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Abstract: This paper presents a reset state estimator to improve the position estimation for
motion control systems with sensor quantization. The reset scheme is guided by the idea that
the actual output is known exactly to be at the mid-point of the two consecutive quantizer
levels and is within the range of a quantizer level bounded by half of quantization step size.
Hence, using this information to update the estimated state can give a better estimation under
the influence of disturbance and quantization noise. We also show that the reset scheme will
not destroy the stability of a baseline estimator system. The reset state estimator is applied to
a linear motor control system with an optical encoder. Simulation and experiment demonstrate
that the reset state estimator can achieve smaller position estimation error and more accurate
tracking accuracy than those of a standard state estimator.

1. INTRODUCTION

Sensor quantization is a kind of typical measurement
inaccuracy in motion control systems. For example, optical
encoders are widely used to detect the position of the
moving parts. The encoder is based on evenly spaced
divisions or line counts on a glass or metal disk, which is
simple in construction and easy to manufacture. Position
control of the drive can be realized by direct feedback of
the encoder signals to the controller. Additionally, velocity
control is possible by estimating the velocity from the
encoder position signals (Lorenz et al. [1991]). However,
the interval of the divisions adversely leads to the so-called
resolution limitation in position measurements. Thus, the
encoder can not reflect the actual position continuously,
but outputs the quantized signal of the actual position.
When the encoder output is used as the feedback signal in
a servo system, the encoder quantization noise will degrade
the achievable position accuracy and even cause self-
sustained oscillations (i.e., limit cycle) (Franklin [1998]).
From the cost and effectiveness point of view, the designers
generally need to select an encoder transducer of proper
resolution consistent with the required performance. In
digital control systems, quantization may be created not
only by the sensor itself but also by the D/A converter
(DAC). In most cases, quantization noise is ignored during
control design process if it is substantially small compared
to system noise and the desired position accuracy.

The quantization is inherently a nonlinear feature, whose
model was studied in Widrow et al. [1996] and Kavanagh
and Murphy [1998] from statistical perspective. In order
to alleviate the sensor quantization effect, a straight and
simple way is to replace the sensor with a higher-resolution
one to provide more accurate measurement, although
it greatly increases the implementation cost. Another
cost-effective way is to remove the quantization noise by
using some numerical algorithms, which can be simply

implemented on a digital signal processor (DSP). For
instance, the Kalman filter has been reported to suppress
the sensor quantization effects under the assumption that
quantization effects could be modeled as a random noise
with a Gaussian form and a standard deviation (Luong-
Van et al. [2004] and Chang and Perng [1996]). In motion
control systems, signals tend to be more deterministic and
exhibit stronger correlation over time. Thus, quantization
behaves as highly colored noise, which makes the Kalman
filter impractical to employ. In such circumstances, other
approaches based on observer theory have been extensively
studied in Hodel and Hung [2003], Sviestins and Wigren
[2000], Sur and Paden [1998], and Delchamps [1989],
in which extra useful information is extracted from the
quantizer model and then used to better the estimation.
This paper also presents a solution to this problem by
resetting inaccurate estimated states to favorable ones,
which are modulated in terms of the quantized output.

Our reset estimator design is based on a standard state
estimator, where the estimator gain is determined to com-
promise the sensor noise and disturbance rejection. The
reset scheme is guided by the idea that the actual output
is known exactly to be at the mid-point of two consecutive
quantizer levels and is within the range of a quantizer
level bounded by half of quantization step size. Hence,
we actually know the estimated output boundary from
the quantizer output, which can be then used to avoid
over-estimation of the system output in the case of large
disturbance as well as plant uncertainty. In this paper, we
have shown that the proposed reset scheme will not affect
the stability of a stable state estimator. The reset state es-
timator is applied to an encoder-based linear motor control
system. Simulation and experimental results demonstrate
that it outperforms the standard state estimator in posi-
tion estimations with low-resolution sensor. Moreover, we
have shown improved tracking accuracy under the control
scheme with the reset estimator.
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Fig. 1. Quantization characteristic; ∆: quantization step
size (resolution).

