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H, ESTIMATION FOR UNCERTAIN SYSTEMS 

MINYUE FU, CARLOS E. DE SOUZA AND LlHUA XIE 
Department of Electrical and Computer Engineering, University of Newcastle, NS W 2308, Australia 

SUMMARY 

This paper deals with the problem of H ,  estimation for linear systems with a certain type of time-varying 
norm-bounded parameter uncertainty in both the state and output matrices. We address the problem of 
designing an asymptotically stable estimator that guarantees a prescribed level of H,  noise attenuation 
for all admissible parameter uncertainties. Both an interpolation theory approach and a Riccati equation 
approach are proposed to solve the estimation problem, with each method having its own advantages. 
The first approach seems more numerically attractive whilst the second one provides a simple structure 
for the estimator with its solution given in terms of two algebraic Riccati equations and a 
parameterization of a class of suitable H, estimators. The Riccati equation approach also pinpoints the 
‘worst-case’ uncertainty. 

KEY WORDS H, estimation Uncertain systems Interpolation theory Scaled H,  control Algebraic 
Riccati equations 

1. INTRODUCTION 

Over the past three decades considerable interest has been devoted to the problem of optimal 
filtering. Most previous work focuses on the minimization of the variance of the estimation 
error’ under the assumption that the noise sources are white processes with known statistics 
or coloured noise with known colouring filter. In many practical cases, the application of such 
estimators may not be appropriate because it would require excessive prior knowledge of the 
nature of the noise. Moreover, those estimators will not be suitable for applications which 
require the estimation error spectrum to be made uniformly small. This has led several 
researchers to develop optimal estimation in the minimum Ha-norm sense; see, for example, 
References 2, 7-10, 14, 17, 19 and 21. 

In Ha estimation, the process and measurement noises are arbitrary signals with bounded 
energy. The estimator is designed to  minimize the Hm-norm of the power spectral density 
matrix of the estimation error, or to maintain the Ha-norm within a prescribed bound. A 
polynomial approach was initially proposed to solve this problem * -  lo and recently a Riccati 
equation approach has been developed for the H, estimation problem; see, for example, 
References 2, 14, 17, 19 and 21. Note that the latter approach dualizes recent results on state 
feedback Hm contr01.~ Very recently, Reference 7 presented a solution to the Ha estimation 
problem via the interpolation theory. It was also shown in Reference 7 that this problem is 
essentially identical to the so-called optimal loop transfer recovery problem. 

A common feature of the works referred to above is that the uncertainty in the system model 
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is only in the form of an exogenous signal, and hence they cannot handle systems with 
parameter uncertainties. In this paper we consider linear systems subject to both time-varying 
parameter uncertainty and noise signal with bounded energy. The parameter uncertainty 
allowed is norm-bounded and appears in both the state and output matrices. The problem 
addressed is the design of an estimator such that the estimation error dynamics is quadratically 
stable and the induced operator norm of the mapping from the noise signal to the estimation 
error is kept within a prescribed bound for all admissible parameter uncertainties. The above 
problem is referred to as robust Hm estimation. 

Both an interpolation theory approach and a Riccati equation approach are provided for 
solving the robust Hm estimation problem with each method having its own advantages. The 
Riccati equation approach provides a simple structure for the estimator, a parameterization of 
a class of robust H, estimators and good theoretical insights to the problem. It also pinpoints 
the ‘worst case’ uncertainty. The interpolation approach, however, has the following features: 
(i) frequency weightings on estimation error and noise signal can be easily handled; 
(ii) unnecessary high estimator gain can be avoided, which is usually the case with the Riccati 
equation approach when the desired norm bound approaches its minimum. 

A major implication of our results is that the structure of the estimator has to take into 
account the effect of the uncertainty. This explains why estimators for uncertain systems 
designed based on ‘nominal’ models often give conservative or restrictive results. Also, the 
solution given by the Riccati equation approach is in terms of two algebraic Riccati equations. 
Considering that state feedback Hm control for systems with the same kind of parameter 
uncertainty can be solved in terms of only one algebraic Riccati equation, l8  it seems that there 
is no duality for these two problems. It is observed that when there is no parameter uncertainty 
in the system, the Hm estimator proposed in this paper will recover well-known results on Hm 
estimation. Finally, we point out that our results have potential applications in the areas both 
of control engineering and of signal processing. 

