Tr(Ks(i)CiPk CT
i + Ri)K

T
s (i)

− 2Ks(i)CiPk AT)

and αk = − min{0, ak ,11, ak ,22, . . . , ak ,NN } which guarantees the
non-negativeness of all the elements of Ak + αk I .
IET Control Theory Appl., 2015, Vol. 9, Iss. 16, pp. 2458–2465
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Proof: By Lemma 1 and sk (i) = s2
k (i), we can write πk+1 =

E{Pk+1|Pk , sk } as

πk+1 = sT
k Ak sk + ck

with ak ,ij and ck defined above. It is clear that

sT
k Ak sk + ck = sT

k (Ak + αk I )sk + ck − αk M

when
∑N

i=1 sk (i) = M since sT
k (αk I )sk = αk sT

k sk = αk M . One
can easily verify that the selected αk can guarantee the non-
negativeness of all elements of Ak + αk I . �

Unfortunately, the inner optimisation problem is known to be
NP-hard [25]. Thus, a brute force computation is feasible only for
a relatively small N . For a large N (say N > 10), sub-optimal
solutions seems more sensible. Indeed, various effective relaxation
algorithms are available [25], with the basic idea of replacing
the terms sk (i)sk (j) by another variable, say, sk (ij) ∈ {0, 1} and
relaxing the integer constraint on sk (i) and sk (j) to an interval
[0, 1]. This results in O(N 2) number of variables and thus the
corresponding optimisation problem is large.

In the sequel, we adopt a more efficient relaxation algorithm in
[25] and obtain a mixed integer programming problem with O(N )
variables.

Lemma 2: Consider the following quadratic zero-one programming
problem

min f (x) = xTQx

s.t.
n∑

i=1

xi = M , x ∈ {0, 1}n
(25)

where Q is an n × n matrix with each element qi,j ≥ 0, and x =
[x1 x2 . . . xn]T. Then, it is equivalent to the following mixed
integer programming problem

min
x,y,z

g(z) =
n∑

i=1

zi

s.t.
n∑

i=1

xi = M ; Qx − y − z = 0; y ≤ μ(e − x); yi ≥ 0,

zi ≥ 0, xi ∈ {0, 1} for any i = 1, 2, . . . , n,

(26)

where e = [1 1 . . . 1]T and μ is a constant.

We will demonstrate via simulation in Section 6 that the above
relaxation method is effective in practice.

5 Offline scheduling

Note that the receiving probability is given by

τi = Prob{ξk (i) = 1} = Prob{sk (i) = 1, γk (i) = 1}.

Under the assumption that sk (i) are independent and Prob{sk (i) =
1} = pi, the above probability is computed in the following result.

Theorem 3: Given p = {p1, p2, . . . , pN }, it follows that τi is inde-
pendent of time k and

τi = pi

N−1∑
M=0

(1 − Pl(M + 1))ρi(M ), (27)
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where ρi(M ) is the probability that M sensors, not including sensor
i, are transmitting, i.e.

ρi(M ) =
∑

|Vi |=M

⎛
⎝∏

v∈Vi

pv

⎞
⎠

⎛
⎝∏

v∈V̄i

(1 − pv)

⎞
⎠ . (28)

In the above, Vi is any subset of {1, 2, . . . , N } not containing i,
V̄i = {1, 2, . . . , N }\{Vi ∪ {i}}, and the sum is done over all such Vi
with a cardinality M .

Furthermore, for any j �= i, the probability for both ith and jth
sensors’ messages are received at time k is given by

τij = pi pj

N−2∑
M=0

(1 − Pl(M + 2))ρi,j(M ), (29)

where ρi,j(M ) is the probability that M sensor nodes, not including
nodes i and j, are transmitting, i.e.

ρi,j(M ) =
∑

|Vi,j |=M

⎛
⎝ ∏

v∈Vi,j

pv

⎞
⎠

⎛
⎜⎝ ∏

v∈V̄i,j

(1 − pv)

⎞
⎟⎠ , (30)

where Vi,j is any subset of {1, 2, . . . , N } not containing i and j,
V̄i,j = {1, 2, . . . , N }\{Vi,j ∪ {i, j}}, and the sum is done over all such
Vi,j with a cardinality M .

