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Modified Mikhailov plots for robust absolute stability with
non-parametric perturbations and uncertain nonlinearity

MINYUE FUf and YAKOV Z. TSYPKINi

This paper generalizes the classical Mikhailov stability result for testing robust
absolute stability of linear systems with both non-parametric perturbations and
uncertain nonlinearity. Three types of non-parametric perturbations are con-
sidered: additive, multiplicative and stable-factor perturbations. Modified Mik-
hailov plots are developed for simultaneously testing the stability of the
‘nominal’ system and computing the maximum robust absolute stability margin.

1. Introduction

The classical Mikhailov stability criterion (Mikhailov 1938), also known as
the Cremer—Leonhard criterion (Cremer 1947, Leonhard 1944), provides both
deep understanding of the Hurwitzness of polynomials and a simple graphical
means for testing it. However, this result has been regarded for theoretical
interest only (Gantmacher 1959) because the Routh—Hurwitz stability criterion
requires much less computation. Interest in the Mikhailov stability criterion has
recently re-arisen for its potential application in robust stability analysis where
the Routh—Hurwitz criterion performs poorly.

The first hint that the Mikhailov criterion might be used for robust stability
was perhaps indicated in the nominal paper of Kharitonov (1978) where the
Hermite—Bieler theorem, a ‘cousin’ version of the Mikhailov criterion, was used
to prove the famous Kharitonov theorem. Since then, other versions of the
criterion—although the name of Mikhailov is usually not mentioned—have been
used to derive various robust stability results (see, for example, Barmish 1989,
Minnichelli et al. 1989, Fu 1989).

The first direct use of the Mikhailov criterion for robust stability analysis was
in recent papers by Tsypkin and Polyak (1991, 1992). Tsypkin and Polyak (1992)
considered the robust stability of ‘generalized’ interval polynomials where the
parametric perturbations in polynomial coefficients are bounded by a weighted
I, norm. They provided an elegant solution to the problem, which involves
drawing only a single modified Mikhailov plot to determine both the stability of
the nominal (i.e. centre) polynomial and the maximum robust stability margin
(i.e. the maximum /, norm for robust stability). This approach they later
extended to solve the robust stability problem for polytopes of polynomials
(Tsypkin and Polyak 1991). Once again, they showed that both the stability of
the nominal polynomial and the maximum robust stability margin could be
obtained by using a single modified Mikhailov plot.

For robust stability analysis of systems with non-parametric perturbations
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and/or uncertain nonlinearity, Nyquist-like methods are often used. For exam-
ple, the circle criterion and Popov criterion are used for testing absolute stability
of systems with uncertain nonlinearity (see, e.g. Popov 1973, Narendra and
Taylor 1973). For linear systems with additive or multiplicative perturbations, a
robust stability test can be carried out using the circle criterion (Chen and
Desoer 1982). The results of a recent paper by Tsypkin and Polyak (1993)
provide a new circle criterion for robust absolute stability of systems with both
non-parametric perturbations and uncertain nonlinearity by using a modified
Nyquist plot.

This paper is motivated by the need for a common framework to analyse
robust stability. More specifically, we show that robust absolute stability of
systems with non-parametric perturbations and uncertain nonlinearity can simply
be tested by using a modified Mikhailov plot. Three types of non-parametric
perturbations are considered: in addition to additive and multiplicative ones, we
also consider the so-called stable-factor perturbations. The latter have been
studied by Kwakernaak (1983) and Vidyasagar (1985). The class of stable-factor
perturbations is free from the restrictive assumptions that the perturbations must
preserve the number of unstable poles of the plant and that the plant is void of
poles on the jw axis. In all these cases, we show how to use modified Mikhailov
plots for both checking the stability of the nominal plant and computing the
robust absolute stability margin (i.e. the maximum size of the perturbations
defined in a certain sense for preserving stability).

2. Mikhailov stability criterion and its modification

This section restates some well-known results about the Mikhailov stability
criterion.

Lemma 1—Mikhailov stability criterion (Mikhailov 1938): An nth order real
polynomial p(s) is strictly Hurwitz stable (or stable, for short) if and only if the
plot of p(jw) rotates through n quadrants in the complex plane in the counter-
clockwise direction without crossing the origin when  increases from 0 to «.

Remark 1: The plot of p(jw) is commonly referred to as the Mikhailov plot. [

For complex polynomials, negative @ values also need be used and the
number of quadrants that the Mikhailov plot needs to pass through increases to
2n. The Mikhailov criterion is a natural consequence of the fact that a Hurwitz
polynomial must have n zeros in the open left half-plane, and each of them
contributes 180° of phase lead when w varies from —o to . In fact, the
Mikhailov plot of a stable polynomial has monotonic phase increase. The
Mikhailov plot can also be used to count the number of stable zeros. Indeed,
supposing the Mikhailov plot does not cross the origin, then the number of
stable zeros equals half of the number of quadrants the plot passes through
when w varies from —o to . It is interesting to note that this criterion is
mathematically equivalent to the Routh—Hurwitz criterion and the Hermite—
Bieler theorem, it can also be used to prove the Nyquist criterion without the
help of the Principle of the Argument. Furthermore, the Mikhailov criterion
also generalizes to most other stability regions.

