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Abstract: We study the problem of detecting an attack on a stochastic cyber-physical system.
We start by proposing a detection criterion based on checking the statistics of the Kalman
prediction error. To show the importance of the proposed criterion, we study certain attacking
schemes which can be effectively detected by this criterion, but not by checking simpler
conditions based on commonly used statistics. We then use the proposed criterion to derive a
detection algorithm. This algorithm is based on a statistical confidence test, giving a confidence
level for detecting an attack. We present simulation results to illustrate the performance of this

algorithm.
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1. INTRODUCTION

A cyber-physical systems (CPS) is a physical system which
is monitored or controlled via a communication chan-
nel. It finds a wide range of applications such as traffic
signal systems Puthran et al. [2015], health care Car-
denas et al. [2008], energy manufacturing Chen [2010],
power system DeMarco et al. [1996], Sridhar et al. [2012],
Mohsenian-Rad and Leon-Garcia [2011], Dan and Sand-
berg [2010], Pasqualetti et al. [2011], the water indus-
try Amin et al. [2010], Eliades and Polycarpou [2010],
etc. A CPS is prone to receiving attacks in the form
of signals injected in the communication link Cardenas
et al. [2008]. These attacks are known to have caused a
number of serious accidents around the world Farwell and
Rohozinski [2011], Richards [2008], Conti [2010], Slay and
Miller [2007], Kuvshinkova [2003]. This has motivated the
development of methods for detecting attacks.

In principle, an attack may be regarded as a system fault.
This permits using methods for fault tolerant control, such
as robust statistics Huber [2011], robust control Zhou et al.
[1996] and failure detection and identification Willsky
[1976]. However, the essential difference between an attack
and a fault is that the design of the former aims at making
it difficult for detection. For example, Liu et al studied how
to inject a stealthy input into the measurement without
being detected by the classical failure detector Liu et al.
[2011]. Hence, the analysis and development of methods
for CPS attack detection need to take special care of this
difference.

Early works on CPS attack detection rely on certain prior
knowledge of the attacker’s model. Among these methods,
we find the work in Amin et al. [2009], which deals with
a kind of attack called denial of service. The works Liu
et al. [2011] and Mo et al. [2010] concentrate on false data
injection attacks against state estimation. The authors
of Teixeira et al. [2010] introduced stealthy deception
attacks, which consist in manipulating the measurements
to be processed by a power system state estimator in such
a manner that the resulting systematic errors introduced
by the adversary are either undetected or only partially
detected by a bad data detection method. In Mo and
Sinopoli [2009], the effect of replay attacks is studied. This
kind of attack comsist in recording a history of system
measurements, and send them to the estimator when the
attacker is controlling the actuator. Smith investigated the
behavior of control system under covert attacks Smith
[2011], where a malicious agent can access the signals
and information within the control loop and use these to
disrupt or compromise the controlled plant.

It is often unrealistic to assume in practice that the
defender has some knowledge of the attacker’s model. To
avoid this limitation, recent works study the CPS attack
problem without an attacking model assumption. In this
line, Pasqualetti et al studied the problem of which kind
of attacks can be detected Pasqualetti et al. [2013]. They
also studied in Pasqualetti et al. [2013, 2012] the design
of centralized and distributed attack detection methods.
However, a limitation of this approach is that the system
model is noiseless, and it fails to work for system models
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containing process noises or measurement noises. The
study of systems involving random noises is much more
challenging, since these systems present more ambiguities
where attacks can be hidden.

Concerning the detection of attacks in systems with noise,
Mo and Sinopoli Mo and Sinopoli [2016] analyzed the
estimation error introduced by an attack which is not
detected by a x? failure detector. They also studied in Mo
and Sinopoli [2015] the attacks on scalar systems with
multiple sensors. They showed that, if more than half
of the sensors are under attack, the optimal worst-case
estimator should ignore all measurements and base its
estimation only on prior knowledge. Also, they gave the
explicit form of the optimal estimator when less than half
of the sensors are under attack.