Proof: Since sk (i) are independent in different k and i, it is clear
that

τi = piProb{γk (i) = 1|sk (i) = 1}
To compute Prob{γk (i) = 1|sk (i) = 1}, we take 0 ≤ M ≤ N − 1
and consider the event EM that M sensors, in addition to sensor
node i, are transmitting. It is clear that different events EM for
different values of M are exclusive. For each M , the probability
ρM for EM to occur is obtained by listing all elements of the set
{sk (j), j �= i} such that M elements are equal to 1 and the rest equal
to 0. Denote by Vi the index set of such {sk (j), j �= i}, i.e. v ∈ Vi
if and only if sk (v) = 1. Note that |Vi| = M . Using Prob{sk (j) =
1} = pj , it follows that ρi(M ) is given in (28). Finally, if sensor
node i and M other sensor nodes are transmitting, the probability
of receiving packet is given by 1 − Pl(M + 1). Combining all the
results above, we obtain (27).

The expression of τij in (29) can be worked out similarly.
Namely, the term pipjρi,j(M ) is the probability that nodes i and
j, and M additional nodes are transmitting, thus its contribution to
τij is (1 − Pl(M + 2))pipjρi,j(M ). Putting all the i, j together, we
get (29). The derivation of ρi,j(M ) is similar to ρi(M ), and the
detail is omitted. �

Next, we compute P̄∞(i) for any probability of receiving packet
τi in the following result.

Theorem 4: Let the receiving probabilities τi, i ∈ {1, . . . , N } be
given and a constant estimator gain Ks = [Ks(1), Ks(2), . . . , Ks(N )]
is used. Let Ac = A − ∑N

i=1 τiKs(i)Ci, then E{Pk } obeys the fol-
lowing linear recursion

E{Pk+1} = AcE{Pk }AT
c +

N∑
i=1

τi(1 − τi)Ks(i)CiE{Pk }CT
i KT

s (i)

+
N∑

i �=j

N∑
j=1

(τij − τiτj)Ks(i)CiE{Pk }CT
j KT

s (j)

+
N∑

i=1

τiKs(i)RiK
T
s (i) + Q. (31)

Moreover, suppose that Ac is stable and τi, τij are sufficiently large,
there is a positive definite matrix P̄∞ solving the following linear
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equation

P̄∞ = AcP̄∞AT
c +

N∑
i=1

τi(1 − τi)Ks(i)CiP̄∞CT
i KT

s (i)

+
N∑

i �=j

N∑
j=1

(τij − τiτj)Ks(i)CiP̄∞CT
j KT

s (j)

+
N∑

i=1

τiKs(i)RiK
T
s (i) + Q. (32)

Proof: Using (11) with a constant estimator gain Ks, and the
independence of ξk (i) − τi, we get that

E{Pk+1|Pk } = E
{(

Ac −
N∑

i=1

(ξk (i) − τi)Ks(i)Ci

)

· Pk

(
Ac −

N∑
i=1

(ξk (i) − τi)Ks(i)Ci

)T
⎫⎬
⎭

+
N∑

i=1

τiKs(i)RiK
T
s (i) + Q

=
(

A −
N∑

i=1

τiKs(i)Ci

)
Pk

(
A −

N∑
i=1

τiKs(i)Ci

)T

+
N∑

i=1

E{(ξk (i) − τi)
2}Ks(i)CiPk CT

i KT
s (i)

+
N∑

i �=j

N∑
j=1

(ξk (i) − τi)(ξk (j) − τj)Ks(i)CiPk CT
j KT

s (j)

+
N∑

i=1

τiKs(i)RiK
T
s (i) + Q

=
(

A −
N∑

i=1

τiKs(i)Ci

)
Pk

(
A −

N∑
i=1

τiKs(i)Ci

)T

+
N∑

i=1

τi(1 − τi)Ks(i)CiPk CT
i KT

s (i)

