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Abstract: This paper studies a new nested switching control (NSC) scheme for piezoelectric
(PZT) actuators to achieve fast nanopositioning. Conventional PZT controllers typically neglect
the actuator saturation nonlinearity for design simplicity but at the cost of reduced performance.
By optimizing a quadratic performance cost function that explicitly involves the actuator
saturation, the NSC can not only guarantee the system stability in the presence of saturation
but also improve the tracking speed. The experimental results on an actual PZT nanopositioner
show that the new control scheme has outperformed the conventional control by more than 12%
in settling time within the full PZT operational range and with nanoscale precision.

1. INTRODUCTION

The piezoelectric (PZT) actuator is a well-known device
for precision positioning and motion control. The PZT
actuators have been widely used in a variety of applications
such as optical trapping, biotechnology, and nanomanipu-
lation (see e.g., Binnig et al. [1986], Yves [1995], and Zheng
et al. [2008]). For long-range operations that require high
precision, repeatability, and long-term stability, a servo
controller is typically essential for the PZT actuator to
eliminate the nonlinear hysteresis, creep effects, and vibra-
tions. A thorough literature review on control approaches
for PZT actuators is reported in Devasia et al. [2007].
In particular, for hysteresis and vibration compensations
there are two main approaches: inversion-based feedfor-
ward Croft et al. [2001] and high-gain feedback Yi et al.
[2009]. In the inversion-based feedforward approach, an
accurate hysteresis and vibrational dynamic model is cru-
cial for the effectiveness of the compensation because the
desired output is fed through the inverse model to generate
feedforward signals to cancel the hysteresis and vibrations.
On the contrary, the high-gain feedback approach avoids
the need for an accurate model. In such methods, hys-
teresis and vibrations are essentially regarded as input
disturbances and the induced position error is detected
by the position sensor and fed back to the controller to
generate PZT control signals to correct for position errors.

Tracking control is another main control task for the PZT
actuators, which aims to drive the position output to
track a desired trajectory such as triangular waveforms
in AFM applications Abramovitch et al. [2007] and step
references in pick-and-place operations Yi et al. [2009].
To achieve these tasks, traditional proportional-integral-
derivative (PID) controllers are generally used, see e.g.,
Yong et al. [2009]. Furthermore, advanced controllers de-
signed with modern control technologies are also reported,
see e.g., Devasia et al. [2007] and Zheng et al. [2008].
However, in most existing literature, the PZT actuator sat-
uration nonlinearity is rarely explicitly considered in the

control design. Typically, due to the PZT actuator limited
travel range, the control input should be constrained to
avoid damage to the PZT ceramics. Nevertheless, most
existing controllers are designed either by ignoring the
saturation nonlinearity or by constraining the control in-
put not to hit the saturation limit within the full PZT
operating range. There are two main disadvantages of such
control strategies, especially for step tracking control. The
first one is that when the PZT actuator works around its
maximum range, the performance may deteriorate (e.g.,
causing excessive oscillations) once large disturbance oc-
curs because the control design does not guarantee fast
convergence of the closed-loop system in the presence of
saturation. The second one is that when the PZT actuator
works in a small range, the allowable control input is
not fully used thus, resulting in conservative performance
(e.g., longer settling time). For these reasons, this paper
proposes a novel control scheme that explicitly accounts
for the saturation in the controller and leads to superiorly
fast and precise step tracking performance.

The contribution of this paper lies in that we explicitly
model the PZT actuator as a saturated actuator, for which
the step tracking control problem is then casted as a
linear quadratic control problem with input saturation.
The solution of the problem eventually leads to a nested
switching controller (NSC). Unlike the anti-windup com-
pensator Kapoor et al. [1998] that uses ad-hoc methods
to detune the controller with little theoretical guarantee
on stability; or the control design to avoid the saturation
at the cost of either reduced performance or shortened
operational range, the proposed NSC not only guarantees
the stability in the presence of saturation, but also opti-
mizes a quadratic performance function through properly
over-saturating the controller that leads to desired fast
convergence of the tracking error.

This paper is organized as follows. Section 2 introduces
the experimental setup and plant modeling of the PZT
actuator nanopositioning system. Section 3 presents the
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Fig. 1. Experimental setup of the PZT actuated nanoposi-
tioner (The PZT actuator/position sensor is attached
to the moving stage and embedded into the base).

fundamental control theory of NSC design. Section 4 shows
the experimental results of step tracking to demonstrate
the effectiveness of the designed NSC controller. Section 5
concludes the paper.