The standard Mikhailov plots are somehow inconvenient to use because of
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their unboundedness. It is often necessary to use a modified Mikhailov plot, as
shown below.

Lemma 2—Modified Mikhailov stability criterion (Tsypkin and Polyak
1992): Given an nth order real polynomial p(s), define

s = RelpGa)] , | ImlpGo)] &
S(w) T(w)
where S(w) >0 and T(w) > 0 are arbitrarily chosen continuous scaling functions.
Then, p(s) is strictly Hurwitz stable (or stable, for short) if and only if the plot of
p(jw) rotates through n quadrants in the complex plane in the counterclockwise
direction without crossing the origin when w increases from 0 to .

Remark 2: The plot of p(jw) is called the modified Mikhailov plot. Since the
functions S(w) and T(w) are arbitrary, they can be chosen for additional
purposes. For example, one can choose S(w) and T(w) to make the modified
Mikhailov plot bounded. Tsypkin and Polyak (1991, 1992) used specially
modified Mikhailov plots to obtain robust stability margins of the polynomials
with parametric perturbations. The objective of this paper is to obtain modified
Mikhailov plots for robust stability analysis for systems with non-parametric
perturbations and/or uncertain nonlinearity.

3. Problem formulation

Consider a single-input single-output (SISO) feedback system as in Fig. 1,
where G(s) is the transfer function of a linear and time-invariant (LTI) plant
and f(-) is a static nonlinear function. The transfer function G(s) consists of a
nominal model and non-parametric perturbations, with the nominal model being
expressed by

0
G%s) = NG) ()
D'(s)
where N°(s) and D°(s) are polynomials. Three types of perturbations are
considered for G(s).

3.1. Additive perturbations
G(s) = G°s) + AG(s) 3)

with the constraints that G(s) and G°(s) have the same number of unstable

Figure 1. Closed-loop uncertain system.
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poles in the right half-plane, that G°(s) is void of poles on the jo axis, and that
IAG(jw)| < ya(w), a(w) >0, VweR 4)

3.2. Multiplicative perturbations
G(s) = G(s)[1 + L(s)] )

with the constraints that G(s) and G°(s) have the same number of unstable
poles in the right half-plane, that G°(s) is void of poles on the jo axis, and that

ILGw)| < yB(w), B(w) >0, YoeR (6)

3.3 Stable-factor perturbations (Vidyasagar 1985)
NO(s) + AN(s)

Gls) = D(s) + AD(s) w
with
. 2 . 2
AN(o) |” , [AD(w) <7y’ 1(w)>0, i=1,2, YoeR ()
71(w) ()

In the above, the parameter y = 0 represents the ‘size’ of the perturbations, and
®(w), B(w) and t;(w), i=1, 2 are continuous frequency-weighting functions.
The terminology of stable-factor perturbations comes from Vidyasagar (1985)
where transfer functions are expressed in the coprime factorized form. We do
not use coprime factorization here because of the flexible weighting functions
Ti(w).

Furthermore, the nonlinear function, which is uncertain, belongs to a sector
as follows

Ko(l1+ cy)t < @ < Ko(l—-cy)™!, YoeR 9)

where K( >0 is the nominal feedback gain, ¢ >0 is a weighting constant and
v =0 is the same scaling parameter as for non-parametric perturbations.

Our objective is to derive a modified Mikhailov plot which can be used for
testing both stability of the nominal plant (when y=0) and estimating a y
bound, calling it ¥pay, such that the stability of the feedback system in Fig. 1is
preserved for all perturbations with 0 <y < yp... This Y. Will be called the
robust absolute stability margin.

4. Modified Mikhailov plots

Two main results are provided in this section. The first deals with robust
absolute stability with either additive or multiplicative perturbations, and a
single modified Mikhailov plot is given for both checking the stability of the
nominal system and providing a bound for y,,,, the robust absolute stability
margin. The second result is for robust absolute stability with stable-factor
perturbations.

Theorem 1:  Consider the robust absolute stability problem associated with the
closed-loop system in Fig. 1 with additive perturbations (3)-(4). Then, the
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nominal closed-loop system is stable if and only if the hodograph of the following
modified function

KoNo(jw) + Do(jw)
(Koa(w) + )| Do(jw)|
encircles the origin n quadrants in the counter-clockwise direction without crossing

the origin when w increases from 0 to «. If so, the robust absolute stability
Margin Ymax is no less than the minimum distance of the plot from the origin, i.e.

(10)

Pa(jw) =

Ymax = min{[pa(j0)|: 0 < 0 < o} (11)

Similarly, the same result holds for multiplicative perturbations in (5)—(6) with the
hodograph of the following modified function

KoNo(jw) + Dy(jw)
Ko|No(jo)| B(w) + |Do(jo)c

Pm(jo) = (12)

For illustrative purposes, a modified Mikhailov plot is shown in Fig. 2 which
corresponds to the following nominal plant and multiplicative perturbations and
uncertain nonlinearity described by

G _ s+ 2 13

. (0-2s + 1)*(s = 1) 4
01w

Ao) (0 + 0'5)1/2 (14

Ko=1, ¢c=01 (15)

Since the modified Mikhailov plot rotates through three quadrants, the nominal
closed-loop system is stable. It is obtained from Fig. 2 that y,,, = 5-04 which is
obtained at w = 0-75.

