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1. INTRODUCTION

In this work, we consider the controller design for dynamic
systems where the communication between the controller
and the actuators is affected by random packet dropouts.
Here, the probability that the current packet will arrive
depends on the history of past packet dropouts. The packet
arrivals can be modeled as a finite state Markov process.
Then, the optimal controller is designed as a function of
the packet loss history and the system state, such that
a linear quadratic cost function is minimized. Also, at
the time when a control input is computed, the controller
does not know whether this input will actually reach the
actuator. This problem can fit into the Markov jump
linear system framework by assuming that the packet
transmission at the current time will be successful (Costa
et al., 2006; Fragoso, 1989; Mo et al., 2013; Casiello and
Loparo, 1989; Val and Başar, 1997; Ji et al., 1991). The
difference in our approach is that we take advantage of the
structure of the Markov transition matrix, which results
in simpler expressions. Designing the controller in this
manner leads to control laws that depend on the system
state and on the history of packet dropouts. This results in
high complexity controllers (meaning: many control laws),
one for each possible observation of packet dropouts over
a finite history. The complexity increases exponentially
for longer packet dropout histories. It also will require
significant amounts of memory to be stored in a lookup

table e.g. in microcontrollers. Here one might ask, whether
it is necessary to take the entire finite packet arrival history
into account when designing the controller. To tackle this
question, we design two sub-optimal reduced complexity
controllers, that feature fewer control laws, and illustrate
the loss of performance compared to a full complexity
controller through simulation studies.

Controller design for networked control systems that
are affected by random packet dropouts have received
increasing attention in recent years. One approach is to
model the network effects as an independent and identically
distributed (i.i.d.) random process (Quevedo et al., 2008,
2011; Imer et al., 2006; Wu and Chen, 2007). This model is
also extended to include transmission delays (Zhang et al.,
2013, 2005; Quevedo et al., 2013). For many network setups,
the network effects can however not be captured by an i.i.d.
model. Therefore a 2-state Markov model, which captures
that packet losses occur in bursts (Gilbert, 1960; Sadeghi
et al., 2008), is frequently used (Peters et al., 2016; Mo et al.,
2013; Song et al., 2016). While there exists an extensive
literature on performance and complexity tradeoffs in terms
of minimizing a cost function for estimation over networks
with correlated packet dropouts (Dolz et al., 2014; Smith
and Seiler, 2003), the controller design has rarely been
considered in this setting. One main difference between the
estimator and controller design is that the network is part
of a closed loop system. This makes the controller design
more difficult.
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Fig. 1. Networked system where the controller and the
actuators are connected through a link that is affected
by packet dropouts.

The remainder of the paper is organized as follows: In
Section 2 we present the network setup and the optimal
controller design. In Section 3, we present two approaches
that tradeoff storage complexity at the cost of control
performance. The proof of the main result is shown in
Section 4. Simulations studies are presented in Section 5.
Section 6 draws conclusions

2. CONTROLLER DESIGN

We consider a linear time invariant system where the
controller is connected to the actuators through a network
that is affected by correlated packet losses. The system is
illustrated in Fig. 1 and is of the form

xk+1 = Axk + ρkBuk + ωk, (1)

where A ∈ Rn×n, B ∈ Rn×m, ρk ∈ {0, 1} and ωk ∼
N (0,Σω) is zero-mean white Gaussian noise with covari-
ance Σω. We set the input uk to zero when no packet
is received. Note that the previous input can be held by
augmenting the A-matrix to contain the integrators that
are located at the actuators of the system.

2.1 Network model

In (1), the variable ρk is a binary variable, where ρk = 1
indicates a successful transmission and is described by:

Pr {ρk = 1|ρk−1, · · · , ρ0} = Pr {ρk = 1|ρk−1, · · · , ρk−d} ,
where 0 ≤ d < ∞ is the length of the relevant history
and Pr {x|y} denotes the probability of x knowing y. We
accumulate the history of packet dropouts in the variable
Θk ∈ Ξ =

{
1, · · · , 2d

}
. Here Θk = i denotes a certain

realization of (ρk−1, · · · , ρk−d). It is easy to see that Θk is
first order Markov, since

Pr {Θk+1 = j|Θk = i,Θk−1, · · · ,Θ0}
= Pr {Θk+1 = j|Θk = i}

Denote pij � Pr {Θk+1 = j|Θk = i} and Pr {Θk = i} �
πi. We assign the outcomes of ρk to states Θk such that