2. PROBLEM FORMULATION 

Throughout this paper we consider linear uncertain systems modelled by differential equations 
of the form 

(El): i ( t )  = [ A  + AA(t)]  x ( t )  + Bw(t) (la) 
y ( t )  = [C + AC(t)] x ( t )  + Dw(t)  (1b) 
z ( t )  = Lx(t)  (1c) 

where x ( t )  E IR“ is the state, w( t )  E R” is a noise signal which belongs to LZ [0, m), y ( t )  E IR‘ 
is the measured output, z ( t )  E I R p  is a linear combination of the state variables to be estimated, 
A, B, C, D and L are known real constant matrices that describe the nominal system and 
AA (-) and AC( -) represent the time-varying parameter uncertainties. These uncertainties are 
in the following structure 

with F ( - ) :  IR + RiX’ being an unknown matrix function with Lebesgue measurable elements 
and satisfying 

FT(t)F(t) < I ,  v t  (3) 
where H I ,  Hz,  and E are known real constant matrices with appropriate dimensions. In the 
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above, the superscript 'T' denotes the transpose and the notation X 2 Y (respectively, 
X > Y ) ,  where X and Y are symmetric matrices, means that X - Y is positive semidefinite 
(respectively, positive definite). When the matrix L is the identity, the state x ( t )  is to be 
estimated. The noise signal w ( t )  is generated by the following system 

w(s)  = Wl(S)@(S) (4) 
where WI(S) is a given m x m proper and invertible rational matrix with both WI(S) and 
W i ' ( S )  being stable, and @(t) is the exogenous noise which belongs to Lz[O, w). WI(S) will 
be called the weighting matrix for the disturbance input, @(t). In the above, f ( s )  denotes the 
Laplace transform of a time function f ( t ) .  

Let a linear estimator of z ( t )  be of the form 

where xe( t )  E IR' is the estimator state, the matrices A,, Ke and Le and the dimension I are to 
be chosen. The estimation error is denoted by 

e ( t )  2 z ( t )  - ze(t) = Lx( t )  - Lexe(t) (6) 

i(s) = Wz(s)e(s )  (7) 

while the weighted estimation error is given by 

where WZ(S)  is a given p x p proper and invertible rational matrix with both W ~ ( S )  and 
WT1(s)  being stable. Similarly to W1(s), W Z ( S )  will be called the weighting matrix for the 
estimation error. 

Before stating the problem of robust H, estimation, we recall the notion of quadratic 
stability. Consider the following uncertain system, with A A  (.) being the parameter 
uncertainty: 

(8) i ( t )  = [A  ( t )  + A A ( t ) ] x ( t )  

Definition 2. I " 

matrix P such that for all admissible uncertainty A A ( * ) ,  we have 
The system (8) is said to be quadratically stable if there exists a symmetric positive definite 

[A + A A ( t ) ]  T P +  P [ A  + AA( t ) ]  c 0 (9) 
0 

It can be easily seen that the quadratic stability of (8) implies its uniform asymptotic stability. 
The problem of robust H, estimation is stated as follows. Given a prescribed level of 

disturbance attenuation y > 0, find an estimator of the form ( 5 )  f o r  z ( t )  such that the weighted 
estimation error dynamics is quadratically stable and with zero initial conditions for x ( t )  and 
Xe(t), ( 1  e 112 < y 11 W 112 for  any non-zero W € L2 [0, 00) and for  all admissible F ( t )  satisfying (3) .  

In the above )I - 112 denotes the usual L2[0, 00) norm. See Figure 1 for illustration. 
Note that if the parameter uncertainty disappears, i.e. H I  = 0, HZ = 0 and E = 0, then the 

above estimation problem becomes the standard H, estimation problem for the nominal 
system, which has been studied by a number of researchers; see, for example, References 7, 
14, 17 and 21. 