In this work we move a step forward in the research
line described above. As in Mo and Sinopoli [2016], we
also study systems with noise. We start by introducing
a detection criterion, which we show to be equivalent to
testing that the statistics of the output signal equals those
corresponding to the healthy (i.e., non-attacked) system.
To appreciate the importance of this criterion, we give two
examples of attacks, which cannot be detected by checking
commonly used statistics, but are instead detected by our
criterion. We also use this criterion to derive a practi-
cally feasible detection algorithm, and provide simulation
results to illustrate the superiority of our algorithm for
detecting attacks that cannot be detected by other simpler
methods.

The rest of this paper is organized as follows. In Section 2
we describe the attack detection problem. In Section 3 we
state the proposed attack detection criterion. In Section 4,
we discuss attack examples which cannot be detected by
checking other simpler conditions. In Section 5 we use our
condition to derive the detection algorithm. In Section 6
we use simulations to illustrate the superiority of our
algorithm for detecting attacks that cannot be detected
by other simpler methods. Finally, concluding remarks are
stated in Section 7.

2. PROBLEM DESCRIPTION

Notation 1. For a vector x we use [z], to denote its i-th
entry and for a matrix X we use [X], ; to denote its (4, j)-

th entry. For a vector or matrix X, we use X | to denote its
transpose. For vectors © and y, < y (z < y) means that
[z], < [y]; ([z], < [yl],), for all i, and z = x Ay denotes the
vector with entries [z]; = min(z;,y;). We use I to denote
the identity matrix. We also use ¢, » and @, s to denote
the probability density function (PDF) and cumulative
distribution function (CDF), respectively, of the normal

distribution with mean p and covariance matrix .

We have the following system in state-space form

Tep1 = Axy + wy, (1)

Yt = O.It + vg. (2)

The measurement y; is a D-dimensional random vector,
xry ~ N(07P)7 wy ~ N(OvQ)v U~ N(OvR)v and
{z1,ws, v : t € N} are jointly independent. We assume
that

P=APAT +Q,

so that the system is in steady state.

We assume that there is an attacker, which interferes the
measurement signal y;, replaces it by an attacking signal
zt, and sends z; instead of y; to the receiver. In order to
treat the problem in its full generality, we assume that z;
is generated by an arbitrary (possibly non-linear and non-
stationary) measurable function of the whole history of ys
up to time ¢, i.e.,
2zt =hy(ys : t >s€N).

The attack detection problem consists in assessing whether
or not z =y.

Definition 2. We say that the statistics are nominal if they
equal those which occur when z = y. The probability law
and expected value taken with respect to these statistics
are denoted by p, (+) and &, {-}, respectively.

3. PROPOSED ATTACK DETECTION CRITERION
Suppose that there is no attack. We then have

oo
2L = CZ A" wp_1_p + vk
n=0
Hence, z, is a normal (vector) random process with
Ei{zr} =0 and, for k > I,

o0
E{ana }=C > A& {wpo1nw 4} (A™)TCT
n,m=0
+& {vkvl—r}

o0

> Ams, (A"
m=0
A possible criterion for detecting the presence of an attack
consists in verifying that the statistics of z; differ form the
nominal ones. If we run a Kalman filter, once it reaches
steady state, we obtain

Ty = Aoy + K (2 — C2ypyq) (3)
K = AUCT (C¥CT +R),
where W is the solution of
U= AVAT — AUCT (CUCT +R) T CUAT +Q.

Let 21 = Cyp—1, 5t = 2 — 24— and I = CVCT + R.
Let also

=CAF! c’ + 0p_1 2.

5 =1"123,. (4)
We then have
Zx is a normal vector random process with
I, k=1
EAnz =47 T (5
Ay ={y iy ©
The next lemma asserts that the aforementioned detection
criterion is equivalent to (5). In view of this, our detection
criterion consists in verifying that (5) holds.
Lemma 3. Condition (5) holds if and only if the statistics
of Z), are nominal.

Proof. The ‘if’ part is obvious. For the ‘only if’ part,
suppose that (5) is satisfied. Now,

Epg1 = AZy, + AK (2 — CRgjp—1)
= Ay + AKTY 23,
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with 27 = 0. This means that the statistics of {Xk, Zk}
are nominal. The result then follows since
2k = F1/22k + Ciy.

