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Abstract: This study proposes a non-linear saturation-aware controller for dual-stage micro–nano actuators. Dual-stage motion
systems use two actuators in series in order to achieve an improved performance: a micro actuator responsible for a large
range of actuation, and a nano actuator (NA) able to achieve a high bandwidth. The NA is commonly driven by flexure-based
piezoelectric actuators subject to a limited range which presents large oscillations in the presence of output saturation. In order
to avoid these oscillations, a non-linear smooth switching function that limits the actuation of the NA to only track references
within its range is proposed. Experimental results demonstrate the effectiveness of the proposed approach, which is able to
reduce oscillations and energy consumption without compromising settling time performance.

1 Introduction
A micro–nano motion system, or dual-stage actuator, is comprised
of two actuators connected in series with complementary
characteristics: a micro actuator (MA) that possesses a long action
range but relatively slow response time, and a nano actuator (NA)
that provides the system with a faster response but has a limited
range of actuation. Given the significantly smaller range of
actuation of the NA, a recurring problem of such systems is the
output saturation of this actuator during large reference steps. This
problem may be inferred from the schematic depiction of a macro–
nano motion system depicted in Fig. 1a, whose output is subject to
a limited range given by 2ȳ2. Any reference command that is given
beyond this range will cause the NA to saturate its output, which
may lead to oscillations that might induce heat dissipation and
wearing of the flexure linkage inherent to piezoelectric actuators
(commonly used in the nano stage). In the absence of NA output
saturation, an improved performance is achieved by an appropriate
control design able to exploit the benefits of one actuator in order
to compensate the limitations of the other. As a result, the dual

stage strategy became popular within high precision motion
applications such as Hard Disk Drives and advanced
microlithography, providing the motion systems with a significant
increase in servo bandwidth and disturbance rejection. Recently,
other applications have been employing some form of dual stage
actuation, such as X–Y systems, nanopositioning scanners and three
degree of freedom microscopes. 

Both for single- and dual-stage actuators, motion control has
found countless applications and generated an equally formidable
amount of breakthroughs for control theory and practise. Friction
compensation [1], loop-shaping controllers [2] and saturation
aware techniques [3] are some of the topics that remain of interest
after many decades. While most of these methods were developed
for single-input–single-output (SISO) systems, a considerable
amount may be directly implemented to dual-stage (micro–nano)
motion structures. The friction compensation method devised by
Ruderman and Iwasaki [4] and, more generally, disturbance
observers [5], are examples that may be cited. Other methods
include the well known composite non-linear feedback (CNF) [6]
and sliding mode techniques [7], both of which are
straightforwardly extended to multi-input–multi-output (MIMO)
systems.

The number of control strategies specifically designed to
exploit the characteristics of dual-stage micro–nano motion
systems, on the other hand, reduces drastically. An important
breakthrough came in [8] where a reduced settling time was
achieved by allowing the overshoot of the MA. The crucial
observation being that, given the dual-stage structure of the system,
it is not necessary to have both actuators at the reference in order to
have the total output tracking the desired position. In fact, as long
as the MA is close enough to the reference, the NA may reach it
and achieve the desired tracking. A direct extension of [8] gave rise
to the so-called preview control of dual-stage systems, where the
MA is allowed to move ahead of time [9]. In both strategies a
remarkable settling time improvement is achieved because the
unique characteristics of the dual-stage structure were explicitly
taken into account [10].

This paper contribution falls in the category of the latter
references in that it proposes a new control strategy uniquely

Fig. 1  Schematic representation of a typical micro–nano actuator,
respectively, represented by M and m
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suitable for dual-stage actuators. In order to solve the output
saturation problem of the NA, a non-linear control law will be
proposed to activate the nano-stage only when the reference
command is within reach. As such, energy consumption is
significantly reduced and oscillations caused by the controller
saturation are eliminated. The resulting closed-loop system
comprises ℒ∞ and sector-bounded non-linearities (induced by the
proposed control law) and is subject to input saturation on both
actuators. Formal stability guarantees are given by a polytopic
quasi-linear parameter varying (LPV) approach [11] combined
with the absolute stability analysis of Lur'e type non-linear systems
subject to saturation given in [12]. This approach is unique in the
sense that it focuses on the saturation of dual-input single-output
(DISO) systems with the objective of retaining both stability and
performance. In contrast, most saturation solutions in the literature
deal with SISO or MIMO systems, and are mainly focused on
retaining the stability of the closed-loop system. The proposed
approach is validated in a DSA comprised of a linear motor as the
MA and a piezoactuated flexible structure as the NA [8].
Experimental results show a reduction both in the system input
effort and in unwanted output oscillations, evidencing the
performance improvements due to the proposed control scheme.

