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Abstract: The dynamic economic dispatch problem with energy storage in a smart grid scenario is studied, which aims at
minimising the aggregate generation costs over multiple periods on condition that the time-varying demand is met, while
physical constraints on generation and storage as well as system spinning reserve requirement are satisfied. In our model,
energy storage devices are incorporated for not only inter-temporal energy arbitrage to reduce total generation cost, but also
providing spinning reserve to share generators' burden. To solve this problem, we assume that the communication networks are
strongly connected directed graphs and propose a fully distributed algorithm based on the ‘consensus-like’ iterative algorithm
and the alternating direction method of multipliers. Our algorithm is distributed in the sense that no leader or master nodes are
needed, while all the nodes conduct local computation and communicate merely with their neighbours. Numerical simulation is
included to show the effectiveness of the proposed algorithm.

1 Introduction
The economic dispatch problem (EDP) is of vital importance to the
power industry and has been intensively investigated for decades
[1]. The static economic dispatch problem (SEDP) focuses on
minimising the total operational costs of fossil-fired generation
units at one single period. Nevertheless, since in practice electricity
demand is time-varying, generators need to dispatch their
generation outputs to achieve the minimum total operational costs
over multiple periods, which is referred to as the dynamic
economic dispatch problem (DEDP). The major distinction
between the SEDP and the DEDP is that the DEDP must take into
consideration generators' ramp rate constraints for security reasons
[2]. Ramp rate constraints prevent generators from changing their
generation outputs rapidly, hence prolonging generators' lifespan.
However, ramp rate constraints lead to temporal correlations of
generation outputs at adjacent periods, rendering the DEDP more
complicated to solve than the SEDP [3].

Various algorithms have been proposed to solve the DEDP. In
[3], a robust heuristic method and an adaptive look-ahead-based
algorithm are proposed to find a feasible solution and the optimal
solution, respectively. The authors of [4] propose an algorithm
based on evolutionary programming and sequential quadratic
programming to solve the DEDP. In [5], the multiple tabu search
(MTS) is applied to the DEDP, and through simulation the authors
show that the proposed method based on MTS outperforms the
conventional approaches based on simulated annealing, genetic
algorithm, tabu search, and particle swarm optimisation (PSO) with
higher efficiency and less CPU time.

High penetration of renewable energy sources (RESs) poses a
great challenge to the reliable and efficient operation of future
smart grids due to their volatile nature. One possible way to deal
with the uncertainties of RESs is the system-wide integration of
energy storage, e.g. batteries [6]. Besides, energy storage can also
be used for not only inter-temporal energy arbitrage to reduce total
generation costs, i.e. charging during off-peak periods at a lower
marginal cost and discharging during on-peak periods at a higher
marginal cost but also providing other ancillary services, e.g.

spinning reserve. Recently, some researchers have investigated the
DEDP with energy storage (DEDP-S). In [7], the DEDP-S for
microgrids is formulated as an optimal control problem and a
dynamic programming solution is proposed. Nikmehr and
Ravadanegh [8] study the DEDP-S with demand uncertainties in a
multi-microgrids scenario, where a probabilistic model of RESs is
included and the PSO technique is applied to solve the DEDP-S.

Distributed algorithms for control [9, 10], optimisation [11] and
estimation [12, 13] have received tremendous attention from
researchers due to the fact that centralised algorithms may be
unscalable for large-scale systems, e.g. future smart grid [14].
Featuring the incorporation of communication network, advanced
metering infrastructures, and advanced control technologies (cyber
layer) onto the power network (physical layer), the smart grid is
also a cyber physical system [15]. Compared with centralised
algorithms, distributed algorithms have the advantages including
enhanced robustness, less (or no) dependence on global
information, and more uniform communication and computational
burdens for each agent etc. Following the trend of distributed
algorithms, many researchers have proposed distributed algorithms
to solve the EDP in a smart grid scenario. In [16, 17], the authors
propose an incremental cost consensus algorithm to solve the
SEDP, where an average consensus algorithm on undirected graphs
is used to guarantee the balance between demand and supply. In
[18], the authors propose a consensus- based decentralised
algorithm, which enables the generators to collectively learn the
mismatch between demand and total supply for feedback. Two
fully distributed algorithms for the SEDP are also proposed in our
previous works [19, 20], respectively. The algorithm proposed in
[19] deals with the SEDP with quadratic cost functions on
connected undirected graphs, and it is extended to deal with the
SEDP with general convex functions on strongly connected
directed graphs in [20]. But to the best of the authors' knowledge,
no distributed algorithms have yet been proposed for the DEDP
with or without energy storage.