The above estimation problem is quite general and encompasses a number of typical filtering 
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weighting 

W*(s) wo 

problems which arise in the areas of control engineering and signal processing. For example, 
consider the filtering problem with a signal generating process as shown in Figure 2. lo The 
signals v ( t )  and n ( t )  are energy bounded noise sources and s ( t )  is the signal to be estimated 
using the noisy measurement, y ( t ) .  Both the signal generator and measurement subsystems are 
described by linear state-space models with the signal generator model being strictly proper and 
the measurement system is assumed square. Also, consider that either the signal generator or 
the measurement system is subject to time-varying norm-bounded parameter uncertainty that 
can be expressed in the form of (2). In this situation, it is easy to see that this filtering problem 
can be recast as a robust H, estimation problem similar to the one this paper analyses. 

In connection with the robust H, estimation problem for the system (l), we shall introduce 
an auxiliary H, estimation problem. We define the following parameterized system 

(C2): X ( t )  = A X ( [ )  + ( 104 

estimator 

y ( t )  = C x ( t )  + D 2 H2 +(t) [ & I  

- 

where x( t )  E R n  is the state, a(t) c IRrn+j is a noise signal which belongs to L2 [0, m), y ( t )  E R' 
is the measured output, A ,  B, C, D, H I  and H2 are the same as in the system (l), E > 0 is a 
scaling parameter to be chosen and y > 0 is the disturbance attenuation level we wish to 
achieve for the robust H, estimation problem. Associated with the system (lo), we define a 
linear combination of the state variables of. (CZ) to be estimated as given by 

.& 40 

Also, let us introduce the following estimate of f ( t )  obtained using the estimator (9, 

signal measurement 
generator system 

W 

Figure 2. Signal generating process 
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Note that the lower entry of the matrix above is forced to be zero. (The reason for it will be 
clear shortly.) Hence, the corresponding estimation error reads 

P(1) = f ( t )  - Z ( t )  (1 1) 

We denote by y(s) the transfer function from k( t )  to C ( t ) ,  i.e. 

C(s) = T(s)k(s) 

and define 

where Znxn denotes the n x n identity matrix. Moreover, we partition G ( t )  accordingly to (10) 
as 

The following crucial theorem reveals a relationship between the robust Ha estimation problem 
associated with (1) and the H, estimation problem associated with (lo), estimation error (11) 
and weighting matrices (1 3). 

Theorem 2.1 

Given a prescribed level of disturbance attenuation y > 0, suppose there exist some scaling 
parameter E > 0 and an estimator in the form of (5) such that 

\ I  Wl(S)F(S) Wl (s) \\a < y (15) 

Then, for the system (1) with the same estimator (9, the weighted estimation error dynamics 
C is quadratically stable and with zero initial conditions for x(1) and x,(t), 1 )  2 112 < y I[ W 112 for 
any non-zero 5 E Lz [0, co) and all admissible F ( t )  satisfying (3). 

See Appendix A for proof and Figure 3 for illustration. 

Remark 2.1. Although in the above theorem the estimator is assumed to be strictly proper, 
this does not cause any loss of generality. That is, if the robust H ,  estimation problem is 

I 

Figure 3 .  Block diagram of the scaled estimation problem associated with system (10) 
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solvable via a proper or even improper estimator, then it can be closely approximated via a 
strictly proper estimator. This can be achieved by cascading with the estimator a low-pass filter 
with sufficiently high cutoff frequency and relative degree. Hence, the strict properness of the 
estimator is not essential for the result in Theorem 2.1. This observation is important because 
the interpolation approach we use in Section3 may lead to proper or even improper 
estimators. 

Remark 2.2. Following Theorem 2.1, the robust ff, estimation problem for system (1) can 
be solved by finding a scaling parameter E > 0 such that the H, estimation problem for system 
(10) with estimation error (11) and weighting matrices (13) is solvable. Although the latter 
problem seems simpler, the zero entry in the matrix in (10d) makes it a non-standard one. That 
is, only very particular linear combinations of xe(t)  can be used to 'match' . f ( t ) .  This 
restriction implies that the estimator has no influence on the second block of the estimation 
error, h ( t ) .  Consequently, the choice of the matrices in (5) becomes non-trivial, as will be 
shown in Sections 3 and 4. 

We end this section by introducing the following assumption which will be used to guarantee 
the stability of the estimation error dynamics: 

Assumption A 

The system matrix A is stable. 