Θk = 1 +

d∑
�=1

ρk−�2
d−�. (2)

Let r = 2d−1, then it is easy to see from (2) that ρk = 1 if
Θk+1 > r. As seen in (2), for each Θk there are only two
possible outcomes of Θk+1: one where the packet at time
k arrives successfully and one where the packet at time k
is lost. We define the variable

φi = j if pij > 0, r < j ≤ d. (3)

(0, 0) (0, 1)

(1, 0) (1, 1)

Θ = 1 Θ = 2

Θ = 3 Θ = 4

Fig. 2. Illustration of the grouping of the Markov chain
that governs the packet dropouts. Here (1, 0) means
that ρk−1 = 1 and ρk−2 = 0.

Likewise, knowing Θk the value of Θk+1 where ρk = 0 is
given by

φ̄i = j if pij > 0, 0 < j ≤ r, (4)

and denote pi,φi
� Pr {ρk = 1|Θk = i} which is equivalent

to Pr {Θk+1 = φi|Θk = i}.
Example 1. Consider the case of a packet dropout distri-
bution with d = 2. This means that the probability for a
successful transmission at time k depends on the outcomes
of ρk−1 and ρk−2. This is illustrated in Fig. 2. Here we
using (2) obtain a Markov chain where the transition
matrix will be of the form

P =

Θ = 1 Θ = 2 Θ = 3 Θ = 4





1− p00 0 p00 0 Θ = 1
1− p01 0 p01 0 Θ = 2

0 1− p10 0 p10 Θ = 3
0 1− p11 0 p11 Θ = 4

, (5)

where p10 = Pr {ρk = 1|ρk−1 = 1, ρk−2 = 0} which is

identical to p34 � Pr {Θk+1 = 4|Θk = 3}. Here we have
that φ1 = 3 and thus p1φ1 = p13 and p1φ̄1

= p11. �

2.2 Optimal control

We want to design control laws that depend on the current
system state xk and network state Θk. Thus on the form

uk = fk (Θk, xk) , k = 0, 1, · · · , N − 1.

We want to design this controller to minimize the linear
quadratic (LQ) cost function

JN (U0,N , x0,Θ0) =

E

{
N−1∑
k=0

‖xk‖Q + ρk‖uk‖R + ‖xN‖SN,ΘN

∣∣∣∣∣x0,Θ0

}
, (6)

where ‖x‖Q � xTQx with Q ≥ 0, R ≥ 0 and SN,i ≥ 0,

∀i ∈ Ξ, Uk,N � (uk, · · · , uN−1) and E {x|y} denoting
the expectation of x given y. Note that (6) differs from
the linear quadratic cost function used in classical linear
quadratic regulator (LQR). The reason for this is, that the
system (1) contains random variables ρ and ω. For this
reason the expectation operator is needed to formulate a
stochastic cost function.

Remark 1. The problem at hand can be fitted into the
general Markov jump linear system (MJLS) framework,
see e.g. Costa et al. (2006); Ji et al. (1991). The difference
to the current setting is that we at time k do not have
the outcome of ρk available. However, the results from
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is lost. We define the variable

φi = j if pij > 0, r < j ≤ d. (3)

(0, 0) (0, 1)

(1, 0) (1, 1)

Θ = 1 Θ = 2

Θ = 3 Θ = 4

Fig. 2. Illustration of the grouping of the Markov chain
that governs the packet dropouts. Here (1, 0) means
that ρk−1 = 1 and ρk−2 = 0.

Likewise, knowing Θk the value of Θk+1 where ρk = 0 is
given by

φ̄i = j if pij > 0, 0 < j ≤ r, (4)

and denote pi,φi
� Pr {ρk = 1|Θk = i} which is equivalent

to Pr {Θk+1 = φi|Θk = i}.
Example 1. Consider the case of a packet dropout distri-
bution with d = 2. This means that the probability for a
successful transmission at time k depends on the outcomes
of ρk−1 and ρk−2. This is illustrated in Fig. 2. Here we
using (2) obtain a Markov chain where the transition
matrix will be of the form

P =

Θ = 1 Θ = 2 Θ = 3 Θ = 4





1− p00 0 p00 0 Θ = 1
1− p01 0 p01 0 Θ = 2

0 1− p10 0 p10 Θ = 3
0 1− p11 0 p11 Θ = 4

, (5)

where p10 = Pr {ρk = 1|ρk−1 = 1, ρk−2 = 0} which is

identical to p34 � Pr {Θk+1 = 4|Θk = 3}. Here we have
that φ1 = 3 and thus p1φ1 = p13 and p1φ̄1

= p11. �

2.2 Optimal control

We want to design control laws that depend on the current
system state xk and network state Θk. Thus on the form

uk = fk (Θk, xk) , k = 0, 1, · · · , N − 1.