In this paper, we study the DEDP-S in a smart grid scenario. It
is assumed that besides inter-temporal energy arbitrage, energy
storage also provides spinning reserve service to share generators'
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burden and reduce their opportunity costs. We formulate the
DEDP-S as a resource-constrained discrete-time optimal control
problem and propose a fully distributed algorithm, which is based
on the consensus-like algorithm and the alternating direction
method of multipliers (ADMM) for optimisation. We note that the
DEDP-S is also a dynamic programme, which may be subject to
the ‘curse of dimensionality’. To overcome this issue, we
decompose the DEDP-S into simpler subproblems by adopting the
idea of the ADMM. To facilitate the implementation of our
distributed algorithm, we establish a cyber layer over the physical
power grid. The proposed algorithm is fully distributed in the sense
that it does not rely on any leader or master node, and all the nodes
(generators and energy storage devices) conduct local computation
and merely communicate with their neighbours to iteratively find
the global optimal solution.

Compared with existing works, the novel features of this paper
are summarised as follows. Our major contribution is that this
paper is the first to propose a fully distributed algorithm for DEDP-
S. Specifically, we take advantage of the mathematical structure of
the DEDP-S and decompose it using the idea of ADMM. The
subproblems are solved by the distributed bisection method and
local computation. Although existing works [16–20] have also
designed various distributed algorithms for the EDP, their
algorithms are designed for SEDP and cannot be applied to the
DEDP-S. We also propose a resource-constrained discrete-time
optimal control formulation of the DEDP-S where energy storage
is assumed to provide services of energy arbitrage as well as
spinning reserve. To the authors' knowledge, none of existing
works has proposed such mathematical formulation. For instance,
spinning reserve from energy storage is neglected in [7, 8]. We
generally assume that the communication networks in this paper
are strongly connected directed graphs, while [16, 17, 19] assume
undirected graphs which can be treated as a special case of directed
graphs and are more restrictive in practice, since communication
may be subject to packet losses or device failures. Besides, it is
more theoretically challenging to design distributed algorithms on
directed graphs. We assume that the cost functions of generators
are generic convex functions, while simple quadratic functions are
assumed in [16–19], etc.

This paper is organised as follows: In Section 2, we introduce
the dynamic model of a single energy storage device and formulate
the DEDP-S. Some basics on graph theory, the consensus-like
algorithm, and the ADMM are presented in Section 3. In Section 4,
we rewrite DEDP-S in the ADMM form and then present our
distributed algorithm. A numerical example based on the IEEE 14-
bus system is given in Section 5 to show the performance of the
proposed algorithm. We conclude our paper in Section 6.

2 Preliminaries
2.1 Graph theory

The directed graph 𝒢 = (𝒩, ℰ) associated with a non-negative
matrix W ∈ ℝn × n comprises a non-empty finite set of nodes
𝒩 = {1, 2, …, n} and a finite set of ordered edges
ℰ = {( j, i) |wi j > 0}, where wi j is the entry in the ith row and jth
column of W. For node i ∈ V, its in-neighbour set and out-
neighbour set are denoted by 𝒱i

− = { j ∈ 𝒩 − {i}: ( j, i) ∈ ℰ} and
𝒱i

+ = { j ∈ 𝒩 − {i}: (i, j) ∈ ℰ}, i.e. node i receives information
from its in-neighbours and sends out information to its out-
neighbours. Let us define degi

− = |𝒱i
−| and degi

+ = |𝒱i
+| as the in-

degree and out-degree of node i, respectively, where | ⋅ | represents
the cardinality of a set. A graph is strongly connected if there is a
path from any node to any other node in the graph.

2.2 Consensus-like algorithm

We first introduce a lemma on non-negative matrices and then
present the consensus-like algorithm.
 
Lemma 1 [21]: A non-negative matrix A ∈ ℝn × n is primitive, if
and only if its associated graph is strongly connected and aperiodic.

Let us define a non-negative matrix W associated with a
strongly connected graph with self-loops 𝒢 = (𝒩, ℰ) as

wi j =
1

deg j
+ + 1 for ( j, i) ∈ ℰ,

0 otherwise.
(1)

Since the graph 𝒢 is strongly connected and with self-loops (which
implies the aperiodicity), from Lemma 1, we have that W is
primitive. Furthermore, it can be readily verified that W is column
stochastic, i.e. each column sums to one, and consequently WT is
row stochastic. Therefore we have that WT1 = 1, where
1 = [1, 1, …, 1]T is the eigenvector of WT associated with the
eigenvalue one. According to Perron–Frobenius Theorem [22], it
follows that

lim
κ → ∞ Wκ = lim

κ → ∞ ((WT)κ)T = (1ζT)T = ζ1T, (2)

where ζ = [ζ1, ζ2, …, ζn]T is the right eigenvector of W associated
with the eigenvalue one, and ζi > 0 for all i and 1Tζ = 1.