3. SOLUTION VIA INTERPOLATION APPROACH 

In the section, we use the interpolation theory for solving the auxiliary H, estimation problem 
associated with system (lo), estimation error (1 1) and weighting matrices (13). A complete 
solution to this problem will be derived in the sequel. 

Denote by GI (s) and E ( s )  the transfer functions from @ ( t )  to y ( t )  and to C( t ) ,  respectively, 
i.e. 

(16) 1 C(SZ- A ) - ' B  ' ( H Z  + C ( d -  A)-"') 
& 

Observe that G I @ )  and G2(s) are parameterized by E. Also, denote by Ge(s) the transfer 
function of the estimator for z, i.e. 

= Ge(s)Y(s) (18) 
where Ge(S) is allowed to be any p x r stable rational matrix either proper or improper. Note 
that concerning about the improperness of Ge(S) is not necessary because, in view of 
Remark 2.1, Ge(S) can always be approximated by a strictly proper estimator. 

With the notation given above, the transfer function from @ ( t )  to P ( t )  is given by 
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Define 

7'3 ( s )  = @z (s)Gz (s) @I (s) (20c) 
Then, the Hm optimal estimation problem associated with the system (10) becomes the 
following: for any fixed E > 0, which is the scaling parameter to be searched, compute 

subject to that Q ( s )  is stable, and find all or some Q ( s )  for which the minimum is achieved. 
Once ye < y and Q(s)  are determined, we have 

Ge(s) = [I 01 Q(s)  (22) 

To summarize, we provide the following theorem: 

Theorem 3.1 

Consider the uncertain system (1) satisfying Assumption A. Given y > 0, the associated 
robust H m  estimation problem is solvable if for some E > 0, the corresponding yE given in (21) 
is less than y. In this case, a suitable estimator is 

ze(s) = G e ( s ) ~ ( s )  

where Ge(s)  is given by (22). 

We now focus on the H, optimization problem in (21). Note that this is a two-sided H m  

optimization problem. Therefore, standard techniques such as the inner-outer factorization5 
and the interpolation theory l 3  can be applied directly. 

Owing to the special structure of Tz(s), a little exercise can reduce the problem in (21) to 
a one-sided Hm optimization problem with lower dimensions. To achieve this, we first denote 

where 

Also note that both T3,1(s) and T3,Z(s) depend on E. Furthermore, T3,l(s) and T3,Z(s) are 
stable. Now defining 

T(s)  = W*(s)T(s)W1(s) (25) 

we have 
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In order to have )I T ( s )  1Jm < y, it is necessary to have ) I  T3,2(s) 11.0 < y. With this condition, 
[ I -  y-’TT,2( - s)T3,z(s)] -’ can be decomposed into the following co-spectral factorization 
form: 

[ I -  Y-~TT,z( - S)T3,2(S)] -’ = V(S)VT( - S) (27) 

where V ( s )  is a (m + i) x (m + i) invertible rational matrix with both V(s )  and V- (s) being 
stable. Therefore, 11 T ( s )  l l m  < y if and only if 

(28) 6) 1) T3,2(s) 11- < y and 

(ii) ( 1  T3,1(s)V(s) - W.(s)Ge(s)Tl(s)V(S) 11- c y 

Remark3.Z. Note that it can be easily observed from (27) and (24b) that the zeros of V(s)  
are the eigenvalues of A which are also poles of T ~ , I ( s )  and Tl(s).  Therefore, there are n pairs 
of stable zero-pole cancellation in T3,l(s)V(s) - W2(s)Ge(s)T1(s)V(s). 

In the case when Wl(s) = I, a suitable co-spectral factor V ( s )  is provided in the following 
lemma. 

Lemma 3. I 

Consider the transfer matrix T3,2(s) satisfying Assumption A and 11 T3,2(s) ( J m  < y. Then, 
there exists an invertible stable transfer matrix V(s)  with V- (s) stable and having state-space 
realization 

(29) 

[ f -  y-2TT,2(-S)T3,2(S)]-1= V(S)VT(-S) (30) 

B = y-’ [B Y E - ’ H I ]  (31) 

k = A + B B ’ P  (32) 

E;=i’p (33) 

A T P +  P A +  P ( y - 2 B B T + ~ - 2 H 1 W ; r ) P + ~ 2 E T E = 0  (34) 

V(S) = C(sf  - A)-% + I 

such that 

where A,  B and 6; are given by 

and P 2 0 is the stabilizing solution* to the following algebraic Riccati equation (ARE): 

Proof. See Appendix B. 