Notice that assessing (5) is not equivalent to assessing

2, ~N(0,1) and &, {z% } =0,k # 1. (6)
The condition (5) is stronger in the sense that, for any set
of indexes k1, - - - , ks, the vector [Z,, -+, Zk,,] is required
to be (jointly) normal. In particular, (5) implies that Zj
and Z; are statistically independent, when k # [, while (6)
does not. In the next section we provide two examples of

situations in which an attacker is detected by checking (5),
but not by checking (6).

4. ATTACK EXAMPLES WHOSE DETECTION
REQUIRES (5)

Checking condition (5) essentially means checking that a
block of samples of Z; has joint standard normal distri-
bution. As it is known, from a theoretical point of view,
checking this is a stronger requirement than doing some
other more practical checks, e.g., for pairwise indepen-
dence or uncorrelation. However, the question arise as
to whether, for the purposes of detecting an attack, it
is really necessary to carry out a full distribution check,
or if instead, a simpler test would be enough. In this
section we provide two examples showing how a stochastic
detectable attack can pass undetected if a test checking
only for uncorrelation or pairwise independence is used.
This supports our claim that checking condition (5) is
indeed needed.

4.1 Checking for uncorrelation

By combining a normality test for i.i.d. samples Thode
[2002], together with a test for uncorrelation [Wasserman,
2004, S 14.2], we can verify if condition (6) holds. Condi-
tion (5) is stronger that (6), in the sense that the former
requires that 2, and Z, are statistically independent, rather
than uncorrelated, when ¢ # s. In this section we describe
an attack example which can be detected by a method
verifying (5), but not by one verifying (6).

Suppose that we feed the output y; to the Kalman fil-
ter (3). Let ¢4 ~ N (0,1) denote the resulting normalized
prediction error, obtained as in (4). Let e N0 < a < 1
and ; be an i.i.d. sequence of random variables with
Bernoulli distribution B(0.5). Let rg ~ A (0, 1) and

re=ary_r +\1— a2,

Zt = YeTe (7)
Since gz ~ N (0, 1) is i.i.d., it is straightforward to see that
re ~ N (0,1). Hence

ét ~ N (0, I) .
Also, if t # s,
& {Zv'té;—} = (1 - a2) & {%ﬁ}g {’75}5 {rth} =0.
Hence, the process Z satisfies (6). However, since
,?v,“t = 'Yt (Oﬂ't,,,- + 1 — Oézyt> 5

Bt—1 = Vt—1Tt—7,

T T 17 . . .
the vector [zt—r AN 7-] is clearly not Gaussian. Hence, Z

does not satisfy (5). Since the attacker knows ys, for all
s < t, it can always build the attacking signal so that the
normalized prediction error Z at the receiver equals the one
described above. Such an attack can be detected by (5) but
not by (6).

4.2 Checking for pairwise independence

A combination of a normality test Thode [2002] with
a test for pairwise independence [Wasserman, 2004, S
15], Bakirov et al. [2006] permits checking the following
condition

[zjzj]TNN(O,I),W;és. (8)
As it is known, assessing that (5) holds is not equivalent
to assessing (8). This is because pairwise independence
does not imply joint independence in general. We describe
below an attacking scheme which would be detected by (5),
but not by (8).

Let the measurement dimension D = 1. As before, we feed
the output y to the Kalman filter (3), and let ¢ ~ A (0, 1)
denote the normalized prediction error. Draw [Zg,Z_1]
from the distribution A(0, I). Then, for ¢ € N, we compute

. Ut, t even,

Zt = . - . - 9
{s1gn (Zt-1%Zt-2)|9¢|, t odd, ©)

We first analyze pairwise independence. If t is even Z; is

obviously independent of Z,, for all s # t. So we assume

that ¢ is odd. Suppose that at time ¢, the vector [Z;_1, Z;—2]

has distribution A (0, I). We have

P (2, Z2-1) =0 (Z|Ze—1) p (Z—1) -

Now
1
By J :/Bv ﬁ>0
Pz =Bl%1) =141 (=)
ip(7|yvt|:5)v ﬁgo
= ¢o,1 (B) -

Also, %1 ~ N(0,1). Hence [Z,2%-1] ~ N (0,I). By
symmetry, we also have that [Z;,%_2] ~ AN (0,1). Since
clearly 2, 25] ~ N (0,I) for any even s, it remains to be
shown that [, Z2s41] ~ N (0,1), for all s. This follows
immediately from (9), since Z;_o is independent of Zosy1.
Then, by induction on ¢, we have that (9) holds for all ¢
and s.