Let us consider the following iteration with the iteration index
denoted by κ and initial value θ(0):

θ(κ + 1) = Wθ(κ), (3)

where θ(κ) = [θ1(κ), …, θn(κ)]T and θi(κ) is the local variable
associated with node i. From a local perspective, the iteration (3) is
equivalent to

θi(κ + 1) = wiiθi(κ) + ∑
j ∈ 𝒱i

−
wi jθ j(κ) . (4)

Let us denote by θ∗ the fixed point of the iteration (3) when it
converges. From (2), we have that

θ∗ = lim
κ → ∞ θ(κ) = ζ1Tθ(0) = ∑

i = 1

n
θi(0) ζ, (5)

2.3 Alternating direction method of multipliers

Consider the following optimisation problem:

min f (x) + g(y),
s.t. Ax + By = c, (6)

with optimisation variables x ∈ ℝn and y ∈ ℝm, where A ∈ ℝp × n,
B ∈ ℝp × m and c ∈ ℝp.

We make the following assumptions for the problem (6):
 
Assumption 1: The functions f (x):ℝn → ℝ ∪ { + ∞} and

g(y):ℝm → ℝ ∪ { + ∞} are proper, closed and convex.
 
Assumption 2: The matrices A and B have full column ranks.
The augmented Lagrangian of problem (6) is

Lρ(x, y, λ) = f (x) + g(y) + λT(Ax + By − c)
+ρ/2 ∥ Ax + By − c ∥2

2 ,
(7)

where λ ∈ ℝp is the Lagrange multiplier, and ρ > 0 is a penalty
parameter. The alternating direction method of multipliers for
problem (6) is given as follows [23]:

xk + 1 = arg min
x Lρ(x, yk, λk); (8)

yk + 1 = arg min
y Lρ(xk + 1, y, λk); (9)
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λk + 1 = λk + ρ(Axk + 1 + Byk + 1 − c) . (10)

Define

ϵk = Axk + Byk − c  and εk = ρATB(yk + 1 − yk)

as the primal residual and the dual residual at step k, respectively.
The convergence properties of ADMM are given as follows.
 
Lemma 2 [23]: If Assumptions 1 and 2 and ρ > 0 hold, then the
ADMM iterations (8)–(10) converge to the optimal solution x∗, y∗

and the optimal Lagrange multiplier λ∗ of problem (6), with

lim
k → ∞ ∥ ϵk ∥2 = 0 and  lim

k → ∞ ∥ εk ∥2 = 0.

3 System modelling
3.1 Dynamic model of energy storage device

Assume that in total there are ns energy storage devices in the
network and let t = 0, 1, …, τ denote the scheduling intervals with
sampling resolution Δτ. For the ith energy storage device, denote
by Ei(t) and Si(t), the current amount of energy at time t and the
constant rate of energy conversion during time t − 1 and t,
respectively. Note that Si(t) is positive when the device is charging
and negative when it is discharging. Let us define ηi

c and ηi
d as the

charging efficiency and the discharging efficiency, respectively.
With Ei(0) denoting the initial amount of energy at t = 0, the
dynamics of the ith energy storage device is given by

Ei(t) = Ei(t − 1) + ΔτSi(t)ηi(t) ∀t = 1, …, τ, (11)

where the ratio of energy conversion ηi(t) is defined as

ηi(t) =
ηi

c < 1 for Si(t) ⩾ 0,
1
ηi

d > 1 for Si(t) < 0. (12)

Since ηi(t) is conditioned on the sign of Si(t), model (11) is non-
linear. For the ith device let us further define Si

c(t) and Si
d(t) as the

rates of charging and discharging, and then substitute

Si(t) = Si
c(t) − Si

d(t) ∀t = 1, …, τ . (13)

into (11), which yields

Ei(t) = Ei(t − 1) + Δτ Si
c(t)ηi

c − Si(t)d/ηi
d . (14)

One can easily verify that (14) is equivalent to (11) and (12) if and
only if

Si
c(t)Si

d(t) = 0 ∀t = 1, …, τ .

However, we can drop the above non-linear equality constraints
without any harm because they can be automatically satisfied in the
context of economic dispatch. Since there is energy loss in energy
conversion both ways, from the economic perspective, energy
storage devices are prevented from charging and discharging
simultaneously by the objective of minimising the total generation
costs.

The charging/discharging rates Si
c(t) and Si

d(t) are bounded by

0 ⩽ Si
c(t) ⩽ S̄i

c ∀t = 1, …, τ, (15)

0 ⩽ Si
d(t) ⩽ S̄i

d ∀t = 1, …, τ, (16)

where S̄i
c and S̄i

d are the maximum rates of charging and
discharging, respectively. Furthermore, the energy stored in the
device cannot exceed its capacity Ēi or drop below zero, i.e.

0 ⩽ Ei(t) ⩽ Ēi ∀t = 1, …, τ . (17)

It is further required that at the end of the last scheduling period,
the amount of energy stored in the ith device must be greater than a
given amount Ei in case it is used later for other purposes.
Therefore, for the ith energy storage device we have

Ei ⩽ Ei(τ) . (18)

 
Remark 1: We note that (12) is not ‘modelling friendly’ in its
current form. For the convenience of modelling, we introduce two
auxiliary variables Si

c(t) and Si
d(t), one of which is bound to be zero

at optimality (the most economic dispatch) due to the positive
electricity price and energy losses. Therefore, the above model
does not contradict the fact that usually a battery cannot charge and
discharge simultaneously.