This paper is organised as follows. Section 2 describes the
system at hand and the control strategy commonly employed to
macro–nano positioning systems. Section 3 describes the proposed
controller and frames the closed-loop system in its state-space form
so that stability results may be provided in Section 4. A design
procedure for the tuning of control parameters is given in Section 5
followed by experimental results demonstrating the benefits of the
proposed strategy in Section 6. Final conclusions are drawn in
Section 7.

Notation: vi denotes the ith element in vector v, Si denotes the
element in position S(i, i) in a diagonal matrix S and L(i) denotes the
ith row of matrix L. y(t) will be denoted only by y when its time-
dependence can be inferred from the context.

2 Micro–nano motion system
2.1 System description

Consider the micro–nano actuator illustrated in Fig. 1 where the
micro actuator (MA - also referred to as primary) is modelled by a
double integrator and the nano actuator (NA - secondary) is
represented by a mass–spring–damper system. In this case, M, y1(t)
and u1(t) denote the mass, position and input of the MA and,
accordingly, m, y2(t) and u2(t) are related to the NA. Also, spring
and damper coefficients of the secondary are represented by k and
c.

This simplified model is usually employed to describe micro–
nano systems with actuators driven, respectively, by a linear motor
and a piezoelectric stage. In the particular case of piezoelectric
actuators, it is verified that the primary actuator is more massive
than the secondary, i.e. M >> m, and that the secondary presents a
higher bandwidth when compared to the primary. Under these
conditions, the interaction between actuators is negligible and,
consequently, each actuator dynamics may be given by [13]

ÿ1(t) =
kv1

M u1(t), (1)

ÿ2(t) = 1
m kv2u2(t) − ky2(t) − cẏ2(t) , (2)

where kv1 and kv2 are constants that transform the input signal from
volts to the actual force being applied to the system. Furthermore,
as depicted in Fig. 1, the output displacement of the NA is given
with respect to the output of the MA. Therefore, the total
displacement of the system is given by y(t) = y1(t) + y2(t), and
defines the overall output of the micro-nano. The main control
objective (to be o formalised in the following sections) is to ensure
that the output y(t) tracks a step-like reference signal r(t) as fast as
possible.

2.2 Dual-stage control

The micro–nano actuator defined in (1) and (2) is a DISO system
designed to exploit the benefits of the individual actuators. By
coupling a long-range actuator (able to achieve a displacement of
several micrometres) with a fast dynamics actuator (able to achieve
a large bandwidth), an overall improved performance is expected.
Since different input combinations generate the same output
trajectory due to the freedom available in DISO systems, the
control design of micro–nano actuators may become a challenging
task [9]. A common strategy to work around this excessive
freedom is given by the so-called master–slave structure, where the
MA takes the role of master and tracks the reference neglecting the
presence of the NA. That is, while the primary actuator control law
is a function of its position, velocity and reference

u1(t) = f 1(y1(t), ẏ1(t), r(t)),

the secondary depends (in addition to its own position and
velocity) on the remaining tracking error defined by
e(t) = y1(t) − r(t):

u2(t) = f 2(e(t), y2(t), ẏ2(t)) .

Hence, if reference tracking is achieved in steady state, it follows
that y1 → r and y2 = y1 − r → 0. The master–slave structure is
depicted in Fig. 2 where it is clear that the NA tracks the remaining
error between the MA and the reference. 