We want to design this controller to minimize the linear
quadratic (LQ) cost function

JN (U0,N , x0,Θ0) =

E

{
N−1∑
k=0

‖xk‖Q + ρk‖uk‖R + ‖xN‖SN,ΘN

∣∣∣∣∣x0,Θ0

}
, (6)

where ‖x‖Q � xTQx with Q ≥ 0, R ≥ 0 and SN,i ≥ 0,

∀i ∈ Ξ, Uk,N � (uk, · · · , uN−1) and E {x|y} denoting
the expectation of x given y. Note that (6) differs from
the linear quadratic cost function used in classical linear
quadratic regulator (LQR). The reason for this is, that the
system (1) contains random variables ρ and ω. For this
reason the expectation operator is needed to formulate a
stochastic cost function.

Remark 1. The problem at hand can be fitted into the
general Markov jump linear system (MJLS) framework,
see e.g. Costa et al. (2006); Ji et al. (1991). The difference
to the current setting is that we at time k do not have
the outcome of ρk available. However, the results from
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Costa et al. (2006); Ji et al. (1991) are identical if one
assumes that ρk = 1 during the design phase. The result
that we present in this section, will differ from the previous
works on two points: (1) In the presented setting, it is
a consequence of minimizing (6) that it is optimal to
always assume ρk = 1. (2) The special structure of the
transition matrix P results in simpler expressions, making
it computationally more efficient.

Next, we present the controller design method.

Proposition 1. The optimal control at each time step is
given by the linear function

u�
k = L�

k,Θk
xk, (7)

where for each i ∈ Ξ

L�
k,i = −

(
R+BTSk+1,φi

B
)−1

BTSk+1,φi
A, (8)

with

Sk,i = Q+AT
(
Sk+1,φ̄i

piφ̄i
+ Sk+1,φi

piφi

)
A

−ATSk+1,φi
B
(
R+BTSk+1,φi

B
)−1

BTSk+1,φi
Apiφi

,
(9)

and φi and φ̄i defined in (3) and (4). Here piφi
=

Pr {Θk+1 = φi|Θk = i} and SN is given. This results in
the optimal cost

J�
N (x0,Θ0) = xT

0 S0,Θ0x0 + c0,Θ0 , (10)

where

ck,i =
∑

j∈{φi,φ̄i}
(trace (ΣωSk+1,j) + ck+1,j) pij (11)

with cN,i = 0 for all i.

Proof. The proof is straightforward by adapting the
results from Ji et al. (1991); Costa et al. (2006) and is
omitted.

Remark 2. It is worth to note that the controller at time
k only depends on the history of the packet arrivals that
are governed in Θk, which does not include ρk. Also, note
that the controller is invariant of the oldest packet arrival
that is captured in Θk. This follows directly from (3) to (5)
where, e.g. φ1 = φ2. This means that while we obtain 2d

controllers, only 2d−1 of these controllers are unique and
have to be stored in a lookup table.

Remark 3. Many network models such as the Gilbert
Elliot model Gilbert (1960); Huang and Dey (2007) use
a Markov chain with length d = 1. It is worth noting that
using Proposition 1 only one controller gain is obtained.
Thus, the controller does not have to observe the history of
the packet dropouts to find the appropriate control gain.

To implement the controller design from Proposition 1,
one would use a lookup table that contains the control
gains, and then at each time step use Θk to select the
corresponding control gain. This requires enough memory
to store 2d−1 control gains or enough computational power
to compute (8) and (9) online. One question that arises here
is whether it is necessary to take the full packet dropout
history into account in the controller design to guarantee
a reasonable control performance. Omitting part of the
history will result in fewer control gains, and thereby a
smaller lookup table. In the next section, we will present a
sub-optimal controller design that reduces the amount of
unique control laws at the cost of performance.

Θ̂ = 1(0, 0) (0, 1)

(1, 0) (1, 1)Θ̂ = 2

Fig. 3. An example of the grouping of the packet arrival
sequences. The dashed circles indicate which packet
arrival sequences are grouped together

3. REDUCED CONTROLLER COMPLEXITY

In this section, we will investigate whether it is necessary
to design all 2d−1 control laws (as presented in Section 2)
to attain a reasonable control performance.To be more
precise, we will develop two approaches to design reduced
complexity controllers. In both methods, we group the
packet arrival sequences together and design a single control
law for each of these groups. This leads to two problems:
how to group the packet arrival sequences, and what should
the control laws for these groups be?