Remark 3.2. Observe that the existence of the matrix P in Lemma 3.1 is guaranteed by the 
given assumptions. Indeed, it follows from well known H, control results4 that the existence 
of such matrix P is equivalent to having A stable and 11 T3,2(s) J lm < y. 

* A  solution P = PT of the ARE, A T P  + PA + PMP + Q = 0, where A ,  M and Q are n x n matrices with M and Q 
symmetric, is said to be a stabilizing solution if A + MP is stable. 
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Now, defining 

T3(s) = T3,l(s)v(s) (354 
Ti (s) = Ti (s) V ( S )  (35b) 
Q(s) = Wz(s)Ge(s) (35c) 

the problem in (21) now becomes the following one-sided H, optimization problem: 

yc = F i n  ( I  P33(s) - Q(S)Tl(S) 11- (36) 
QW 

subject to that Q(s) is stable. See Figure 4 for illustration. This result is summarized in the 
theorem below. 

Theorem 3.2 

Consider the uncertain system (1) satisfying Assumption A. Given y > 0, the associated 
robust H, estimation problem is solvable if for some E > 0, the following conditions are 
satisfied: 

6) 11 T3,2(s) Ilm < 7; 
(ii) the corresponding yc given in (36) is less than y. 

If conditions (i) and (ii) hold, then a suitable estimator is given by 

~ e ( s )  = Ge(s)y(s) (37) 

where 

Ge(s) = WT'(s)Q(s)  

and Q(s) is a minimizer for (36). 

A complete solution to the H, optimization problem in (36) can be found in Reference 7. 

Remark 3.3. It should be noted that in view of Remark 3.1, with identity weighting matrices 
for the estimation error and the noise signal, i.e. Wl(s) = Zmxm and Wt(s)  = Z p x p ,  the transfer 
matrices TI((S) and T3(s) in the H, optimization problem (36) are nth order stable rational 
matrices. 

estimator 

- 
Figure 4. Block diagram of the scaled estimation problem associated with the interpolation approach 
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The next theorem reveals the relationship among the robust Hm estimation problem for the 
system (l), the scaled Hm estimation problem associated with the system (10) and estimation 
error (l l) ,  and the scaled Hm control problem for the system (39). 

Theorem 4.1 

Consider the system (1) satisfying Assumptions A and B. Let y > 0 be a prescribed level of 
noise attenuation for the associated robust Hm estimation problem and G e ( S )  denote a given 
linear estimator. Then, G e ( S )  solves the scaled Hm estimation problem associated with the 
system (10) and estimation error (11) for some .c > 0 if and only if for the same E > 0, the 
closed-loop system of (39) with the feedback control law ue = Ge(s)y, is stable with disturbance 
attenuation y. In this case, Ge(s) is also a suitable estimator for the robust H m  estimation 
problem for the system (1). 

Proof: See Appendix C. 

The result of Theorem 4.1 shows that the problem of robust H, estimation problem can now 
be solved by existing techniques of H m  control. It is our further interest to characterize the 
robust H m  estimators and to analyse the effect of the parameter uncertainty on the structure 
of the estimators. 

First, note that from Assumptions A and B it follows that for any E > 0, 

R =  DDT +$ HzH? > 0 
f 

and 

In view of Theorem 4.1, the robust H, estimation problem can now be solved by using the 
results in Reference 16. A complete solution is provided below. 