There is one additional constraint present in the secondary
stage. Since this actuator is driven by a flexible structure described
by (2), its limited input implies a limited output. Considering that
the static gain of (2) is given by kv2/k and that ū2 denotes the input
limit of the NA, then the maximum displacement of the secondary
actuator (ignoring possible overshoot due to the transient response)
is

ȳ2 =
kv2

k
ū2 . (3)

As a consequence, when the tracking error is larger than ȳ2, the
overall system is limited by the bandwidth of the MA. Also notice
that the NA loop in Fig. 2 includes a linear compensator N(s) in the
direct feedback path of the NA control loop. Flexible structures
such as the ones used to accommodate piezoelectric actuators are
commonly subject to undesired resonant peaks that might
compromise the performance. Therefore, N(s) represents loop
shaping filters, such as notch filters, that might be used to
compensate these resonant peaks allowing the system model to be
simplified to (2). The experimental results considered in this paper
will make use of one such compensator.

From (1), (2) and the structure depicted in Fig. 2, the following
state-space representation can be considered:

ẋ(t) = Ax(t) + B satū(u(t)),
y(t) = Cx(t), (4)

where x(t) ∈ ℝ4 is the state vector defined by

Fig. 2  Master–slave structure representing non-linear controllers u1 and
u2 along with the notch filter N(s)
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x(t) = y1(t) − r(t) ẏ1(t) y2(t) ẏ2(t) ′,

u(t) = u1(t) u2(t) ′ ∈ ℝ2 are the inputs and

A =

0 1 0 0
0 0 0 0
0 0 0 1

0 0 −k
m

−c
m

, B =

0 0
b1 0
0 0
0 b2

,

C = 1 0 1 0

are the system matrices with b1 = kv1/M and b2 = kv2/m.
Furthermore, each control input is assumed to be limited by a
symmetric saturation −ū1 ≤ u1(t) ≤ ū1 and −ū2 ≤ u2(t) ≤ ū2, i.e.
each component of the vector satū(u(t)) is defined as follows:

satū j(u(t)) = sgn(uj(t))min( uj(t) , ū j), j = 1, 2.

Note that the first state in x(t) corresponds exactly to the
tracking error e(t). Hence, the control objective is to design a u(t)
taking explicitly into account the saturation limits such that the
origin of (4) is asymptotically stable, i.e. ensuring the reference
tracking in steady state. This design problem is addressed in the
following sections.

3 Dealing with saturating actuators
Besides limiting the bandwidth of the overall system, the saturation
of the NA is particularly undesirable for two main reasons:
unnecessary energy consumption and output oscillations. As
described in the previous section, a saturated input in the NA
implies a limited output displacement ȳ2. As a result, when the MA
is far from the reference, a full control input applied to the NA will
not move the output any closer to the reference, i.e. energy is spent
and nothing is gained in return. Furthermore, as already mentioned,
flexure-based mechanisms are subject to a number of resonance
peaks that are commonly compensated by notch-filters and linear
compensators which are compromised in the presence of
saturation, leading to significant oscillations.

This section will elaborate on a simple form of non-linear
controller that avoids the saturation of the NA independently of the
reference step being pursued. In general terms, the idea is to shape
the reference of this stage so that it is only active in a range that
does not lead to the saturation of u2(t). Since the NA tracks the
remaining error between the MA and the reference, there is nothing
to be gained by allowing the NA to track this error when it is larger
than its range ȳ2. This remark calls for a switching function that
allows the NA to ‘see’ the reference only when it is sufficiently
close, i.e. within its range. Furthermore, a smooth switching
function should be preferred in order to avoid the excitation of
higher frequencies. In what follows we make the traditional
assumption that all states are known and available for both control
laws.

3.1 MA control

The actions of the MA are decoupled from those of the NA by the
master–slave strategy. Therefore, the control law of the MA could,
in principle, take any form the designer finds suitable for the
application at hand. Since this paper is focusing on the saturation
of the actuators, it will be assumed that the traditional Proximate
Time-Optimal Servomechanism – PTOS [14] will be the MA
control law of choice. This control law is given by,

u1(t) = − kex1 − kd1x2 − ψ(x1), (5)

where

ψ(x1) =
kp1x1, |x1 | ≤ yl,
sgn(x1)(kd1 2αū1 | x1 |b1 + ū1), |x1 | > yl,

(6)

where ū1 is the saturation level of the primary actuator, ke and kp1

are related to the proportional gain of the control law and are free
parameters along with the so-called acceleration discount factor
0 < α < 1. Further conditions are imposed on the derivative gain
kd1 and yl so that continuity is achieved at the switching instant

yl = ū
kp1

, kd1 = 2kp1

αb1
. (7)