2. SYSTEM MODEL

Consider a continuous linear time-invariant plant with
process noise and quantized output, whose dynamics is
given by the following state equation

{

ẋ(t) = Ax(t) + Bu(t) + Gw(t), x(0) = x0

y(t) = Cx(t)
yq(t) = Q(y(t))

(1)

where A ∈ R
n×n, B, G ∈ R

n×1, C ∈ R
1×n are constant

system matrices, and (A, C) is an observable pair. x(t),
y(t) and yq(t) are the state vector, controlled output
and the measured quantized output, respectively. w(t)
indicates input disturbances and equivalent model uncer-
tainties. The function Q(·) represents a uniform quantizer
defined by

Q(y) = i · ∆, if y ∈ [(i − 0.5)∆, (i + 0.5)∆] (2)

where i ∈ Z and ∆ > 0 denotes the constant quantiza-
tion step size. We assume that the quantization range is
infinite. The input-output relationship of (2) is shown in
Fig. 1. It can be seen that quantization is an operation
on signals that is represented as a staircase function. In
practical motion control systems, the quantizer (2) can be
adopted to model the position sensor with quantization
such as an incremental encoder, where ∆ is also referred
to as positioning resolution.

The quantizer introduces sensing error on the controlled
output y(t). We define this error as quantization error ε(t),
which is the difference between the output and the input
of the quantizer. Hence,

ε(t) = y(t) − yq(t). (3)

Note that the characteristic of ε is related to y and it is
bounded by

|ε(t)| ≤
∆

2
. (4)

The quantized output can accordingly be rewritten as

yq(t) = Cx(t)− ε(t). (5)

In order to achieve a smooth and actual estimate of the
state as well as the controlled output using the quantized
output only, the most common way is to use the state
estimator as follows:

˙̂x(t) = Ax̂(t) + Bu(t) + L
(

yq(t) − ŷ(t)
)

(6)

ŷ(t) = Cx̂(t), (7)

where x̂ and ŷ are respectively the estimate of the state
and controlled output, and L ∈ R

n×1 is the estimator
gain. Conventionally, L can be artificially selected by using
the pole placement method or optimally designed using
the Kalman filter technique, where both the process noise
and quantization error are assumed to be white Gaussian
noise. However, we find that more accurate state estimate
is possible if the quantization scheme is fully employed.

Though the quantized output yq gives discretized mea-
surements of the actual y, we can still extract some useful
information given a measured quantized output. From Fig.
1, we can obtain the following observations:

Observation:

1) At the time when the quantized output transits from
one quantization step to another, the actual position
is measured exactly, which locates at the mid-points
of the two consecutive quantization levels.

2) At the time when the quantizer holds its output
equivalent to a certain quantization step, according
to the fact of (4) the actual position relative to the
quantized output is always bounded by ∆/2. This
implies that any estimate of y at these times must
be bounded by ∆/2 relative to the instantaneous
quantized output.

We note that these observations can be used to improve
the estimate of the state, which is presented in the next
section.

3. RESET STATE ESTIMATOR

In this section, we present a state estimator with the use
of reset technique to include the exact information from
the measured quantized output and the stability of the
estimator error system is analyzed.

3.1 Reset State Estimator

Firstly, we introduce a constant vector H ∈ R
n×1, which

is given by

H = P−1CT (CP−1CT )−1, (8)

where P ∈ R
n×n is a positive definite symmetric matrix,

which is the solution of the following Lyapunov function

(A − LC)T P + P (A − LC) + I = 0, (9)

where the estimator gain L is designed such that A − LC
is stable.