3.1 Grouping the packet arrival sequences

Here we discuss the grouping method of the packet arrival
sequences that is used for both of the reduced complexity
controller designs. Our intuition is that the more recent
history is the most relevant when designing the controller,
while the older history is of lesser importance. We will
therefore group the packet arrival sequences such that, for
0 < q ≤ d, the first 2d−q packet arrivals are identical for
all Θ in each group. We are thus interested in control laws
of the form

ûk = fk

(
Θ̂k, xk

)
, (12)

where the variable Θ̂k ∈ Ξ̂, and each Θ̂k = i is linked to
a given packet arrival sequence of the most recent d − q
packet arrivals. Here, the set Ξ̂ =

{
1, · · · , 2d−q

}
, and for

each v ∈ Ξ̂ we define

Ξ̂v � {i ∈ Ξ : g (i) = v} ,
where g : Ξ → Ξ̂. Thus each Ξ̂v is a subset of Ξ, where the
most recent d − q packet arrivals in Θk are equal to Θ̂k.
Also note that Ξ̂v are disjoint sets (Ξ̂v ∩ Ξ̂j = ∅ if v �= j).

Example 2. Consider the case from Example 1. Then, with
q = 1, Θ̂ takes values in Ξ̂ = {1, 2}, where for Θ̂ = 1 we

have Ξ̂1 = (1, 2) and for Θ̂ = 2 we have Ξ̂2 = (3, 4). This
is depicted in Fig. 3. �

In the remainder of this section we propose controller
designs, where the control laws depend on the groups Θ̂.

3.2 Group averaged controller

For the group averaged (GA) controller, we take the
expectation of the control laws obtained in Proposition 1
over each group Θ̂. The controller is computed as
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L̂k,i = E
{
Lk

∣∣∣Θ̂k = i
}
, ∀i ∈ Ξ̂. (13)

Computing the expectation leads to

L̂k,i =
∑
j∈Ξ

Lk,j Pr
{
Θk = j

∣∣∣Θ̂k = i
}
,

where, using Bayes’ law, one obtains the GA control law

L̂k,i =
∑

j∈Ξ̂i

Lk,j
Pr {Θk = j}

Pr
{
Θ̂k = i

} , ∀i ∈ Ξ̂, (14)

where Pr
{
Θ̂k

}
=

∑
j∈Ξ̂i

πj .

3.3 Optimal design approach

In this section, we aim at designing control laws in the
form (12) to minimize the cost function

J̄K
(
Ū0,N , x0

)
= E

{
J
(
Ū0,N , x0,Θ0

)∣∣x0

}
, (15)

where Ū0,N = (ū0, · · · , ūN−1) is the set of reduced con-
trollers, with ūk =

(
ûk,1, · · · , ûk,2d−q

)
.

Ideally, as in Section 2.2, each control law would depend
on the full length d history of the packet dropouts, that is
covered by Θk and the state xk. Here we instead constrain
the input design to, at each time k, only depend on the
reduced history that is covered by Θ̂k and the state xk.
Our goal is then to solve

Ū�
0,N = argmin

Ū0,N

J̄N
(
Ū0,N , x0

)
(16a)

subject to J̄�
N (x0) = min

Ū0,N

J̄N
(
Ū0,N , x0

)
. (16b)

Here we obtain the following result.

Theorem 2. The optimal controls for (16) are given by

û�
k = L̄�

k,vxk, g(Θk) = v (17)

where

L̄�
k,v = −

(
R̄v +BT S̄k+1,vB

)−1
BT S̄k+1,vA (18)

and for i ∈ Ξ

Sk,i = Q+ATSk+1,φ̄i
Apiφ̄i

+
(
L̄�
k,g(i)

)T

RL̄�
k,g(i)piφi

+
(
A+BL̄�

k,g(i)

)T

Sk+1,φi

(
A+BL̄�

k,g(i)

)
piφi

. (19)

Here SN,i = SN and

S̄k,v =
∑

i∈Ξ̂v
Sk,φi

piφi
πi, R̄v = R

∑
i∈Ξ̂v

piφi
πi. (20)

This results in the cost

J̄�
N (x0) =

∑
i∈Ξ

xT
0 S0,ix0πi + c0,iπi, (21)

where

ck,i = trace
(
Σω

(
Sk+1,φi

piφi
+ Sk+1,φ̄i

piφ̄i

))

+ ck+1,φi
piφi

+ ck+1,φ̄i
piφ̄i

, (22)

with cN,i = 0, i ∈ Ξ. �

It is worth noting that without the complexity reduction,
i.e. Ξ̂ = Ξ, the controller that is obtained in Theorem 2 is
identical to the optimal controller given in Proposition 1.