Proof of Theorem 1: The reason for the modified Mikhailov plots to determine
the stability of the nominal system is obvious because the modification does not

Im
=

Figure 2. Modified Mikhailov plot for multiplicative perturbations and uncertain nonlinearity.
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change the encirclement, see Lemma 2. The fact that vy, is greater than or
equal to the minimum modulus of the modified Mikhailov plot results from the
circle criterion and the well-known zero exclusion principle. For additive
perturbations, the circle criterion and zero exclusion principle yield the following
necessary and sufficient condition for robust absolute stability (Tsypkin and
Polyak 1993):

03 —1
_CMK%>% 0<0<w (16)
a(w) + cKy
which leads to (11). The proof for multiplicative perturbations is similar, and
therefore omitted. O

Theorem 2: Consider the robust absolute stability problem associated with the
closed-loop in Fig. 1 with stable-factor perturbations (7)-(8). Then, the system
achieves robust absolute stability if the hodograph of the following function

KoNy(jw) + Dy(jw)
|Dojo)|e + (K§Ti(w) + (1 + cy)?r3(w))?

rotates outside of the vy-circle (circle of radius vy centred at the origin) for n
quadrants in the counter-clockwise direction when  increases from 0 to «.

psi(jo, v) = 17)

Figure 3 shows a plot of pg(jw, y) for the same system as in (13) and (15)
but with stable-factor perturbations described by

7(w) = 0-1(«? + 0-2)2 (18)
and
7(w) = 0-1(«? + 0-5)'2 (19)

The plot is drawn for y = 4-4. It is seen from Fig. 3 that robust absolute stability
of the closed-loop system is guaranteed for y < 4-4.

Proof of Theorem2: The encirclement requirement is for the stability of the
nominal system, see Lemma 2. The fact that |py(jw)| > y guarantees the robust

Im
=)

Figure 3. Modified Mikhailc-v plot for stable-factor perturbations and uncertain nonlinearity.
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absolute stability also follows from the circle criterion and zero exclusion
principle. In fact, supposing the nominal system is stable, then the application of
the circle criterion and zero exclusion principle yields that robust absolute
stability of the perturbed system is preserved if and only if the following
condition

No(jw) + AN(jw)
Dy(jw) + AD(jw)
holds for all complex numbers p with [p| <1 and AN(s) and A D(s) satistying
(8) at all = 0. Equation (20) above is equivalent to

KoNo(jo) + Do(jo) + yDo(jw)cp + KoAN(jo) + (1 + yep)AD(jw) # 0

(21)

Ko'(1 + yep)+ (20)

This condition is guaranteed by
|KoNo(jo) + Do(jw)| — yIDo(jo)le > Kol AN(jw)| + 1+ yc|ADGw)|  (22)

Since the maximum of the right-hand side above over the constraint (8) is given
by y[K(Z)t%(w) +(1+ cy)zr%(a))]l/z, the sufficient condition in Theorem 2 is
derived. O

Remark 3: The function pg(jw,y) above depends on y. This dependency
vanishes when either 7y(w) (i.e. AD(s)) or the uncertain nonlinearity dis-
appears. In either of these cases, the condition in Theorem 2 actually becomes
necessary and sufficient. The case of 7,(w) = 0 is the same as additive perturba-
tions, and the case without uncertain nonlinearity is shown below. |

Theorem 3: Consider the robust stability problem associated with the closed-loop
system in Fig. 1 with stable-factor perturbations in (7)-(8) and constant feedback
gain K. Then, the system is robustly stable if and only if the hodograph of the
following function

lie = KoNo(jw) + Do(jw)
s )

[KiTi(w) + m2()]"”
rotates outside the y-circle for n quadrants in the counter-clockwise direction
when w increases from 0 to =, i.e.

(23)

Ymax = min{‘psf(jw)’: 0< o< »} (24)

The proof of this result is almost identical to Theorem 2, and is therefore
omitted.

5. Conclusions

Modified Mikhailov plots have been developed for testing robust absolute
stabililty for systems with both non-parametric perturbations and uncertain
nonlinearity. These plots are also used to compute a lower bound for the robust
absolute stability margin ym.x. It should be noted that the exact margin Ymayx IS
difficult to compute because the frequency domain approach only yields suffici-
ent conditions for robust stability (see Narendra and Taylor 1973, for example).
Furthermore, the lower bound for 7y, for stable-factored perturbations has
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extra sufficiency due to the overbounding of the crossing effect of non-para-
metric perturbations and uncertain nonlinearity; see the proof of Theorem 2.
Nevertheless, the lower bound for y,,, in all cases becomes the exact margin
when the uncertain nonlinearity diminishes.
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