For details on this controller the reader is invited to refer to [15]
and references therein. Here it suffices to say that for |x1 | > yl a
non-linear function is used to saturate the controller and allow for
an aggressive approach to the reference. For |x1 | ≤ yl, on the other
hand, the PTOS becomes a simple proportional–derivative
controller, thus settling at the reference without any chattering.
Gain ke is necessary for our stability result, as will be clear in the
following sections.

3.2 NA control law

The objective of this section is to devise a control law for the NA
such that it only moves when the reference is close enough, and
that it does not saturate, preventing the occurrence of oscillations.
Both these tasks may be achieved by a switching function that
allows the NA to track the reference only when it is within range.
To achieve this in a smooth manner, we propose the following non-
linear controller:

u2 = −kp2(x3 − x1ψa(x1)) − kd2x4, (8)

for some proportional kp2 and derivative kd2 gains and for ψa(x1)
given by

ψa(x1) = 1 − htan(β1( | x1 | − β2))
2

, (9)

where ‘ htan’ stands for the hyperbolic tangent. Non-linear
function (9) is depicted in Fig. 3 for x1 > 0 where it is clear that for
large values of x1, ψa(x1) is approximately zero. This means that for
large reference errors the NA does not attempt to track the error
between the reference and the MA (recall that x1 := y1 − r).
However, as the primary actuator reaches the reference and the
value of x1 diminishes, the non-linear function ψa(x1) approaches
one, and the NA actuator smoothly tracks the remaining difference
between y1 and r. This control law, therefore, is a smooth switching
function that limits the actuation of the secondary actuator so that it
does not saturate. With appropriate choices of β1, which determines
the slope of the curve in Fig. 3, and β2, which determines its
horizontal offset, it is straightforward to achieve this smooth
transition between u2 ≃ − kp2x3 − kd2x4 and

u2 ≃ − kp2(x3 − x1) − kd2x4 .

As a consequence, the saturation of this actuator is avoided for any
reference level, and oscillations are reduced along with energy
consumption. 
 
Remark 1: In order to design ψa(x1) defined in (9) and depicted in
Fig. 3, one must choose the parameters β1 and β2 such that
ψa(x1) ≃ 1 in the range ȳ2 of the NA. This is easily achieved by
noticing that the maximum slope of this curve occurs at x1 = β2 and
is given by −β1/2. By tracing the resulting tangent line (dashed
black line) two conclusions follows:

1. The interception of the tangent line with ψa(x1) = 1 occurs at
x1 = β2 − 1/β1, leading to the approximation
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ψa(x1) ≃ 1, for | x1 | < β2 − 1
β1

. (10)

2. The interception of the tangent line with ψa(x1) = 1 occurs at
x1 = ± β2 ± 1/β1, leading to the approximation

ψa(x1) ≃ 0, for | x1 | > β2 + 1
β1

. (11)

Note that the desired transition interval δx1 defining the region
between ψa(x1) ≃ 0 and ψa(x1) ≃ 1 is given by

δx1 = β2 + 1
β1

− β2 − 1
β1

= 2
β1

.

Also note that ideally ψa(x1) ≃ 1 when the tracking error lies within
the NA range ȳ2, which results in ȳ2 = β2 − 1/β1. Based on this
reasoning it readily follows that for a given ȳ2 and δx1, β1 and β2
must be chosen as

β1 = 2
δx1

, β2 = ȳ2 + 1
β1

. (12)

Based on the formulation presented in this section, it is clear
that control laws (5) and (8) are based on the feedback of x1, x2, x3
and x4, i.e. we suppose that all system states are measurable.