2. PLANT MODELING

Fig. 1 shows the experimental setup of the PZT actuated
nanopositioner (P-752, Polytec PI) studied in this paper.
The nanopositioner comprises a flexure-guided moving
stage that is driven by a PZT microactuator with a travel
range of ±12.5 µm, and a capacitive position sensor with a
practical resolution of 14 nm to measure the displacement
of the moving stage along the axis. The position sensor
output is fedback to a real-time DSP system on which
the feedback controller is implemented with the sampling
frequency of 20 kHz. Subsequently, the control signal is
passed through the power amplifier to output ten times
voltage for the PZT actuator.

In real implementation, we have used an inner-loop prec-
ompensator to reduce the nonlinear hysteresis effects asso-
ciated with the PZT and to damp the resonance modes of
the flexure stage. We omit the detailed design and results
here as it is not the main focus of this paper. Fig. 2 shows
the frequency responses of the PZT actuator positioner
with hysteresis and resonance compensation. The modeled
PZT actuator plant model is given by

P =
y

ũ
=

1

(τ0s + 1)2(τ1s + 1)3
, (1)

where y is the controlled output displacement, ũ the
control input, τ0 = 8.0× 10−4, and τ1 = 3.2× 10−5.

3. NESTED SWITCHING CONTROL DESIGN

Our goal in this section is to find an optimal ũ subject to
the PZT input saturation such that the output displace-
ment y can track any step reference input with amplitude
yr (within the PZT travel range) as fast as possible. In
the following, we first formulate the PZT step tracking
control problem as a standard regulation control problem;
and then we introduce the fundamental theory of linear
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Fig. 2. Frequency responses of the PZT actuated nanoposi-
tioner with hysteresis and resonance precompensated.

quadratic (LQ) control with input saturation, based upon
which a nested switching controller is developed to improve
the tracking performance. Finally, we apply the switching
control scheme to the PZT actuator and detail the de-
sign procedure. Experimental results are also presented to
demonstrate the effectiveness of the developed controller.

3.1 Problem Formulation

Consider the system in (1) and let its state-space repre-
sentation be given by

{

ẋp = Axp + B̃σp(ũ), xp(0) = xp0,
y = Cxp,

(2)

where xp is the state and the saturation function σp(ũ)
defined as

σp(ũ) = sgn(ũ)min{ū, |ũ|}, (3)

where ū = 12.5 µm is the saturation level of the control
input which, in our case, equals to the PZT maximum
travel range.

The objective here is to design an optimal ũ subject to the
actuator saturation to cause the output y to track a step
input yr rapidly without experiencing large overshoot. Let

ũ = σs(us) + Hyr , (4)

where yr is the step input, us the control input to be
designed as will be discussed later, H a scalar given by
H = −(CA−1B̃)−1 and σs(·) is defined as in (3) with the
saturation level

ūs = ū − |Hyr|, (5)

where |Hyr| ≤ ū. Note that here A is an asymptotically
stable matrix and thus H is well defined. Furthermore,
define xr as xr := −A−1B̃Hyr and let xe = xp − xr, it is
simple to transform (2) into

ẋe = Axe + B̃σp(ũ)

= Axe + B̃σs(us) + Axr + B̃Hyr + A−1B̃Hẏr.

Noting that Axr + B̃Hyr + A−1B̃Hẏr = 0. Therefore, the
closed-loop system is given by

ẋe = Axe + B̃σs(us), xe(0) = xe0. (6)

To this end, we formulate the step tracking control design
as a regulation control problem with input saturation.
Next, we aim to find a state feedback control law us

such that xe converges to the origin rapidly. Once this is
achieved, it indicates that limt→∞ xp(t) = xr. Therefore,

limt→∞ y(t) = Cxr = −CA−1B̃Hyr = yr .
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3.2 LQ Control with Input Saturation

Consider the system in (6). For the sake of easy presen-

tation we replace the pair (xe, us, B̃) with (x, u, B) and
hence (6) can be rewritten as

ẋ = Ax + Bσ(u), x(0) = x0, (7)

where x = xe, B = B̃ūs, us = uūs with ūs as (5), and σ(·)
with saturation level equal to 1.