4. PROOF OF THEOREM 2

Before we show the proof of Theorem 2 we need some
definitions. Let Vk � ‖xk‖2Q + ρk‖ûk,v‖2R and define the
cost at stage N − k depending on Θk = i as

J̄N−k,i

(
xk, Ūk+1,N

)
� JN−k

(
xk, Ūk,N , i

)

= E

{
N−1∑
�=k

V� + ‖xN‖2S0

∣∣∣∣∣xk,Θk = i

}
, (23)

where g (Θ�) = v with g : Ξ → Ξ̂. Also define the cost

conditioned on Θ̂ = v by

FN−k

(
xk, Ūk,N , v

)
�

E
{
JN−k

(
xk, Ūk,N ,Θk

)∣∣∣xk, Θ̂k = v
}
π̂v, (24)

where π̂v � Pr
{
Θ̂ = v

}
=

∑
i∈Ξ̂v

πi.

In the next lemma, we show that the optimal controls
subject to the form (12) can be solved stage-wise.

Lemma 3. Let J̄N−�,i (x�) be defined as in (23). Then the
cost (15) can at any stage N − k be expressed as

J̄N−k

(
xk, Ūk,N

)
=

∑

v∈Ξ̂

FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
, (25)

where

FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
=

E
{
LN−k,Θk

(xk, ûk)
∣∣∣xk, Θ̂k = v

}
π̂v,

and

LN−k,Θk
(xk, ûk,v) � xT

kQxk + ρkû
T
k,vRûk,v

+ J̄N−k−1,Θk+1

(
Axk + ρkBûk,v + ωk, Ūk+1,N

)
. (26)

Proof. For the cost (15) we have at stage N − k

J̄N−k

(
xk, Ūk,N

)
= E

{
N−1∑
�=k

V� + ‖xN‖2S0

∣∣∣∣∣xk

}

=
∑

v∈Ξ̂

E

{
N−1∑
�=k

V� + ‖xN‖2S0

∣∣∣∣∣xk, Θ̂k = v

}
π̂v

=
∑

v∈Ξ̂

FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
. (27)

Where the last step follows by the definition in (24) and

by knowing Θ̂k = v, we have uk = ûk,v.

Now for each FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
we have

FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
= E

{
Vk

∣∣∣xk, Θ̂k = v
}

+E

{
N−1∑
�=k+1

V� + ‖xN‖2S0

∣∣∣∣∣xk, Θ̂k = v

}

︸ ︷︷ ︸
C

, (28)

where

C = E

{
E

{
N−1∑
�=k+1

V� + ‖xN‖2S0

∣∣∣∣∣xk+1,Θk+1

}∣∣∣∣∣xk, Θ̂k = v

}

=

∫
E

{
N−1∑
�=k+1

V� + ‖xN‖2S0

∣∣∣∣∣xk+1,Θk+1

}

×Pr
{
xk+1,Θk+1

∣∣∣xk, Θ̂k = v
}
dxk+1dΘk+1

=

∫
J̄N−k−1,Θk+1

(
xk+1, Ūk+1,N

)
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L̂k,i = E
{
Lk

∣∣∣Θ̂k = i
}
, ∀i ∈ Ξ̂. (13)

Computing the expectation leads to

L̂k,i =
∑
j∈Ξ

Lk,j Pr
{
Θk = j

∣∣∣Θ̂k = i
}
,

where, using Bayes’ law, one obtains the GA control law

L̂k,i =
∑

j∈Ξ̂i

Lk,j
Pr {Θk = j}

Pr
{
Θ̂k = i

} , ∀i ∈ Ξ̂, (14)

where Pr
{
Θ̂k

}
=

∑
j∈Ξ̂i

πj .

3.3 Optimal design approach

In this section, we aim at designing control laws in the
form (12) to minimize the cost function

J̄K
(
Ū0,N , x0

)
= E

{
J
(
Ū0,N , x0,Θ0

)∣∣x0

}
, (15)

where Ū0,N = (ū0, · · · , ūN−1) is the set of reduced con-
trollers, with ūk =

(
ûk,1, · · · , ûk,2d−q

)
.