3.3 Closed-loop system

Given the individual controllers defined in the previous sections,
the combined control input may be expressed as follows:

u1

u2
=

−ke −kd1 0 0
−kp2ψa(x1) 0 −kp2 −kd2

x

− 1
0 ψ(x1),

(13)

which is equivalent to

u = K(x1)x − Bψψ(x1), (14)

with Bψ = [1 0]′. In this form, it is clear that ψa(x1) performs a
scheduling in the state feedback gain, represented by K(x1), in
order to avoid the saturation of the NA, while ψ(x1) is responsible
to provide near time-optimal performance to the MA.

Both actuators are subject to control saturation which will be
dealt with by means of the decentralised deadzone non-linearity
ϕ(u) given by

ϕ(u) = u − satū(u) . (15)

Hence, from (4), (14) and (15), the closed-loop system can be
rewritten as follows:

ẋ = (A + BK(Lcx))x − B̄ψ(Lc(x)) − Bϕ(u) (16)

with Lc = [1 0 0 0] and B̄ = BBψ.

4 Stability results
Based on the state-space representation (16), obtained by the
application of control laws (5) and (8) into (4), we provide in this
section a result that allows the assessment of the regional
asymptotic stability of the closed-loop system. Hence, once the
gains ke, kp1, kd1, kp2, kd2 and the parameters of non-linearities ψ
and ψa have been computed, it is possible to certify that the origin
of (16) is asymptotically stable, which implies that the tracking is
guaranteed provided that the initial states are in a well
characterised ellipsoidal region around the origin.

The proposed stability conditions will be based on the following
properties:

1. ψa(Lcx) is an ℒ∞ bounded function and consequently a quasi-
LPV approach [16] can be employed to represent K(Lcx).

2. ψ(Lcx) is a sector bounded non-linearity (see Fig. 5) for a
particular range of Lcx [17], i.e. it satisfies a sector condition
locally, and therefore the classical absolute stability theory [18]
can be applied.

3. satū(u) was rewritten as a deadzone non-linearity which
satisfies the generalised sector approach proposed in [19].

While each point above will be individually addressed by a
specific lemma, the proof of each lemma is omitted since they can
be derived from the results in [16, 18, 19], respectively.
 
Lemma 1: Consider a continuously differentiable non-linear
function ψa(Lcx) such that 0 ≤ ψa(Lcx) ≤ 1, ∀Lcx. Then
K(Lcx) = K(x1) in (14) can be written by a combination of vertices
{K1, K2} such that

K(Lcx) = ∑
j = 1

2
qjK j, 0 ≤ qj ≤ 1, ∑

j = 1

2
qj = 1 (17)

with

K1 =
−ke −kd1 0 0
0 0 −kp2 −kd2

,

K2 =
−ke −kd1 0 0
−kp2 0 −kp2 −kd2

.
(18)

Assuming now that ψ(Lcx) is locally confined to the sector
νminLcx ≤ ψ(Lcx) ≤ νmaxLcx for all |Lcx | ≤ ρ, ρ > 0. Then it follows
that (16) is equivalent to

ẋ = (A + BKc(Lcx))x − Bϕ(u) − B̄ψc(Lcx) (19)

with

u = Kc(Lcx)x − Bψψc(Lcx), (20)

Kc(Lcx) = K(Lcx) − BψνminLc and

ψc(Lcx) = ψ(Lcx) − νminLcx . (21)

From (17), it follows that

Kc(Lcx) = ∑
j = 1

2
qjKc j, 0 ≤ qj ≤ 1, ∑

j = 1

2
qj = 1 (22)

Fig. 3  Illustration of non-linear function ψa(x1) used to limit the actuation
of the secondary actuator
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with Kc j = K j − BψνminLc.
In this case, provided |Lcx | ≤ ρ, we have ψc(Lcx) bounded by

sector [0, νc] where νc = νmax − νmin and the following lemma can
be stated.
 