3.2 Problem formulation of DEDP-S

Suppose that in total there are ng generators in the network and
denote by 𝒩g and 𝒩s the sets consisting of generators and energy
storage devices, respectively. Define Pi(t) as the ith generator's
output at time t, then the aggregated variable is
P = [P1

T, …, P
ng
T ]T ∈ ℝngτ (In this paper, the superscript ‘T’

represents the transpose of a matrix or vector.), where
Pi = [Pi(1), …, Pi(τ)]T ∈ ℝτ. The objective of the DEDP-S is given
by

Ctotal(P) = ∑
t = 1

τ

∑
i = 1

ng

Ci(Pi(t)), (19)

where Ci(Pi(t)) is the cost function associated with the ith
generator.

In most cases, it is assumed that the cost functions are in the
following quadratic term:

Ci(Pi(t)) = 1
2αiPi(t)

2 + βiPi(t) + γi, (20)

where αi > 0, βi and γi are cost coefficients of the ith generator.
Since in practice cost functions are derived via curve fitting based
on the data obtained from heat rate tests or from the plant design
engineers, non-quadratic functions may be used for better fitting
performance [1]. Therefore, in this paper we consider generic cost
functions satisfying the assumption as follows:
 
Assumption 3: For every 1 ⩽ i ⩽ n, Ci(Pi(t)):ℝ+ → ℝ+ is twice
continuously differentiable and

Ci′′(Pi(t)) ⩾ 0, ∀Pi(t) ∈ ℝ+,

where Ci
″(Pi(t)) is the second derivative of Ci(Pi(t)), ℝ+ denotes the

set of non-negative real numbers, and the equality holds at isolated
points only.

The balance between demand and supply yields the equality
constraints:

∑
i = 1

ng

Pi(t) − ∑
j = 1

ns

S j(t) = PD(t) ∀t = 1, …, τ, (21)

where PD(t) is the time-varying electricity demand.
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We assume that at each time t the system operator requires a
certain amount of reserve from generators and energy storage
devices. For i ∈ 𝒩g ∪ 𝒩s, define Ri(t) and R̄i(t) as the reserve
contribution and the capacity of reserve at time t, respectively. We
then have the following constraints:

Pi ⩽ Pi(t) ∀i ∈ 𝒩g, t = 1, …, τ, (22)

Pi(t) + Ri(t) ⩽ Pi
¯ ∀i ∈ 𝒩g, t = 1, …, τ, (23)

0 ⩽ Ri(t) ⩽ R̄i(t) ∀i ∈ 𝒩g ∪ 𝒩s, t = 1, …, τ, (24)

Si
d(t) + Ri(t) ⩽ S̄i

d ∀i ∈ 𝒩s, t = 1, …, τ, (25)

R̄i(t) ⩽ E(t − 1)ηi
d/Δτ ∀i ∈ 𝒩s, t = 1, …, τ, (26)

∑
i ∈ 𝒩g ∪ 𝒩s

Ri(t) = SR(t) ∀t = 1, …, τ, (27)

where SR(t) is the system spinning reserve requirement at time t; Pi
and P̄i are the lower and upper bounds of the ith generator's output,
respectively. Note that for each generator, the reserve capacity R̄i(t)
is time-invariant and in U.S. markets the 10-min ramp rate is
usually used to define reserve capacity. However, the reserve
capacity of an energy storage device at time t depends on the
amount of residual energy at t − 1, as described by constraints (26).

For security, each generator is also subject to ramp rate
constraints, given by

ΔPi ⩽ Pi(t + 1) − Pi(t) ⩽ ΔP̄i ∀t = 1, …, τ − 1, (28)

where ΔPi and ΔP̄i are the lower and upper bounds of the ramp
rate of the ith generator.

With other factors (e.g. line capacity, transmission losses)
ignored, the DEDP-S can be formulated as follows:

min Ctotal(P),
over P, R, S, R̄, Sc, Sd and E,

s.t. (13) − (18)  and  (21) − (28),
(29)

where R, S, R̄, Sc, Sd and E are aggregated variables with similar
data structure to that of vector P, respectively.
 
Remark 2: From a control perspective, the DEDP-S (29) can be
viewed as a resource-constrained discrete-time optimal control
problem, of which the objective is to minimise the total operational
cost (generation cost) over finite periods subject to constrained
resources (limited generation capacities, balance between demand
and supply etc.). The DEDP-S is analysed and solved in a
distributed fashion based on optimisation theory which is an
important tool for deriving optimal control policies.
 