Next, we consider the following quadratic cost function

J(x0, u) =

∞
∫

0

(xT Q̄x + rσ(u)2)dt (8)

for some Q̄ = Q̄T > 0 and r > 0 with (A, B) being
controllable. Ideally, we aim to seek an optimal linear state
feedback u = Kx for each given initial state x0 such that
J(x0, u) is minimized. It is well-known that if the control
is not saturated, the optimal solution to K is given by

K = −r−1BT P̄0, (9)

where P̄0 = P̄ T
0 > 0 is the solution to the following Ricatti

equation

AT P̄0 + P̄0A + Q̄ − r−1P̄0BBT P̄0 = 0. (10)

Moreover, the minimal cost is given by xT
0 P̄0x0.

However, in the presence of saturation, the optimal K is
difficult to give. To overcome this difficulty, we parame-
terize the controller by using an optimal sector bound Fu
[2000]. More specifically, define the level of over-saturation
ρ ≥ 0 such that the control input u is restricted to be

|u| ≤ 1 + ρ. (11)

It is easy to verify that for any u constrained by (11), σ(u)
lies in the following sector bound

σ(u) = ρ1u + δ(u), (12)

|δ(u)| ≤ ρ2u, ∀|u| ≤ 1 + ρ, (13)

where

ρ1 =
2 + ρ

2(1 + ρ)
, ρ2 =

ρ

2(1 + ρ)
. (14)

Here, ρ1 is the optimal value so that δ(u) has the smallest
sector to bound the nonlinearity cause by the saturation.
This can be illustrated by Fig. 3.

Now, we give some analysis on the design of a control gain
K to minimize the worst-case cost for all δ(·) satisfying
the sector bound (13). For a given ρ > 0, consider the
Lyapunov function candidate

V (x) = xT P̄ρx, P̄ρ = P̄ T
ρ > 0, (15)

and define

Ωρ = AT P̄ρ + P̄ρA + Q̄ − r−1P̄ρBBT P̄ρ, (16)

u∗ = −r−1BT P̄ρx. (17)

Given any initial state x0 and any δ(·) satisfying (13), it
is easy to verify that

1

1 ρ+1

( )uσ

u

1
uρ

1 2
( )uρ ρ+

1 2
( )uρ ρ−

Fig. 3. Illustration of sector bound for δ(u).

J(x0, u, T )= V (x0) − V (x(T ))

+

T
∫

0

(
d

dt
V (x) + xT Q̄x + rσ(u)2)dt

≤ V (x0) +

T
∫

0

f(x, u, δ(u))dt,

where

f(x, u, δ(u)) = xTΩρx + r(ρ1u + δ(u) − u∗)2. (18)

This implies that if f(x, u, δ(u)) ≤ 0 for all x ∈ R
n and

δ(·) satisfying (13), then

J(x0, u) ≤ V (x0). (19)

From the analysis above, we formulate the following re-
laxed optimal control problem:

P1 : For a given ρ ≥ 0, design P̄ρ and u to minimize
V (x0) subject to f(x, u, δ(u)) ≤ 0 for all x ∈ R

n and δ(·)
satisfying (13). Moreover, determine the largest invariant
set Xρ characterized by an ellipsoid of the form

Xρ = {x : xT P̄ρx ≤ µ2
ρ}, µρ > 0, (20)

such that if x0 ∈ Xρ, x(t) ∈ Xρ and |u(t)| ≤ 1 + ρ for all
t ≥ 0, we have J(x0, u) ≤ V (x0).

The solution to the above problem is given by the following
Theorem:

Theorem 1 Fu [2000]: Consider the system in (7) and the
cost function in (8). For a given level of over-saturation
ρ ≥ 0, suppose the equation

AT P̄ρ + P̄ρA + Q̄ − r−1(1 − ρ2
0)P̄ρBBT P̄ρ = 0, (21)

where

ρ0 =
ρ2

ρ1

=
ρ

2 + ρ
(22)

has a solution P̄ρ = P̄ T
ρ > 0. Then the optimal feedback

control law Kρ for the relaxed optimal control problem P1
is given by

Kρ = −ρ−1

1 r−1BT P̄ρ (23)

and the associated invariant set Xρ is bounded by

µρ =
r

(1 − ρ0)
√

BT P̄ρB
. (24)
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Remark 1 : If ρ = 0, the Riccati equation (21) and
the control law (23) recover the results in (10) and (9)
for optimal control without saturation. The associated
invariant set is given by

X0 = {x : xT P̄0x ≤ µ2
0}, µ0 =

r
√

BT P̄0B
. (25)

Remark 2 : Despite that the invariant set enlarges when
ρ increases, it can be seen that the upper bound of the
performance cost in (19) becomes larger. This implies that
the saturated controller can bring a good benefit when ρ
is not close to 0 and not too large. Generally, ρ can be
selected as the minimal one satisfying x0 ∈ Xρ.