Next, we modify the standard state estimator (6) to
incorporate the exacted information from the quantized
output. Namely, we reset the estimated state in two cases:

1) At the reset time tk,1, which is defined as

tk,1 : yq(tk,1) �= yq(t
−

k,1), (10)

the estimated state is reset by
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x̂(tk,1) = x̂(t−k,1) − H
(

ŷ(t−k,1)

−
1

2
(yq(tk,1) + yq(t

−

k,1)
)

. (11)

It is easy to verify that the new estimated state leads
to

ŷ(tk,1) =
1

2

(

yq(tk,1) + yq(t
−

k,1)
)

= y(tk,1). (12)

2) At the pre-specified reset time tk,2 defined by

tk,2 = kT, k ∈ Z
+ (13)

where T indicates a predefined reset interval (e.g.,
sampling period). Ideally, a smaller T implies faster
state update and thereby lessens the estimation error.
The estimated state is then reset by

x̂(tk,2) = x̂(t−k,2) − H
(

ŷ(t−k,2) − yq(tk,2) −

Sat∆

2

(ŷ(t−k,2) − yq(tk,2))
)

, (14)

where Sat(·) is the saturation function with the satu-
ration level of ∆/2. We can see that the new estimated
state can lead to

ŷ(tk,2) =















yq(tk,2) + Sat∆

2

(ŷ(t−k,2) − yq(tk,2)),

if |ŷ(t−k,2) − yq(tk,2)| >
∆

2
;

ŷ(t−k,2), otherwise.

(15)

Hence, it can be seen that over-estimation of the esti-
mated output ŷ is prevented while the estimated out-
put is unchanged if over-estimation is not detected.

By incorporating the previous reset schemes into the
standard state estimator (6), we can obtain a hybrid
system named by reset state estimator, which has the form:

˙̂x(t) = Ax̂(t) + Bu(t) + L
(

yq(t) − ŷ(t)
)

,

t /∈ {tk,1; tk,2}; (16)

x̂(tk,1) = x̂(t−k,1) − H
(

ŷ(t−k,1) −
1

2
(yq(tk,1) + yq(t

−

k,1)
)

,

tk,1 : yq(tk,1) �= yq(t
−

k,1); (17)

x̂(tk,2) = x̂(t−k,2) − H
(

ŷ(t−k,2) − yq(tk,2) −

Sat∆

2

(ŷ(t−k,2) − yq(tk,2))
)

, tk,2 = kT ; (18)

ŷ(t) = Cx̂(t). (19)

where x̂(tk,1) and x̂(tk,2) are the new estimated states at
time tk,1, tk,2 respectively.

Remark 1: The selection of H (8) is motivated by Sur
and Paden [1998], which is deduced using a projection
approach. The benefits here are that the estimated con-
trolled output is assured to be favorably updated at the
reset times as shown in (12) and (15). It can be seen that
the estimated output in (12) equals to the actual output
and the estimated output in (15) avoids over-estimation.
However, we can’t claim other estimated states can be
updated to actual states in this reset scheme except the
estimated output.

3.2 Stability Analysis

In the following, we analyze the stability of the reset state
estimator (16)-(19). Define the estimator error

e(t) � x(t) − x̂(t), (20)

and thus, subtracting the estimator (16)-(18) from the
plant (1) derives the estimator error system with the
following dynamic equations:

ė(t) = Aee(t) + Gw(t) + Lε(t), e(0) = e0, t /∈ {tk,1; tk,2}

e(tk,1) = De(t−k,1), (21)

e(tk,2) = De(t−k,2) + Hψ(tk,2),

where

Ae = A − LC,

D = I − HC,

ψ(tk,2) = ε(tk,2) − Sat∆

2

(ŷ(t−k,2) − yq(tk,2)).

We have the following result regarding to the stability of
system (21):

Theorem 1. The estimator error system (21) is uni-
formly bounded-input bounded-state (UBIBS) stable.
More specifically, for any α ≥ 0 and w̄ ≥ 0, there exists
µ > 0 such that

||e(0)|| ≤ α, |w(t)| ≤ w̄, ∀t ≥ 0 ⇒ ||e(t)|| ≤ µ, ∀t ≥ 0.(22)

Proof. Firstly, we consider the case of t /∈ {tk,1; tk,2}.
Let V (t) = e(t)T Pe(t) be the Lyapunov function of the
estimator error system (21). Thus, we have

V̇ (t) = 2eT P ė

= 2eT P (Aee + Gw + Lε)

= 2eT PAee + 2eT P
1

2 (P
1

2 )T (Gw + Lε)

≤−eT e + τeT Pe +
1

τ
(Gw + Lε)T P (Gw + Lε)

≤ eT (−I + τP )e +
1

τ
(Gw + Lε)T P (Gw + Lε),

(23)

where τ > 0 is a small scalar such that −I +τP < 0. Since
w(t) and ε(t) are both bounded, we have V (t) is bounded.