Remark 3: The ramp constraints (28) which only involve the
generation outputs has been widely used in the literature, but we
comment that such constraints cannot 100% guarantee the
provision of spinning reserves. For instance, suppose for generator
i, its optimal energy outputs at time t and t + 1 are such that
Pi

∗(t + 1) = Pi
∗(t) + ΔP̄i, i.e. at time t + 1 generator i is operating

fully at its maximum ramp rate. In this case, the spinning reserve
that generator i can provide at t + 1 is zero, but with the constraints
(28) it is still assumed that generator i can provide spinning reserve
up to Ri(t + 1) = P̄i − Pi

∗(t + 1).
An improved formulation of ramp constraints which can ensure the
provision of spinning reserves is

ΔPi + Ri(t) ⩽ Pi(t + 1) − Pi(t) ⩽ ΔP̄i − Ri(t + 1), (30)

However, constraints (30) may cause over-conservatism and
unnecessarily increase the opportunity costs of generation. This
market design issue is beyond the scope of this paper and the
reader is referred to [24] for further information. Furthermore, we
note that the distributed algorithm proposed in this paper applies to
both cases, since mathematically the separability of the DEDP-S
model is not subject to the type of ramp constraints.
 
Remark 4: Although spinning reserve is not explicitly included in
the objective function, the opportunity costs of providing spinning
reserve get implicitly added to the objective (generation costs)
through the correlative constraints on power output and spinning
reserve. Based on economic theory, one can verify that the DEDP-
S model which is a cost-minimisation optimisation problem, is
equivalent to a competitive market model where each market
participant gets rewarded for providing spinning reserve at the
same price and aims at maximising their own net revenue subject
to market clearing constraints, as their Karush–Kuhn–Tucker
conditions are exactly identical. We further note that in US markets
there is a controversy over whether providing spinning reserve
results in additional costs beyond the opportunity costs. However,
this market design problem is beyond the scope of this paper.
 
Remark 5: Recently energy storage allocation problem has been
intensively investigated [25]. However in this paper it is assumed
that energy storage devices have been properly allocated to the grid
to optimally achieve some objective, e.g. profit maximising [26].
Besides the economic benefits, energy storage can also relieve the
stress of transmission/distribution networks, e.g. managing
transmission congestions. Therefore we reasonably neglect the line
capacity constraints in the DEDP-S model studied in this paper. It
is our future work to investigate more complicated models where
more practical factors are considered.

4 Distributed algorithm for DEDP-S
4.1 Rewriting DEDP-S in ADMM form

Before rewriting the DEDP-S (29) in the ADMM form, we first
present some analysis on the mathematical structure of the DEDP-
S:

• Firstly, generators and energy storage devices are spatially
coupled only by the system balance constraint (21) and the
system spinning reserve constraint (27). The remaining
constraints are local and only lead to the temporal correlations
of local variables.

• The variables directly coupled by the system-wide constraints
(21) and (27) include P, S and R. Besides, the objective function
does not involve any other variables except P. Therefore, the
remaining variables can be viewed as auxiliary variables for
defining the feasible region of P, S and R.

Let us define four convex sets:

ΨPS = (P, S) | ∑
i = 1

ng

Pi(t) − ∑
j = 1

ns

S j(t) = PD(t) ∀t ,

ΨR = R |SR(t) = ∑
i ∈ 𝒩g ∪ 𝒩s

Ri(t) ∀t ,

Ψ = ΨPS × ΨR,
Ω = {(P, S, R) | (13) − (18), (22) − (26) and (28)} .

Based on the above analysis, we can rewrite the DEDP-S (29) as

min
P, S, R

Ctotal(P),
s.t. (P, S, R) ∈ Ψ ∩ Ω .

(31)

For simplicity, let us further define X = [PT, ST, RT]T. Using the
trick that one can eliminate a constraint by introducing a
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corresponding penalty in the objective function, we rewrite the
DEDP-S (29) equivalently in the ADMM form as follows:

min
X, Y

Ctotal(X) + GΨ(X) + GΩ(Y),
s.t. X − Y = 0,

(32)

where Y = [PY
T, SY

T, RY
T] is the duplicate of X; GΨ and GΩ are the

indicator functions for the sets Ψ and Ω, respectively, i.e.

GΨ(X) = 0, if X ∈ Ψ,
+∞, otherwise,

GΩ(Y) = 0, if Y ∈ Ω,
+∞, otherwise.

Since the indicator function of a convex set is proper, closed
and convex, the functions Ctotal(X) + GΨ(X) and GΩ(Y) satisfy
Assumption 1. Also, in this case we have A = I and B = − I,
where I is the identify matrix with proper dimensions, so
Assumption 2 is satisfied as well.

Applying the ADMM to the DEDP-S yields

Xk + 1 = arg min
X Lρ(X, Yk, λk), (33)

Yk + 1 = arg min
Y Lρ(Xk + 1, Y, λk), (34)

λk + 1 = λk + ρ(Xk + 1 − Yk + 1), (35)

where Lρ(X, Y, λ) is the augmented Lagrangian for the DEDP-S,
given by

Lρ(X, Y, λ) = Ctotal(X) + GΨ(X) + GΩ(Y)

+λT(X − Y) + ρ/2 ∥ X − Y ∥2
2 .