Property of the control law The proposed controller
in Theorem 1 has two nice properties, i.e., the nesting
property of Xρ and monotonicity of P̄ρ. More specifically,
define

Sρ = (1 − ρ0)P̄ρ. (26)

We can rewrite the Riccati equation in (21) as

AT Sρ + SρA + (1 − ρ0)Q̄ − r−1(1 + ρ0)SρBBT Sρ = 0(27)

and the invariant set can be expressed as

Xρ = {x : xT Sρx ≤ r2

BT SρB
}. (28)

Lemma 1 Fu [2000]: The solution Sρ to (27) is monotoni-
cally decreasing in ρ > 0, i.e., for a sufficiently small ǫ > 0,
Sρ > Sρ+ǫ, if 0 ≤ ρ < ρ + ǫ. Consequently, Xρ are nested
in the following sense:

Xρ ⊂ Xρ+ǫ, ∀0 ≤ ρ < ρ + ǫ. (29)

Moreover, the solution P̄ρ to the Riccata equation in (21)
is monotonically increasing in ρ > 0. That is,

Pρ < Pρ+ǫ, ∀0 ≤ ρ < ρ + ǫ. (30)

3.3 Nested Switching Control

Thanks to the nesting property of Xρ and monotonicity of
P̄ρ, we can apply Theorem 1 to design a sequence of control
gains Ki, based on which a nested switching control can be
developed to improve the performance. More specifically,
we choose a sequence of over-saturation bounds 0 = ρ0 <
ρ1 < · · · < ρN and solve the corresponding Lyapunov
matrices P̄i, invariant sets Xi and controller gains Ki,
i = 0, 1, · · · , N . We then construct the nested switching
control law by selecting the control gain Ki when x ∈
Xi and x /∈ Xi−1 (unless i = 0). The following result
shows the advantage of the nested switching control in the
performance improvement.

Lemma 2 Fu [2000]: Suppose the switching controller
above is applied to the system in (7) with x0 ∈ XN , Let
ti be the time instance Ki is switched on, i = 0, 1, · · ·, N ,
particularly, tN = 0. Then the cost of the switching control
is bounded by

J(x0, u)≤ xT
0 P̄Nx0 −

N−1
∑

i=0

xT (ti)(P̄i+1 − P̄i)x(ti)

< xT
0 P̄Nx0. (31)

From the theorem above, we can clearly see the advantage
of the switching control by means of the negative term in
(31) that decreases the cost gradually. In what follows, we
will discuss how to choose Q̄, r, and ρi and then apply the
nested switching control to the PZT actuator for improved
tracking performance.

3.4 Guidelines of Selecting Q̄, r and ρi

Since the main purpose of using nested switching control
is to speed up the transient response, it is intuitive to
inject the maximum control input (by applying a large
control gain Ki, i > 0) to achieve the fastest acceleration
at the initial stage when the controlled output y is far
away from the set point. When the controlled output y
approaches the final set point, the control input should
be gradually decreased (by applying a small control gain
K0) for a small overshoot. Such a control strategy would
impose some conditions on Q̄, r and ρi.

Firstly, we consider the controlled output y is close to the
set point so as that the control gain K0 (i.e., ρ0 = 0)
is applied. Under such a circumstance, the control input
is not saturated. It is straightforward to verify that the
closed-loop system can be expressed as

ẋ = (A − BBT P̄0)x. (32)

Clearly, we can select Q̄ and r (hence corresponding to a
unique solution of P̄0) such that the dominated poles of
A − BBT P̄0 should have a large damping ratio, which in
turn will generate a small overshoot.

Secondly, to achieve a fast tracking speed when the con-
trolled output y is far away from the set point, a larger
control gain Ki corresponding to a ρi > 0 should take ac-
tion prior to K0. This implies that the associated invariant
set X0 as given by (25) should be as small as not to cover
the initial state x(0). Therefore, an additional stringent
constraint is imposed on Q̄ for such an X0.