Ideally, as in Section 2.2, each control law would depend
on the full length d history of the packet dropouts, that is
covered by Θk and the state xk. Here we instead constrain
the input design to, at each time k, only depend on the
reduced history that is covered by Θ̂k and the state xk.
Our goal is then to solve

Ū�
0,N = argmin

Ū0,N

J̄N
(
Ū0,N , x0

)
(16a)

subject to J̄�
N (x0) = min

Ū0,N

J̄N
(
Ū0,N , x0

)
. (16b)

Here we obtain the following result.

Theorem 2. The optimal controls for (16) are given by

û�
k = L̄�

k,vxk, g(Θk) = v (17)

where

L̄�
k,v = −

(
R̄v +BT S̄k+1,vB

)−1
BT S̄k+1,vA (18)

and for i ∈ Ξ

Sk,i = Q+ATSk+1,φ̄i
Apiφ̄i

+
(
L̄�
k,g(i)

)T

RL̄�
k,g(i)piφi

+
(
A+BL̄�

k,g(i)

)T

Sk+1,φi

(
A+BL̄�

k,g(i)

)
piφi

. (19)

Here SN,i = SN and

S̄k,v =
∑

i∈Ξ̂v
Sk,φi

piφi
πi, R̄v = R

∑
i∈Ξ̂v

piφi
πi. (20)

This results in the cost

J̄�
N (x0) =

∑
i∈Ξ

xT
0 S0,ix0πi + c0,iπi, (21)

where

ck,i = trace
(
Σω

(
Sk+1,φi

piφi
+ Sk+1,φ̄i

piφ̄i

))

+ ck+1,φi
piφi

+ ck+1,φ̄i
piφ̄i

, (22)

with cN,i = 0, i ∈ Ξ. �

It is worth noting that without the complexity reduction,
i.e. Ξ̂ = Ξ, the controller that is obtained in Theorem 2 is
identical to the optimal controller given in Proposition 1.

4. PROOF OF THEOREM 2

Before we show the proof of Theorem 2 we need some
definitions. Let Vk � ‖xk‖2Q + ρk‖ûk,v‖2R and define the
cost at stage N − k depending on Θk = i as

J̄N−k,i

(
xk, Ūk+1,N

)
� JN−k

(
xk, Ūk,N , i

)

= E

{
N−1∑
�=k

V� + ‖xN‖2S0

∣∣∣∣∣xk,Θk = i

}
, (23)

where g (Θ�) = v with g : Ξ → Ξ̂. Also define the cost

conditioned on Θ̂ = v by

FN−k

(
xk, Ūk,N , v

)
�

E
{
JN−k

(
xk, Ūk,N ,Θk

)∣∣∣xk, Θ̂k = v
}
π̂v, (24)

where π̂v � Pr
{
Θ̂ = v

}
=

∑
i∈Ξ̂v

πi.

In the next lemma, we show that the optimal controls
subject to the form (12) can be solved stage-wise.

Lemma 3. Let J̄N−�,i (x�) be defined as in (23). Then the
cost (15) can at any stage N − k be expressed as

J̄N−k

(
xk, Ūk,N

)
=

∑

v∈Ξ̂

FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
, (25)

where

FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
=

E
{
LN−k,Θk

(xk, ûk)
∣∣∣xk, Θ̂k = v

}
π̂v,

and

LN−k,Θk
(xk, ûk,v) � xT

kQxk + ρkû
T
k,vRûk,v

+ J̄N−k−1,Θk+1

(
Axk + ρkBûk,v + ωk, Ūk+1,N

)
. (26)

Proof. For the cost (15) we have at stage N − k

J̄N−k

(
xk, Ūk,N

)
= E

{
N−1∑
�=k

V� + ‖xN‖2S0

∣∣∣∣∣xk

}

=
∑

v∈Ξ̂

E

{
N−1∑
�=k

V� + ‖xN‖2S0

∣∣∣∣∣xk, Θ̂k = v

}
π̂v

=
∑

v∈Ξ̂

FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
. (27)

Where the last step follows by the definition in (24) and

by knowing Θ̂k = v, we have uk = ûk,v.