Lemma 2: Consider ψc(Lcx) defined in (21). Thus the sector
condition

ψc(Lcx)η(ψc(Lcx) − νcLcx) ≤ 0, η > 0 (23)

is satisfied locally in the set

Sc = x ∈ ℝ4; |Lcx | ≤ ρ . (24)
 
Lemma 3: Consider system (19) and the control input (20). If
x(t) ∈ S with

S = x ∈ ℝ4; | (Kc(i)(Lcx) − H(i))x
−(Bψi + Ni)ψc(Lcx) | ≤ ūi, i = 1, 2 (25)

then the generalised sector condition

ϕ(u)′T(ϕ(u) − Hx − Nψc(Lcx)) ≤ 0 (26)

is satisfied for any diagonal positive definite matrix T ∈ ℝ2 × 2.
Note that in the above H ∈ ℝ2 × 4 and N = [n1 n2]′ ∈ ℝ2 × 1 are

free variables to be determined.
Based on Lemmas 1–3 the following theorem can be stated

regarding the stability of (19) under control law (20).
 
Theorem 1: Suppose that Kc j, j = 1, 2 are such that A j = A + BKc j
are Hurwitz. If there exist a symmetric positive definite matrix
W ∈ ℝ4 × 4, a diagonal positive definite matrix S ∈ ℝ2 × 2, matrices
X ∈ ℝ2 × 4, Γ ∈ ℝ2 × 1 and a positive scalar η̄ such that the following
linear matrix inequalities (LMIs) are verified:

A jW + WA j′ −B̄η̄ + WLc′νc −BS + X′

∗ −2η̄ Γ′
∗ ∗ −2S

< 0, j = 1, 2 (27)

W −WLc′νc WKc j(i)′ − X(i)′

∗ 2η̄ −η̄Bψi − Γi

∗ ∗ ūi
2

> 0 i = 1, 2
j = 1, 2 (28)

W WLc′

∗ ρ2 > 0 (29)

then the trajectories of closed-loop system (19) and (20) starting in
the ellipsoidal set

ℰ(W−1, 1) = {x ∈ ℝ4; x′W−1x ≤ 1},

remain bounded to this set and converge asymptotically to the
origin.

The proof of Theorem 1 can be derived from Lemmas 1–3
following the same procedure presented in [20]. Also, note that the
proportional gain ke was introduced in order to satisfy the
assumption that A j = A + BKc j, j = 1, 2 are Hurwitz, otherwise A1

would always present an eigenvalue at the origin and (27) would
not be feasible.

5 Design procedure
The framework proposed in the previous sections can be
implemented in two distinct phases: first, controller gains must be
determined to obtain a desired closed-loop behaviour and then a
stability analysis is performed to ensure that the closed-loop system

is stable for a desired set of reference steps. In the sequel, we will
provide a systematic procedure to be performed in each phase.

5.1 Controller design

From the reasoning presented in Section 3, it follows that
ψa(x1) ≃ 1 for |x1 | ≤ yl and then u1 = [ − (ke + kp1) − kd10 0] and
u2 = [ − kp2 0 − kp2 − kd2] such that the closed-loop behaviour of
each actuator is given by

GMA(s) = Y1(s)
R(s)

= (ke + kp1)b1

s2 + kd1b1s + (kp1 + ke)b1
,

GNA(s) = Y2(s)
X1(s)

= b2kp2

s2 + kd2b2 + (c/m) s + kp2b2 + (k /m)
,

respectively. Hence, considering a desired second-order behaviour
for GMA(s) and GNA(s) given by damping coefficients ξ1 and ξ2, and
natural frequencies ω1 and ω2, then, gains kp1, kd1, kp2 and kd2 can be
computed as follows:

kp1 + ke = ω1
2

b1
, kd1 = 2ξ1ω1

b1
,

kp2 = 1
b2

ω2
2 − k

m
, kd2 = 1

b2
2ξ2ω2 − c

m
.

(30)

Thus, the proposed controller can be designed in the following
manner:

Step 1: Choose ξ1, ξ2, ω1 and ω2 to obtain a desired closed-loop
response. With ke = 0.1 ⋅ kp1 determine kp1, kd1, kp2 and kd2 from
(30).
Step 2: Determine β1 and β2 from Remark 1 such that the NA only
tracks the reference when it is within range and that no saturation
occurs.

 
Remark 2: Since ke was introduced only for stability purposes, this
gain should be tuned to minimise its effect on the closed-loop
performance. Our experience shows that a ke around 10% of kp1 is
enough to guarantee the closed-loop stability without
compromising the MA performance.