Last, for the given Q̄ and r determined from above, ac-
cording to Remark 3, choose ρN as the minimum satisfying
x(0) ∈ XN (ρN ). Subsequently, choose ρi with 0 < ρi < ρN

provided that inserting the resulting Ki can bring fur-
ther performance improvement (e.g., reducing steady-state
chattering). Note that the control gain KN associated
with ρN will generally cause the control input to hit its
saturation level at the initial stage for the purpose of
maximum acceleration.

More specifically, the following procedure summarizes the
guidelines for selecting Q̄, r and ρi:

1) Without loss of generality, we set r as

r = 1 (33)

since the performance cost can be normalized as J/r.
2) Given yr and the resultant pair (A, B), select a Q̄ =

Q̄T > 0 and solve (10) for a P̄0 such that the resulting
closed-loop system matrix A−BBT P̄0 has the desired
poles locations, particularly, the dominated poles
should have a large damping ratio. The solution of P̄0

can be easily obtained using the MATLAB command
(care).

3) Calculate µ0 using (25) and the initial state with

x(0) = xp0 − A−1B̃(CA−1B̃)−1yr . (34)
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Check if x(0)T P̄0x(0) > µ2
0. If not, we go back to

previous step and reselect Q̄. Generally, increasing Q̄
is effective due to the monotonicity property of the
solution of the Riccati equation (10).

4) Solve x(0)T P̄Nx(0) = µ2
N to yield ρN .

5) Evaluate the closed-loop performance by applying
K0 and KN only (i.e, with the minimum switching
controllers). If the control output y exhibits unaccept-
able overshoot or chattering in steady state, insert an
interim controller Ki with 0 < ρi < ρN and so forth
until the performance is acceptable.

3.5 Application to PZT Tracking Control

We consider an approximate second-order model of the
PZT during the control design, which is given by

ẋp =

[

0 1
a1 a2

]

xp −
[

0

b̃

]

σp(ũ), xp(0) = 0,

y = [ 1 0 ]xp,
(35)

where xp = [y ẏ]T , a1 = −1.1109 × 106, a2 = −1.9227 ×
103, b̃ = 1.1409 × 106. We now follow the proposed
procedure to design a nested switching controller for this
system. In particular, for this simplified system, we can
yield the controller analytically expressed by the design
specifications for easy tuning of the performance. The
design results are given as follows:

1) Let the desired poles for the closed-loop system ma-

trix A−BBT P̄0 be (−ζ±j
√

1 − ζ2)ω, where ζ repre-
sents the damping ratio and ω the natural frequency.
We then parameterize Q̄ as

Q̄ =

[

q1 0
0 q2

]

(36)

with

q1 =
1

b2
(ω4 − a2

1), (37)

q2 =
1

b2
(4ζ2ω2 − 2ω2 − 2a1 − a2

2), (38)

where b = b̃ūs. Clearly, to guarantee Q̄ > 0 requires
ω and ζ satisfying the conditions

ω >
√

|a1|, (39)

1 ≥ ζ2 >
(2a1 + a2

2)

4ω2
+ 0.5. (40)

Substituting Q̄ and r = 1 into (21) solves P̄ρ as

P̄ρ =

[

p1 p2

p2 p3

]

(41)

with

p1 = b2(1 − ρ2
0)p2p3 − a2p2 − a1p3, (42)

p2 =
a1 +

√

(1 − ρ2
0)ω

4 − ρ2
0a

2
1

b2(1 − ρ2
0)

, (43)

p3 =
a2 +

√

a2
2 + b2(1 − ρ2

0)(2p2 + q2)

b2(1 − ρ2
0)

. (44)

Accordingly, the resulting control gain with respect
to a given ρ is obtained by

Kρ = − b

ρ1

[p2 p3]. (45)

To this end, it is easy to verify that the closed-loop
system characteristic polynomial for ρ = 0 is given by

∆0(s) = |sI − A − BK0|
= s2 + (b2p3 − a2)s + (b2p2 − a1)

= s2 + 2ζωs + ω2, (46)

which yields the poles as specified initially.
2) According to (34) and (25), we can obtain

x(0) = [−yr 0]T , (47)