Now, clearly, if ¢ is even, [%, %_1,%—2] ~ N (0, 1), How-
ever, for any odd t,
2421212 2 0.
Then,
[?:’t,?:“tfl,?:“tfg] OON(O,I) (10)
Hence, in view of (10), Z; does not satisfy (5). We can then
draw the same conclusions as those in Section 4.1.

5. ATTACK DETECTION ALGORITHM

In this section we derive a numerically tractable algorithm
for checking condition (5). In doing so, we make use of
certain statistical definitions which we introduce below.

Definition 4. Let z; be a random process whose proba-
bility distribution p, is determined by certain hypothesis
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(called null hypothesis) made on its statistical model. For
a given T' € N| a test statistic is a positive random variable
vr=gr(z:T>teN),
which is built using all the available samples of z; up to
time T. Let H, denote the CDF of vy under the null
hypothesis. We define the confidence ¥ of rejecting the

null hypothesis at time T" by

Yr = H, (vr).
Suppose that a null hypothesis rejection alarm is triggered
whenever ¥ > «, for some threshold a > 0. The false
alarm rate is defined by

px(Yr>a)=1-a.

We now derive the proposed algorithm. For a given fixed
time horizon L € N, we define a set of sample points
on REP at which we will test the joint distribution of

, y T T
Ct(L) = [ZtT? 7ZtT+L—1] - Let Pi = [piT,07"' 7piT,L—1] )
i=1,---,1,bethese points, with p;; e RP [ =0,--- , L—
1. Let
L L
Doy =pe (¢ 2p) =@0x(p), (1)
be the nominal CDF of CfL). For each T' € N, let

T

- 1

F;L) (p) = T Z X{Cf“iﬂ} ()
t=1

be a sample approximation of the nominal CDF. We then
sample F:(FL) and F5) at the points p;, i = 1,---,1,
forming the vectors 4 € R! and @ € RI, respectively,
defined by

(12)

[ar); = EXY (p1) (13)
[a), = F") (p;) . (14)

We next define the following weighted difference between
the above vectors

vp =T (ap — )" 7" (g — ),
where ¥ = >, ¥(7), with

o(r) =& { (ur — @) (wo — )"}
We then have the following result, whose proof is omitted
in this conference version.
Theorem 5. Using the test statistic vr, the confidence of
asserting that there is an attack, is
Yr =p.(§ <wr), (16)

where & ~ x?(I) is a random variable with chi-squared
distribution with I degrees of freedom.

(15)

In view of Theorem 5, for a given alarm triggering thresh-
old a > 0, the false alarm rate, i.e., the probability of
triggering an alarm when there is no attack, is given by
1—a.

In order to compute ¥ we need expressions for u;, @ and
Y. These are given in the next proposition, whose proof is
also omitted in this conference version.

Proposition 6. For each i,57 =1,--- 1, we have
L—1
[ut]i = H X{z41=pi ) (17)
1=0
L—1
[u]; = H Po1 (piy) s (18)
1=0

and
—L+1—t—1
Xl = Z H Q0,1 (pit+L+r) Po,1 (pjr) X
t=0 7=0
L+t—1
X H Q0,1 (pi,r A Pj—t+r)
7=0
L—1t—-1
+ > T ®o.x (pir) ®o.s (pjL—s4+) *
t=1 =0
L—t—1
X H 0,1 (pit+r A pjir)
7=0
L—1
— 2L 1) ] ®o.s (pir) ®os (pjr) - (19)
7=0

The proposed method assesses the presence of an attack
by measuring the squared distance between the nominal
and empirical CDFs of CfL). Since the domain of these
functions is RLP, their distance is measured over the
grid sample points p; € RYP i = 1,--- 1. In order
to complete the description of the method, we need a
criterion for choosing these points. To this end, we apply
the generalized Lloyd’s algorithm [Gersho and Gray, 1991,

S 11.3] to the nominal probability distribution of dL),

i.e., N (0,I). We then obtain the algorithm summarized
in Algorithm 1.