5.2 Stability analysis

With the controller designed following the procedure in the
previous section, closed-loop stability can be verified as follows:

Step 1: Choose νmax tangent to ψc(Lcx) at the origin and νmin such
that the sector condition is satisfied for ρ greater than the
maximum reference step and determine K j and Kc j, j = 1, 2 as in
(17) and 22, respectively, such that matrices A1 and A2 are Hurwitz.
Step 2: Solve the optimisation problem

OP: max trace{W} subject to (27) − (29) .
Step 3: If optimisation problem is not feasible, increase ke and go
back to Step 2.

 
Remark 3: It should be pointed out that Step 2 is a stability test and
is performed off-line. Note also that OP is a convex optimisation
problem, since it involves a linear criterion and LMIs constraints,
thus, efficient numerical packages are available to solve it (see for
instance [21]. Furthermore, in addition to the asymptotic stability
of the origin (which is guaranteed by the satisfaction of LMIs (27)–
(29)) this step provides a maximised region of admissible states.
The designer should therefore verify if the physical range of
operation of the system is included in this region. In the cases that
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it is not, a re-tuning of the control law parameters should be
performed.

6 Experimental results
In our experimental results, we have implemented control laws (5)
and (8) on the macro–nano actuator presented in [9]. The MA is
effectively modelled as a double integrator as in (1) and the NA is
modelled as a mass–spring–damper according to (2). While the
system parameters identified from the experimental setup are given
in Table 1, Fig. 4 shows Bode plots of the NA, where the light grey
line is the measured frequency response and the dark line is the
identified model. 

In order to fully illustrate the benefits of the proposed controller
we have damped the NA frequency response with a notch filter
given by

N(s) = s2 + 2ζ1ωchs + ωch
2

s2 + 2ζ2ωchs + ωch
2 (31)

with ζ1 = 0.1, ζ2 = 0.5, ωch = 600 ⋅ 2π rad/s, tuned based on the
frequency response presented in Fig. 4. As a result, the system that
is effectively controlled by (8) is given by the combination of the
notch filter in (31) and the dynamic equation in (2). The resulting
control structure is depicted in the schematic of Fig. 2 and was
implemented with a sampling frequency of 10 kHz. By applying
the tuning Steps 1 and 2 presented in Section 5.1, the following
control parameters are obtained:

kp1 = 2.09, kd1 = 1.72 × 10−2,
ke = 0.25, α = 0.9,
kp2 = 0.4, kd2 = 1 × 10−5,
β1 = 100 μm−1, β2 = 10 μm .

(32)

Parameters β1 and β2 were tuned according to Remark 1 given that
ȳ2 = 9 μm.

We may now assess the stability of this controller by
performing the steps given in Section 5.2. For such, we have
chosen νmax = 2.0900 and νmin = 1.9481 so that ρ = 7 mm. The
sector formed by these values, along with the non-linear function
ψ(Lcx), is plotted in Fig. 5. 

Given the control gains and the sector limits, we are now able to
solve the optimisation problem given in Step 3 of Section 5.2.
Numerical results were obtained from Matlab R2011b with Yalmip
[21] and the solver LMILab [22]. The optimisation problem gives

W−1 =

2.5893 × 10−2 6.1619 × 10−5 ⋯
6.1619 × 10−5 9.3250 × 10−7 ⋯
5.8936 × 10−5 4.7097 × 10−9 ⋯
1.7424 × 10−8 8.3619 × 10−12 ⋯

⋯ 5.8936 × 10−5 1.7424 × 10−8

⋯ 4.7097 × 10−9 8.3619 × 10−12

⋯ 1.7619 × 10−4 3.8852 × 10−8

⋯ 3.8852 × 10−8 5.8569 × 10−11

,

(33)

and trace{W} = 5.0164 × 108. It is important to mention that we
can determine the maximum allowable value of x1 = y1 − r by
computing [x1max0 0 0]W−1[x1max0 0 0]′ = 1. From matrix W above
it follows that x1max = 6.2145 mm.