µ2
0 =

1

a2 + 2ζω
. (48)

To satisfy x(0)T P̄0x(0) > µ2
0 is equivalent to that the

following inequality

y2
r (2ζω3 − a1a2) − b2(a2 + 2ζω)−1 > 0 (49)

should hold. We have parameterized Q̄ and Kρ simply
in terms of the design specifications ω and ζ with the
basic selection criteria given in (39), (40) and (49).
Generally, we can choose an initial ω and ζ satisfying
(39)–(40) and check if (49) holds. If not, increase ω
until (49) holds because of the monotonicity property
of (49) with respect to ω. After that, we can finalize Q̄
and seek the controllers with over-saturation in next
step.

3) Choose ρN as the solution of ρ in the following
equation

yr =
ρ + 2

2b
√

p1p3

, (50)

where p1 and p3 are functions of ρ as given in (43) and
(44), respectively. Note that such a ρN is unique since
the right hand side of (50) is monotonically increasing
with respect to ρ. We can easily achieve ρN using
numerical methods.

We now follow the above procedure to find the NSC for
the PZT actuator. We also define the settling time as the
total time that it takes for the position output to enter
and remain within ±30 nm of the target set point. Note
that as the adopted position sensor has a noise level of ±14
nm, the specified position precision of 30 nm is almost the
best achievable in practice.

We take the reference with yr = 500 nm as an illustration
example. After few iterations, we obtain ω = 2π280,
ζ = 0.785 and ρ1 = 13. This leads to q1 = 9.9364,
q2 = 2.9 × 10−8. We begin with using two switching
controllers; hence, this leads to the controller gains

K0 = −[2.141 0.0009], (51)

K1 = −[5.6915 0.0027], (52)

and the corresponding Lyapunov matrices P̄i and regions
of attraction µi are respectively give by

P̄0 =

[

7.6286× 10−3 2.3457× 10−6

2.3457× 10−6 1.0076× 10−9

]

, µ0 = 0.0345,

P̄1 =

[

9.3673× 10−3 3.3405× 10−6

3.3405× 10−6 1.6059× 10−9

]

, µ1 = 0.205.
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Fig. 4. Experimental step responses to yr = 500 nm.

For comparison, we also design a PID controller as follows

u =
(

0.42 +
17.5

s
+

7 × 10−5s

6.36× 10−5s + 1

)

(yr − y), (53)

which can achieve the minimum settling time with non-
saturated control input.

4. EXPERIMENTAL RESULTS

The NSC and PID controllers are implemented on the
actual PZT nanopositioner. We use backward differenti-
ation of the measurable position signals cascaded with
an appropriate noise filter to estimate the velocity. The
experimental results for the step response to yr = 500
nm are shown in Fig. 4. We can see that compared with
the PID, the NSC significantly reduces the settling time
by properly over-saturating the control input. Moreover,
we have also implemented other step responses with am-
plitudes over the full PZT travel range and found that
the transient responses are similar with those in Fig. 4.
We summarize all the results in terms of settling time in
Table 1. It is clearly seen that the settling time under
the NSC control is significantly reduced by more than
12% compared with the PID control. Finally, we need
to emphasize that the controlled position precision (i.e.,
30 nm) we achieved in this paper is almost the best in
practice as the position sensor resolution is 14 nm in our
setup. Provided that a position sensor of higher resolution
is available, the proposed NSC control is also possible to
provide further improvement on the control performance.

5. CONCLUSION

We have studied in this paper a new nested switching
control scheme for the PZT actuator tracking control

Table 1. Comparison of the Settling time Im-
provement from experimental results

Step Length Settling Time (ms) Improvement

(nm) PID NSC (%)

50 0.572 0.505 12

100 0.699 0.585 17

500 2.683 2.233 17

1000 3.14 2.625 17

3000 3.7 3.1 16

5000 3.71 3.08 17

8000 5.05 3.45 31

10000 5.065 3.49 31

with the actuator saturation nonlinearity explicitly taken
into account. Distinct from the conventional control, the
proposed control scheme can guarantee the closed-loop
system stability in the presence of saturation, meanwhile
significantly improve the tracking speed through switching
the controllers that optimize a quadratic cost function.
The experimental results demonstrate that the new control
scheme has outperformed the conventional PID control by
more than 12% in settling time within almost the full PZT
operational range while nanoscale precision is maintained.
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