Algorithm 1 Attack detection test

Initialization: choose L,T,I € N and a threshold o > 0.
(1) Run Lloyd’s algorithm on the L D-dimensional distri-
bution N (0,1), to obtain p; € RFP i =1,--- I
(2) Using the points p;, i = 1,---, I, compute @ and 3.
Main loop: at time t, let 7 = ¢t — L + 1 and run the

following steps.
(1) Run the Kalman filter (3) to obtain Z;;_.
2) Compute Z; using (4).

) Compute CﬁL) using 2., - -, 2.

) Compute @ using CiL_)T_H, e ,Cq(-L).
) Using 47 compute wy and then vp.
) Compute ¢p using vy and (16).

) Trigger an alarm if ¢p > a.

6. SIMULATION

In this section we illustrate our proposed method. Since
this method checks that the joint statistics (JS) of a
block of contiguous samples equal their nominal values,
we refer to it as JS. We compare the JS method with
other two methods. The first method is the one described
in Section 4.2, which checks for the normality as well as
pairwise independence (NPI) of samples of 2. To do so, the
method compares the joint CDF's of the vector [, 2, | T,
for all values I = 1,---,L — 1, using a procedure similar
to the one described in Section 5. This yields the L — 1
statistics vgpl), Il =1,---,L — 1, which are computed as
in (15). We refer to this method as NPI. The second
method is the one described in [Mo and Sinopoli, 2016,
egs. (6)-(7)]. This method checks that the second order
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(SO) statistics of samples of the prediction error Z equal
their nominal values. In our notation, it defines

vp = 2. TZr ~ x (D).
We refer to this method as SO.

To do the comparison, we use a system with A = 0.98,
C =1, R=0.1and Q = 0.1. Also, for the JS and NPI
methods we use I = 100, L = 3 and 7" = 100.

In the first experiment we consider the attack described
in (7), with 7 = 1 and @ = 1/v2. As described in
Section 4.1, this attack introduces statistical dependence
between samples of Z which are 7 samples away from
each other. However, these samples remain uncorrelated.
Figures 1, 2 and 3 show the values of the statistic vy for
the methods JS, NPI and SO, respectively. We see how
the SO method is unable to detect the appearance of the
attack at time ¢t = 2.5 x 10%.
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Fig. 1. Evolution of vy yield by the JS detection method
under the attack (7).

4000

3500

=

5

3000

s

25001

2000
15001
1000+
I

500 ‘

| I

Time x10°

0

Fig. 2. Evolution of ngl ) and U;? ) yield by the NPT detection
method under the attack (7).
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Fig. 3. Evolution of wvr yield by the SO detection
method Mo and Sinopoli [2016] under the attack (7).

In the second experiment, we consider the attack described
in (9). As explained in that section, this attack introduces

statistical dependence between three consecutive samples
of %, while leaving all samples from Z being pairwise
independent. Again, the values of vy for the methods JS,
NPI and SO, are shown in Figures 4, 5 and 6, respectively.
We see that in this case, only the JS method is able to
detect the appearance of the attack.
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Fig. 4. Evolution of vy yield by the JS detection method
under the attack (9).
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method under the attack (9).
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Fig. 6. Evolution of wvr yield by the SO detection
method Mo and Sinopoli [2016] under the attack (9).

7. CONCLUSION

We studied the attack detection problem on stochastic
cyber-physical systems. We proposed a detection criterion,
and showed that it is equivalent to verifying that the
output statistics correspond to a system without attack.
Using this criterion, we derived a practically realizable
attack detection algorithm. We present simulation results
showing how our algorithm can detect attacks that cannot
be detected by some simpler methods.
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