(36)

4.2 Collecting demand and reserve information in distributed
manner

A cyber layer is necessary for solving the DEDP-S in a distributed
fashion, as in our distributed algorithm each node needs the update
from their neighbours to perform the next iteration. Let us define
two sets 𝒩a and 𝒩b, where 𝒩a = 𝒩g ∪ 𝒩s consists of the buses
associated with generation and energy storage, while 𝒩b consists
of all the buses in the power system. Note that cyber agents (nodes)
are assigned to each generator and each energy storage device. For
instance, if a bus contains a generator and a battery, then two nodes
are assigned to this bus. Each node has its own variables,
constraints and cost functions depending on their types (generation
or energy storage). To facilitate our distributed algorithm, let us
establish two communication networks 𝒢a = (𝒩a, ℰa) and
𝒢b = (𝒩b, ℰb). We assume that both 𝒢a and 𝒢b are strongly
connected directly graphs with self-loops. With recent advances in
communication technologies, it is feasible and inexpensive to
fulfill our network assumption.

The problem formulation in Section 3.2 is based on an implicit
assumption that the aggregate demand Pd(t) and the system
spinning reserve requirement SR(t) are known to each generator
and energy storage device. Nevertheless, in practical power
systems demand and reserve requirement are spatially distributed
at almost all the buses, i.e.

PD(t) = ∑
j ∈ 𝒩b

P j
D(t) and SR(t) = ∑

j ∈ 𝒩b
SR j(t),

where P j
D(t) and SR j(t) are the demand and reserve requirement of

bus j at time t, respectively.

To collect the scaled information, for every node i ∈ 𝒩b, we
establish three variables pi(κ), ri(κ) and si(κ), respectively,
initialised by

pi(0) = Pi
D(t), ri(0) = SRi(t) ∀i ∈ 𝒩b,

and si(0) = 1, i ∈ 𝒩a,
0, i ∈ 𝒩b ∖ 𝒩a .

Run the following consensus-like algorithms simultaneously
and iterate until convergence:

p(κ + 1) = Wbp(κ)

r(κ + 1) = Wbr(κ),

s(κ + 1) = Wbs(κ),

where Wb is defined w.r.t. (The acronym ‘w.r.t.’ stands for ‘with
respect to’ in this paper.) graph 𝒢b using (1). When converged, we
have that

p∗ = lim
κ → ∞ p(κ) = PD(t)ζb,

r∗ = lim
κ → ∞ r(κ) = SR(t)ζb,

s∗ = lim
κ → ∞ s(κ) = (ng + ns)ζb,

where ζb is the right eigenvector of Wb associated with the
eigenvalue one. Then every node i ∈ 𝒩a establishes two variables
vi(κ) and zi(κ) initialised by

vi(0) = pi
∗/si

∗ = PD(t)/(ng + ns),

zi(0) = ri
∗/si

∗ = SR(t)/(ng + ns),

respectively. Run the following consensus-like algorithms and
iterate until convergence:

v(κ + 1) = Wav(κ),

z(κ + 1) = Waz(κ),

where Wa is defined w.r.t. graph 𝒢a using (1). When converged, we
have that

v∗ = lim
κ → ∞ v(κ) = PD(t)ζa,

z∗ = lim
κ → ∞ z(κ) = SR(t)ζa,

where ζa is the right eigenvector of Wa associated with the
eigenvalue one. We will use v∗ and z∗ as the scaled information of
demand and system spinning reserve requirement in the remaining
of the proposed algorithm.

4.3 X-update

In this section, we present the distributed implementation of X-
update (33). Let us define uk = λk/ρ and XPS = [PT, ST]T.
Combining (33) with (36), we have
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Xk + 1 = arg min
X Lρ(X, Yk, λk)

= arg min
X Ctotal(X) + GΨ(X) + (λk)T(X − Yk)

+(ρ/2) ∥ X − Yk ∥2
2

= arg min
X ∈ Ψ Ctotal(X) + ρ

2 ∥ X − Yk + uk ∥2
2

= arg min
XPS ∈ ΨPS

R ∈ ΨR

∑
t = 1

τ

∑
i ∈ 𝒩a

Fi(Xi
PS(t)) + Hi(Ri(t)) ,

(37)

where

Fi(Xi
PS(t)) =

Ci(Pi(t)) + ρ
2 Pi

2(t) + ui
k(t) − PYi

k (t) 2 ∀i ∈ 𝒩g,

ρ
2 Si

2(t) + ui
k(t) − SYi

k (t) 2 ∀i ∈ 𝒩s,

Hi(Ri(t)) = ρ
2 Ri

2(t) + ui
k(t) − RYi

k (t) 2 ∀i ∈ 𝒩g ∪ 𝒩s .

One can easily verify that X-update (37) consists of two
independent optimisation subproblems:

min
XPS ∈ ΨPS ∑

t = 1

τ

∑
i ∈ 𝒩g ∪ 𝒩s

Fi(Xi
PS(t)),

min
R ∈ ΨR ∑

t = 1

τ

∑
j ∈ 𝒩g ∪ 𝒩s

H j(R j(t)) .