+
N∑

i �=j

N∑
j=1

(τij − τiτj)Ks(i)CiPk CT
j KT

s (j)

+
N∑

i=1

τiKs(i)RiK
T
s (i) + Q. (33)

Since the right-hand side above is linear in Pk , the above leads
to (31). Furthermore, as (31) is a linear recursion (in E{Pk }), its
steady-state solution is naturally given in (32). Using the assump-
tion that A − ∑N

i=1 Ks(i)Ci is stable, P̄∞ exists when τi = 1 and
τij = 1 for all i, j. Note that P̄∞ in (32) is a continuous function
of τi and τij . Therefore, by continuity, P̄∞ exists as long as all τi
and τij are sufficiently large. �

Remark 2: In [7], the single sensor case (N = 1) is analysed and
it is shown that there exists a critical value for the receiving prob-
ability τ to ensure the boundness (existence) of P̄∞. In particular,
it is shown in [7] that the boundness of P̄∞ is guaranteed if A
is stable or, in the case of unstable A, if (1 − τ)|λmax(A)|2 < 1.
The multi-sensor case (N > 1) is much more involved in terms of
determining a similar condition on τi and τij for the boundness of
P̄∞. For a simpler channel model, the stability condition is studied
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Fig. 3 Expected packet loss rate comparison

in [26]. In this section, we only focus on the optimal design of
transmitting probability {p1, p2, . . . , pN }, which minimises Tr(P̄∞)
and guarantees the maximal stability margin.

The term Tr(P̄∞) can be optimised by standard Newton Gradient
method (see, e.g. [27]), thus is omitted here.

6 Simulation

In this section, we demonstrate the proposed packet loss model and
scheduling algorithms via simulation.

6.1 Packet loss model

To verify the packet loss model in Section 3, we consider a series
of simulations with a set of common parameters for the IEEE
802.15.4 Standard: min BE = 3, max BE = 3, L = 3, but different
parameters MBK = 4, 5, 6, respectively. The simulations are done
by running 10, 000 Monte Carlo tests, and the comparison between
model and simulation is shown in Fig. 3. We see that our model
matches the simulated result very well.

6.2 Scheduling optimisation

To illustrate performance of the two proposed scheduling
algorithms, a networked system with following parameters is

Fig. 4 Simulation of online scheduling and offline scheduling
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considered

A = diag{1.2, 1.1, 1.1, 1.15, 1.2, 1.05, 1.2, 1.1,

1, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2};
C = Q = R = P0 = I15,

where I15 is a 15 × 15 identical matrix.
Base on the same Mac-layer parameters as in packet loss model,

online scheduling, offline scheduling and non-scheduled are simu-
lated with the same steady-state estimator gain, which is shown in
Fig. 4.

It is clear that online scheduling gives a lower level of the esti-
mation error covariance matrix than that of offline scheduling, and
non-scheduled case has the worst performance.

7 Conclusion

In this paper, a sensor scheduling problem under dynamic packet
lossy network was studied. Firstly, the MMSE estimator for the
multiple sensors observed system under a packet lossy network was
given. In addition, the network is further modelled as a dynamic
packet lossy network, which has the property that the more sensors
are transmitting their measurements to the centralised estimator,
the higher packet loss rate it has. To quantify the dynamic nature
of network, CSMA/CA protocol was chosen and we built a packet
loss model to calculate the expected packet loss rate under different
number of sensors. Then, under the assumption that the estimator
broadcast ACK message after receiving a packet from sensor, an
online scheduling was proposed, and the expected estimation error
covariance was minimised step by step. Without the ACK message,
the packets receiving results are unknown to the sensors, thus an
offline schedule was introduced. The offline schedule assigns each
sensor a constant packet transmitting rate in a random framework.
Finally, we included simulation results to verify the effectiveness
of the packet loss model, and compare the estimation performance
under the two schedulers to the case without a scheduler.
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