Next, we evaluate the Lyapunov function increment at
t ∈ {tk,1}.

∆V (tk,1) = V (tk,1) − V (t−k,1)

= e(tk,1)
T Pe(tk,1) − e(t−k,1)

T Pe(t−k,1)

= e(t−k,1)
T (DT PD − P )e(t−k,1)

= −e(t−k,1)
T
(

CT (CP−1CT )−1C
)

e(t−k,1)

≤ 0.

Lastly, we evaluate the Lyapunov function increment at
t ∈ {tk,2}.

∆V (tk,2) = V (tk,2) − V (t−k,2)
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Fig. 2. Experimental setup.

= e(tk,2)
T Pe(tk,2) − e(t−k,2)

T Pe(t−k,2)

= e(t−k,2)
T (DT PD − P )e(t−k,2)

+ψ(tk,2)
T HT PHψ(tk,2)

=−e(t−k,2)
T
(

CT (CP−1CT )−1C
)

e(t−k,2)

+ψ(tk,2)
T (CP−1CT )−1ψ(tk,2)

=−(CP−1CT )−1
(

(y(tk,2) − ŷ(t−k,2))
2 − ψ(tk,2)

2
)

=−(CP−1CT )−1

(

(y(tk,2) − ŷ(t−k,2) − ψ(tk,2))
2

+2Γ
)

,

where

Γ =
(

ŷ(t−k,2) − ŷ(tk,2)
)(

ŷ(tk,2) − y(tk,2)
)

. (24)

From (15), it is implied that

y(tk,2) < ŷ(tk,2) < ŷ(t−k,2), if ŷ(t−k,2) > yq(tk,2) +
∆

2
,

ŷ(t−k,2) < ŷ(tk,2) < y(tk,2), if ŷ(t−k,2) < yq(tk,2) −
∆

2
.

Accordingly, we have Γ > 0, and thus

∆V (tk,2) ≤ 0. (25)

Therefore, following (23) we can show that there exist
positive c0, c1 and c2 such that

||e(t)||2 ≤ c0e
−ηt||e(0)||2 + c1w̄

2 + c2∆
2, ∀t ≥ 0. (26)

where η = λmin(I − τP )/λmax(P ). We can thus take

µ =
√

c0α2 + c1w̄2 + c2∆2 (27)

for (22).

4. SIMULATION AND EXPERIMENT

This section presents the application of the reset estimator
to a linear motor positioning system with optical encoder.
Simulation and experimental results are shown to verify
the effectiveness of the reset state estimator (RSE) over
the standard state estimator (SSE) without reset actions.

y
q

Linear
motor

u yy
r

C(s)

1 mP 10 mP'  

resolution

Optical
encoder6

w

RSE

6
_+

+

+

Controller

ŷ
SSE

c

b

a

Fig. 3. Block diagram of linear motor control system with
sensor quantization (SSE: Standard state estimator;
RSE: Reset state estimator).

4.1 Linear Motor Position Control System

Fig. 2 shows the experimental setup. The linear motor
driven stage has a 0.5 m travel range, a mounted optical
encoder of 1 µm resolution , and a power amplifier. The
linear motor is modeled from its physical parameters and
the model in state space is given by

[

ẏ
v̇

]

=

[

0 1
0 −a

] [

y
v

]

+

[

0
b

]

u,

yq = Q(y),
(28)

with a = 7.5398, b = 1.5 × 107, and y is the position (in
µm), v is the velocity of the stage (in µm/s), respectively.