Each of the above subproblems can be further split into τ
subproblems, i.e. ∀t = 1, …, τ,

min ∑
i ∈ 𝒩g ∪ 𝒩s

Fi(Xi
PS(t)),

s.t. ∑
i ∈ 𝒩g

Pi(t) − ∑
j ∈ 𝒩s

S j(t) = PD(t),
(38)

min ∑
i ∈ 𝒩g ∪ 𝒩s

Hi(Ri(t)),

s.t. ∑
i ∈ 𝒩g ∪ 𝒩s

Ri(t) = SR(t) .
(39)

Therefore, X-update includes 2τ convex subproblems. Note that
although in terms of the physical meanings, subproblem (38)
involves two variables P an S, from a mathematical perspective
they can be viewed as one variable. Therefore subproblems (38)
and (39) are identical in mathematical structure. The following
lemma gives the optimally conditions for subproblems (38) and
(39).
 
Lemma 3 [27]: The optimal conditions for subproblem (38) and
(39) are

Fi′(Pi
∗(t)) = − F j′(S j

∗(t)) = ν∗ ∀i ∈ 𝒩g,
j ∈ 𝒩s,

∑
i ∈ 𝒩g

Pi
∗(t) − ∑

j ∈ 𝒩s
S j

∗(t) = PD(t);

and H j′(R j
∗(t)) = Hi′(Ri

∗(t)) = ω∗ ∀i, j ∈ 𝒩g ∪ 𝒩s,

∑
i ∈ 𝒩g ∪ 𝒩s

Ri
∗(t) = SR(t);

where Pi
∗(t)'s, Si

∗(t)'s and Ri
∗(t)'s are the optimal solutions; ν∗ and ω∗

are the optimal Lagrange multipliers, respectively.

Due to limited space and considering the fact that subproblems
(38) and (39) are identical in mathematical structure, we only
present the distributed algorithm for the subproblem (38), whereas
it can also be applied to solve (39).

According to Assumption 1, for any generator i, the first
derivative of its cost function, denoted by Ci′(Pi(t)), is
monotonically increasing w.r.t. Pi(t). Combining ρ > 0, the first
derivative of Fi(Xi

PS(t)), denoted by Fi′(Xi
PS(t)), is monotonically

increasing w.r.t. Xi
PS(t). From Lemma 3, we infer that Pi

∗(t) and
−Si

∗(t) are monotonically increasing with the optimal Lagrange
multiplier ν∗, which motivates us to adopt the idea of bisection. To
solve problem (38) in a fully distributed fashion on the directed
graph 𝒢a, we present the distributed bisection method.

Step 1: Let us define two variables ν̄(ι) and ν(ι), where
ι = 0, 1, … denotes the bisection steps. Note that ν̄(ι) and ν(ι) are
commonly shared by each node i ∈ 𝒩a and their initial values ν(0)
and ν̄(0) should guarantee that ν(0) ⩽ ν∗ ⩽ ν̄(0) holds.

Step 2: Each node computes

ν(ι) = ν(ι) + ν̄(ι)
2 ,

μi(0) =
Ji(ν(ι)) for i ∈ 𝒩g,
−Ji( − ν(ι)) for i ∈ 𝒩s,

where Ji( ⋅ ) is the inverse function of Fi′( ⋅ ).
Step 3: Each node establishes a variable μi(κ) which is

initialised by μi(0), and run the following consensus-like algorithm
till convergence:

μ(κ + 1) = Waμ(κ) . (40)

When converged, we have for any i ∈ 𝒩a,

μ∗ = lim
κ → ∞ μ(κ) = ∑

i = 1

n
Ji(ν(ι)) ζa .

Step 4: Each node i updates ν̄(ι + 1) and ν(ι + 1) according to

ν̄(ι + 1) = ν(ι), ν(ι + 1) = ν(ι) for μi
∗ > vi

∗,
ν̄(ι + 1) = ν̄(ι), ν(ι + 1) = ν(ι) for μi

∗ ⩽ vi
∗ .

(41)

Step 5: Go back to Step 2 and loop until convergence.
Subproblems (39) can also be solved by the above distributed

bisection method. Furthermore, subproblems (38) and (39) can be
solved in parallel, as they are independent of each other. With the
2τ subproblems solved by the distributed bisection method, the X-
update is accomplished in a distributed manner. Due to length
restrictions, the reader is referred to our previous work [20] for
detailed analysis on the distributed bisection method.