Now for each FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
we have

FN−k

(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
= E

{
Vk

∣∣∣xk, Θ̂k = v
}

+E

{
N−1∑
�=k+1

V� + ‖xN‖2S0

∣∣∣∣∣xk, Θ̂k = v

}

︸ ︷︷ ︸
C

, (28)

where

C = E

{
E

{
N−1∑
�=k+1

V� + ‖xN‖2S0

∣∣∣∣∣xk+1,Θk+1

}∣∣∣∣∣xk, Θ̂k = v

}

=

∫
E

{
N−1∑
�=k+1

V� + ‖xN‖2S0

∣∣∣∣∣xk+1,Θk+1

}

×Pr
{
xk+1,Θk+1

∣∣∣xk, Θ̂k = v
}
dxk+1dΘk+1

=

∫
J̄N−k−1,Θk+1

(
xk+1, Ūk+1,N

)
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×Pr
{
xk+1,Θk+1

∣∣∣xk, Θ̂k = v
}
dxk+1dΘk+1

= E
{
J̄N−k−1,Θk+1

(
xk+1, Ūk+1,N

)∣∣∣xk, Θ̂k = v
}
.

The result follows by substituting this back into (28). �

We are now ready to state the proof of Theorem 2

Proof. [Proof of Theorem 2] In Lemma 3 we showed that
the cost at each stage can be expressed by (25). Now we
will show that when we only allow control laws of the form
(12), the optimal control laws are given in the form (17).
The proof follows by induction.

At stage 0 we have the cost

J̄�
0 (xN ) = E

{
xT
NSNxN

∣∣xN

}
=

∑
i∈Ξ

J̄0,i (xN )πi,

with J̄0,i (xN ) defined in (23). At stage N − k − 1 we have
with control laws of the form (12) the optimal cost

J̄�
N−k−1 (xk+1) =

∑
i∈Ξ

J̄�
N−k−1,i (xk+1)πi,

where J̄�
N−k−1,i (xk+1) � J̄N−k−1,i

(
xk+1, Ū

�
k+1,N

)
is

given by

J̄�
N−k−1,i (xk+1) = xT

k+1Sk+1,ixk+1 + ck+1,i.

Then, by Lemma 3 we have at stage N − k for Θ̂k = v the
cost

F �
N−k (xk, v) = min

ûk,v

E
{
LN−k,Θk

(xk, ûk,v)
∣∣∣xk, Θ̂k = v

}
π̂v

= min
ûk,v

∑
i∈Ξ

E {LN−k,Θk
(xk, ûk,v)|xk,Θk = i}

×Pr
{
Θk = i

∣∣∣Θ̂k = v
}
π̂v

(a)
= min

ûk,v

∑

i∈Ξ̂v

E {LN−k,Θk
(xk, ûk,v)|xk,Θk = i}︸ ︷︷ ︸

Di

πi, (29)

where we in (a) used Bayes’ law. Now

Di = E {E {LN−k,Θk
(xk, ûk,v)|xk,Θk+1,Θk}|xk,Θk = i}

=
∑
j∈Ξ

E {LN−k,i (xk, ûk,v)|xk,Θk+1 = j} pij

(a)
=

∑

j∈{φ̄i,φi}
MN−k,j (xk, ûk,v) pij , (30)

where (a) follows by (3) and (4) and

MN−k,j (xk, ûk,v) � E {LN−k,i (xk, ûk,v)|xk,Θk+1 = j}
= xT

k

(
Q+ATSk+1,jA

)
xk + trace (ΣωSk+1,j) + ck+1,j

+ 1(r+1,··· ,d) (j) û
T
k,v

(
R+BTSk+1,jB

)
ûk,v

+ 21(r+1,··· ,d) (j) û
T
k,vB

TSk+1,jAxk.

Substituting (30) back into (29) yields

F �
N−k (xk, v) =

∑

i∈Ξ̂v

MN−k,φ̄i
(xk, 0) piφ̄i

πi

+min
ûk,v

MN−k,φi
(xk, ûk,v) piφi

πi.