The block diagram of the linear motor control system is
shown in Fig. 3. The reference input yr is set as sinusoidal
signals with yr = 300 × Sin(2π × 10t) µm. Since the
amplitude of yr is much larger than 1 µm, comparatively,
the original output of the optical encoder with 1 µm
resolution can be treated as having sufficiently high res-
olution and thus approximated as the actual position y.
The measured positions y are passed through an artifical
quantizer to simulate a lower resolution encoder by setting
the quantizer step size as ∆ = 10 µm. The quantized
outputs yq together with the control input u are then used
as the estimator inputs. To compare the performance of
the estimators, the quantized output yq , and the estimated
positions ŷ from the SSE and the RSE are respectively
used as the feedback signals to the controller (see the
switching points a, b, c in Fig. 3). When one estimator is
under test, the position estimation error ep and tracking
error Etra are respectively monitored by

ep = y − ŷ, (29)

Etra = yr − y. (30)

In the setup, we assume that w = 0 and the initial
conditions of the motor are

y(0) = 100 µm; v(0) = 60 mm/s. (31)

As we are only interested in the state estimation, the de-
tails of feedback control design are omitted. The controller
is directly given by

C(s) = kp + kd

s

0.0001s + 1
+ ki

1

s
, (32)

where kp = 0.1053, kd = 1.2×10−4, ki = 50. The resulting
closed-loop system can obtain a bandwidth of 200 Hz. The
controller is then fixed throughout the tests.
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Next, we select the estimator gain L such that the smallest
RMS (root mean square) of position estimation error
can be achieved. According to (21) the estimator gain
should be selected to balance the effect of disturbance and
quantization noise on the estimator error e. Here, we select
the estimator gain in terms of the estimator bandwidth as
follows:

L = [8.8wn − 7.5 39.5w2
n − 66.9wn + 56.8]T , (33)

where wn denotes the estimator bandwidth in Hz. Sim-
ulation results of the achievable estimation errors versus
estimator bandwidth are shown in Fig. 4 and the corre-
sponding tracking errors are shown in Fig. 5. It is obvious
that RSE can achieve a smaller least estimation error
than that of the SSE, while both estimators can achieve
much smaller estimation error than the quantization error.
However, the tracking error with SSE is not better than
that using the quantized position as direct feedback no
matter the bandwidth is tuned. Fortunately, the tracking
error with RSE can be reduced by 7% compared to the
case with quantized position as feedback.
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Fig. 6. Position tracking with quantized position as feed-
back signal.
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Fig. 7. Position tracking with estimated position from SSE
as feedback signal.

4.2 Results and Discussions

We fix the estimator gains as those that can achieve the
least estimation error. Figs. 6-8 show the time responses
of the system with various position feedback. We can
see that the profiles with RSE in Fig. 8 gives the best
results in estimation error and tracking error. Moreover,
Fig. 9 compares the estimated position profiles from SSE
and RSE. It is shown that at the initial stages, the RSE
converges to the actual position extremely faster than
SSE due to its reset feature (see Figs. 9(a1) and (b1)).
In Figs. 9(a2), (b2), the RSE is smoother and closer to the
actual position. Particularly, we can easily observe that
the estimated position is reset to the actual position at
the quantizer transition (e.g. at 23 ms).
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Fig. 8. Position tracking with estimated position from RSE
as feedback signal.
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Finally, we implemented the controller together with the
estimators on a real-time DSP system (dSPACE-DS1103,
dSPACE GmbH, Paderborn, Germany) with the sampling
period 0.1 ms. The RSE was set with T = 0.1 ms and note
that the time instants tk,1 can only be captured as close as
to some sampling instants. Fig. 10 shows the experimental
results, which indicate that the RSE outperforms the SSE
by 16% in the position estimation.

5. CONCLUSION

We have investigated a reset state estimator to suppress
sensor quantization in motion control systems. The reset
estimator can favorably update the estimated state by
using the exacted information from the quantizer output,
which contains partial knowledge of the actual position.
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Fig. 10. Experimental results of position estimation errors.

We have shown that by embedding the reset scheme into
a standard state estimator, the stability of the reset esti-
mator system will not be destroyed. Moreover, the reset
state estimator was applied to a linear motor control sys-
tem with an optical encoder. Simulation and experimental
results have shown that it can achieve smaller position
estimation error than that of a standard state estimator.
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