Given this stability result, we have performed several
experiments tracking reference steps below 75 μm. In particular,
Figs. 6a and b, respectively, show the system response to a step
reference of 70 μm when subject to the a linear controller, i.e.
ψa(x1) = 1, and to the proposed controller. The proposed controller
shows clear advantages over its linear counterpart, in fact, the
linear controller in Fig. 6a shows a classical response of micro–
nano actuators tracking large reference steps: the NA rushes ahead
towards the reference only to saturate immediately after, causing
oscillations on the system that might induce heat dissipation and
wearing of the flexure linkage. Furthermore, no performance
improvement is achieved by this action of the NA, the system must
wait for the MA to be close enough to the reference so that the
effects of the NA are relevant for the tracking performance. 

Fig. 6b, on the other hand, shows the benefits of the proposed
non-linear control law. Note that the NA does not reach its full
saturation limit and, therefore, does not induce oscillations to the

Fig. 4  Measured and identified Bode diagrams of the NA
 

Table 1 System parameters
Parameter Value Units
b1 1.5699 × 107 μm/s2V
b2 1.07 × 107 μm/s2V
k /m 1.4212 × 107 s−2

c/m 1.885 × 103 s−1

ū1 8 [V]
ū2 3 [V]
 

Fig. 5  Non-linear function ψ(x1) given by (6) with a local sector defined
as [νmin, νmax] = [1.9481, 2.0900]
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system output. For further comparison purposes, Fig. 6c shows the
system response when a hard switching is applied, i.e. ψa(x1) = 1
for |x1 | < 9 μm and ψa(x1) = 0 otherwise. The figure shows that
this hard switching approach induces oscillations to the system and
compromises the settling time performance. Furthermore, while the
tracking performance is improved by the proposed controller, its
energy consumption is significantly smaller than that of the
comparative methods. A measure of the ℒ2 norm of the input u2 of
the NA presented in Fig. 7 shows that the linear controller results
in ∥ u2l ∥ = 32.8, while the non-linear controller reduces this value
to ∥ u2nl ∥ = 12.7, i.e. less than 39% of the energy is used without
compromising the performance. Clearly, the larger the step
reference the bigger the energy consumption of the linear

controller. There is also a significant energy consumption reduction
when the smooth switching law is compared to the hard switching
approach which consumes ∥ u2hs ∥ = 15.6 V. As a result, the hard
switching strategy consumes over 22% more energy than the
proposed approach. 

7 Conclusion
This paper proposed a smooth non-linear function to be applied to
the NA control law in order to reduce oscillations caused by input
saturation. By preventing this actuator from reaching its input limit,
loop shaping compensators, such as notch filters, are always active
during the tracking phase. As a consequence, resonant peaks are
not excited in the presence of large reference steps and oscillations
otherwise induced by these peaks vanish. Since it is always a
difficult task to tune non-linear controllers, a methodology for
finding the smooth non-linear function parameters was also
presented. Furthermore, thorough stability results were developed

Fig. 6  Experimental results tracking a 70 μm step
(a) System response for u1 given by PTOS and u2 by linear feedback. The oscillations
are a result of the saturation of u2, (b) System response for u1 given by PTOS and u2 by
(8). The oscillations are avoided since the NA never reached its output saturation limit,
(c) System response for u1 given by PTOS and u2 by hard switching. The oscillations
are avoided but the settling time is compromised

 

Fig. 7  Experimental results: input signals of the NA for u2

(a) Linear feedback, (b) Proposed controller, (c) Hard switching
 

IET Control Theory Appl., 2017, Vol. 11 Iss. 15, pp. 2559-2566
© The Institution of Engineering and Technology 2017

2565



such that the closed-loop stability under the proposed control
scheme is guaranteed. The overall improvements provided by the
proposed approach were shown experimentally. In fact,
experimental results demonstrated that the proposed controller is
able to achieve a less oscillatory response – reducing heat
dissipation and fatigue of the flexure hinge – when compared to
traditional linear controllers. Furthermore, by limiting the actuation
of the NA so it only attempts to track references within its reach, a
significant reduction of control effort is achieved without settling
time degradation. It remains as future work the investigation of the
proposed strategy when the NA is subject to an integrator term. In
this scenario, an anti-windup scheme will have to be implemented,
which poses an extra challenge for the stability analysis inasmuch
as applying anti-windup schemes to non-linear controllers is not a
trivial task [23].
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