Writing out MN−k,φ̄i
and MN−k,φi

yields

F �
N−k (xk, v) =

∑

i∈Ξ̂v

∑

j∈{φ̄i,φi}

[
xT
N−1

(
Q+ATSk+1,jA

)
xN−1

Θ Pr {ρk = 1|Θ} Pr {ρk = 0|Θ}

16 Pr {1|1111} = 0.5 Pr {0|1111} = 0.5
15 Pr {1|1110} = 0.35 Pr {0|1110} = 0.65
14 Pr {1|1101} = 0.22 Pr {0|1101} = 0.78
13 Pr {1|1100} = 0.8 Pr {0|1100} = 0.2
12 Pr {1|1011} = 0.15 Pr {0|1011} = 0.85
11 Pr {1|1010} = 0.7 Pr {0|1010} = 0.3
10 Pr {1|1001} = 0.25 Pr {0|1001} = 0.75
9 Pr {1|1000} = 0.8 Pr {0|1000} = 0.2
8 Pr {1|0111} = 0.4 Pr {0|0111} = 0.6
7 Pr {1|0110} = 0.2 Pr {0|0110} = 0.8
6 Pr {1|0101} = 0.5 Pr {0|0101} = 0.5
5 Pr {1|0100} = 0.7 Pr {0|0100} = 0.3
4 Pr {1|0011} = 0.5 Pr {0|0011} = 0.5
3 Pr {1|0010} = 0.9 Pr {0|0010} = 0.1
2 Pr {1|0001} = 0.6 Pr {0|0001} = 0.4
1 Pr {1|0000} = 0.3 Pr {0|0000} = 0.7

Table 1. The probabilities for packet arrivals
and dropouts used for the simulations.

+ trace (ΣωSk,j) + ck+1,j

]
pijπi (31)

+ min
ûk,v

[ ∑

i∈Ξ̂v

(
ûT
k,v

(
R+BTSk+1,φi

B
)
ûk,v

+ 2ûT
k,vB

TSk,φiAxk

)
piφiπi

]
.

Here the last part can, using (20), be rewritten to

min
ûk,v

ûT
k,v

(
R̄v +BT S̄k+1,vB

)
ûk,v+2ûT

kB
T S̄k+1,vAxk.

Taking the gradient of (31) with respect to ûk,v and setting
this equal to 0 then results in (17) and (18). Inserting the
result into Di in (30) and rewriting this results in

Di = xT
k Sk,ixk +

∑

j∈{φi,φ̄i}
(trace (ΣωSk,j) + ck+1,j) pij

= xT
k Sk,ixk + ck,i = J̄�

N−k,i (xk) , (32)

where Sk,i is given in (19) and ck,i in (22). Combining (27),
(29) and (32) then results in (21). �

5. SIMULATIONS

We compare the performance of the proposed controller
designs using Monte Carlo simulation studies. We design
the controllers for a cost function with horizon length
N = 500. The controllers are implemented as model
predictive control (Borrelli et al., 2017), that is we set
uk = L�

0,Θk
xk for all k. Here we consider the stable system

A =

[
0.819 0
0.906 1

]
B =

[
9.063
4.683

]
,

and Σω = I2. The probabilities for a successful transmission
at time k depends on the packet dropout history of length
d = 4. These are, using (2), written into a transition matrix
as illustrated in (5), where the probabilities are stated in
Table 1. In (6), SN = Q = I2 and R = 1.

For the simulations we average over 200 runs each of length
10 000 time steps with x0 ∼ N (0, I2). The network is
assumed to be in steady state with Pr {Θ0 = i} = πi. The
averaged results are shown in Fig. 4. Here the numbers
indicate how many control laws are needed to be stored in
a lookup table. Note that for the optimal controllers that
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Fig. 4. The Optimal controller designed using Proposi-
tion 1, the GA controller, designed using (14) with 1,2
and 4 control laws and the reduced controller designed
using Theorem 2 with 1,2 and 4 control laws.

are designed using Proposition 1, 8 unique control laws are
used at every time step. We use a standard LQR that does
not take the network into account to benchmark.

The results show that all controllers significantly outper-
form the standards LQR, which achieves a cost of 58.
Also, there is no significant performance degradation for
the reduced controllers designed by Theorem 2 and the
GA controllers from Section 3.2 compared to the optimal
control. When only one or two control laws are desired, the
(“reduced”) design presented in Theorem 2 outperforms
the more simple GA design from Section 3.2.

6. CONCLUSIONS

We presented a method to design controllers for systems
that are affected by random packet dropouts between the
controller and actuators. The probability for a successful
transmission depends on a finite history of packet trans-
mission outcomes. This results in a special structure for
and underlying Markov transition matrix, which we take
advantage of to obtain simple expressions for the controller
design. An implementation of this controller will however
result in a lookup table, often of large size..

To reduce the size of the lookup table used for control, we
presented two sub-optimal methods. Both of these methods
show an only minor performance degradation when the
number of controllers is reduced, which allows for a good
tradeoff between performance and controller complexity.

Future work would involve performance and stability
analysis for the presented controllers.
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