4.4 Y-update

Combining (34) and (36), we have

Yk + 1 = arg min
Y Lρ(Xk + 1, Y, λk)

= arg min
Y (GΩ(Y) + (ρ/2) ∥ Xk + 1 − Y + uk ∥2

2 )

= arg min
Y ∈ Ω (ρ/2) ∥ Xk + 1 − Y + uk ∥2

2

= 𝒫Ω(Xk + 1 + uk),

(42)

where 𝒫Ω is the projection operator onto the convex set Ω.
Note that the constraints which define the set Ω are local and

they only cause the temporal coupling of local variables. For
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i ∈ 𝒩g ∪ 𝒩s, denoting by Ωi the set defined by its local
constraints, we have

Ω = ∏
i ∈ 𝒩g ∪ 𝒩s

Ωi,

where ∏ represents the Cartesian product of sets. Since projection
onto linearly constrained sets is a quadratic programme (QP), the
Y-update consists of ng + ns local QP subproblems. Therefore, the
Y-update only requires local computation and it can be

accomplished in a distributed fashion simply by applying existing
QP methods, e.g. interior point method [28], to each local QP
subproblem.

4.5 λ-update

After Xk + 1 and Yk + 1 are obtained, λk + 1 can be solved using (35) by
local computation.

4.6 Overall sketch of proposed algorithm

For clarity, we summarise the above procedures in the algorithm
(Fig. 1). 

5 Simulation
In this section, we present a numerical case performed on the IEEE
14-bus system [29] to show the effectiveness of the proposed
algorithm. Consider a DEDP-S with τ = 12 scheduling intervals.
The system configuration is given as follows. There are in total
five generators in this system, for which we homogenously set
Pi = 10 MW and ΔPi = − ΔP̄i = − ΔPi. Every generator's cost
function contains a quadratic term of which the parameters are
given in Table 1. Additionally, we introduce a non-quadratic term
to generators 1 and 3, given by

50 exp P1(t) + 40
100  and 7 × 106P3

3(t),

respectively. One could easily verify that all the cost functions
satisfy Assumption 3. We also place in total five energy storage
devices in buses {1, 3, 5, 8, 10}. For simplicity, we assume that they
have homogenous parameters except for their initial amounts of
energy, where Ē = 20 MWΔτ, S̄c = S̄d = 30 MW, ηc = ηd = 90%
(round-trip efficiency ηcηd = 81%) and E(0) = [0, 40, 80,
120, 160]T MWΔτ. Furthermore, at the end of the last scheduling
interval, each energy storage is required to maintain an identical
minimum amount of energy E(τ) = 80 MWΔτ. The system reserve
requirement is SR(t) = 0.25PD(t) ∀t = 1, …, 12. 

To initialise the proposed algorithm, we set ρ = 1, Y0=0 and u0

=0. Note that the power transmission network does not necessarily
align with communication graphs. We do not assign node to bus 7,
as it is not associated with generation, load or energy storage.
Define two corresponding node sets 𝒩a = 𝒩g ∪ 𝒩s =
{1, 2, 3, 5, 6, 8, 10} and 𝒩b = {1, 2, …, 6, 8, 9, …, 14}. For 𝒢a and
𝒢b, the edge sets ℰa and ℰb are properly chosen to set up two
strongly connected directed graphs with self-loops.

The convergence of the proposed algorithm is demonstrated in
Fig. 2. The proposed algorithm converges fast, as the primal and
dual residuals ϵk and εk converge to zero after around 15 ADMM
iterations. 

According to Fig. 3, the generators and the energy storage
devices cooperatively supply electricity to meet the time-varying
demand. The generators' outputs and the charging/discharging rates
of energy storage devices are shown in Figs. 4 and 5, respectively.
We can see that the generators' outputs are successfully kept low
during on-peak intervals when energy storage devices discharge to
share generators' workload. 

The evolutions of energy stored in the five devices are shown in
Fig. 6, where at the end of the 12th interval, every device maintains
the common energy level 80 MW Δτ. Finally, Fig. 7 shows that
generators and energy storage devices cooperatively provide the
required spinning reserve. Specifically, energy storage devices
provide more than half of the spinning reserve during off-peak
intervals, which greatly mitigates generators' pressure of providing
spinning reserve. 

6 Concluding remarks
In this paper, we investigate the DEDP-S and propose a distributed
algorithm based on the ADMM and the consensus-like algorithm.

Fig. 1  Algorithm 1: Distributed algorithm for DEDP-S
 

Table 1 Cost coefficients of five generators
Generator Bus αi βi P̄i ΔPi R̄i

1 1 0.08 2 80 10 10
2 2 0.06 3 90 20 20
3 3 0.07 4 120 25 25
4 6 0.06 4 130 20 30
5 8 0.08 2.5 80 10 20
 

Fig. 2  Convergence result of the proposed algorithm
 

Fig. 3  Total demand and the outputs from generation and storage
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To the authors' knowledge, this paper is the first not only to
propose the mathematical formulation of the DEDP-S where
energy storage also provides spinning reserve but also to propose a
distributed algorithm to solve the DEDP-S. Our algorithm is fully
distributed in the sense that no leader or master nodes are needed,
while all the nodes (generators) conduct local computation and
merely communicate with their neighbours. Through simulation we
show the performance of the proposed method. Future work may
include more practical constraints, e.g. transmission losses and line
capacity.
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