Theorem 4.2 

Consider the system (1) satisfying Assumptions A and B. Given a prescribed level of noise 
attenuation y > 0, the robust H, estimation problem for the system (1) is solvable if for some 
E > 0 the following conditions are satisfied: 

(a) There exists a stabilizing solution P =  PT 2 0 to the ARE: 
A ~ P  + PA + P ( ~ - ~ B B ~  + E - ~ H , H : ) P  + E ~ E ~ E  = o (41) 

(b) There exists a stabilizing solution Q = QT 2 0 to the ARE: 

A((E)Q + Q ~ ' ( E )  + Q[y- ' (LTL + c2ETE) - CTff-'c] Q + B(r)BT(f) = 0 (42) 
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B =  [ B ?HI & 1, D=[. $ H 2 ] ,  R = D D T  

(c) I- y-'PQ > 0 

When conditions (a)-(c) are satisfied, we have that 

(i) A suitable estimator is given by: 

k ( t )  = h e ( t )  + Ke[y ( t )  - Cxe(t)] 

~ ( t )  = Lxe(t)  

where 

a = A + y-'BBTP, 
K, = ( I -  y-'QP)-' [QCT + BBT]R-' 

e = C + y-'DBTP (47) 
(48) 

(ii) A class of strictly proper linear dynamic estimators which solve the robust H m  estimation 
problem for the system (1) is given by the following parametric characterization: 

$(t)  = &(t) + Keu( t )  + ~ r ( t )  
Z ( t )  = L f ( t )  + r ( t )  
v ( t )  = y ( t )  - &(t) 

(49a) 
(49b) 
(49c) 

r =  W(s)v  (494 
where 

M =  - y - 2 ( z -  y - 2 ~ ~ ) - 1 ~ ~ T  (49e) 
and W ( s )  is any strictly proper and stable transfer function matrix satisfying 
I1 W ( S )  11- < Y. 

Remark 4.1. Note that for sufficiently small E > 0, condition (a) in Theorem 4.2 is equivalent 
to the quadratic stability of the system (1). Indeed, the quadratic stability of (1) implies the 
existence of a symmetric positive-definite matrix P I  such that 

(50) 

for all F( t )  satisfying (3). By Theorem 2.7 of Reference 11, ( S O )  is equivalent to having A 
stable and 1 )  E ( s I -  A)-'H1 11- < 1. Obviously, for sufficiently small e, 

[ A  + H1F(t)EITPI + PI [A + HlF(t)EJ < 0 

1) &E(SI- A ) - ' [ y - ' B  C'H1] Jlm < 1 

which is equivalent to condition (a) in Theorem 4.2. 

An alternative explanation of the above remark is provided by the following monotonicity 
result for the ARE(41). 

Lemma 4.1 

Given a scalar y > 0, if for E = E > 0 (41) has a stabilizing solution P 2 0, then for any 
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E E  (0, E7 (41) has a stabilizing solution P as well. Moreover, 

Proof. Since is a stabilizing solution to the ARE 

A T P +  PA + P ( Y - ~ B B ~  + F 2 H 1 H : ) P f  E2ETE = 0 

it follows from Reference 3 that for any 0 < p < 1 the ARE 

A T P +  PA + P(py-2BBT + F2H1H:)P+  i2ETE= 0 

has a stabilizing solution Pp and 0 < Pp ,< P. Now, letting P = pP, and c2 = p i 2 ,  then P is a 
stabilizing solution to (41). Note that E E  (0, since 0 < p < 1. Moreover, we have that 

O < P = p P , < p P =  1 P ($ - 
Remark 4.2. Note that the estimator (46) can be rewritten in the following form 

&(t )  = ( A  + AAworst)Xe(t) + Bwworst ( t )  + Ke - (C + ACworst)Xe(t) - Dwworst (t)I 

where 

The above estimator can be interpreted as a modified Luenberger observer with AAwOrst and 
A CwOrst being interpreted as the worst-case parameter uncertainty in the state and output 
matrices, respectively, and wworst ( t )  is the estimated worst-case contribution of the noise. 
Observe that the estimator gain matrix, Ke, in (48) also depends on the structural matrices HI, 
H2 and E of the parameter uncertainty. When the parameter uncertainty disappears, then 
P = 0 and condition (a) in Theorem 4.2 will become superfluous. In this situation, the estimator 
(46) will reduce to well known results on H, estimation; see, for example, References 14 and 
21. 

The results in this section can be easily extended to allow for unknown initial state in the robust 
H, estimation problem by using the results of Reference 12. In this situation, the following 
performance measure as introduced in Reference 14 is used: 

IlellZ . R = R T > O  
Je = SU? 

O #  ( x o , w ) t  R x LZp,-) I( w (1 I + XZRXO ’ 
with x(0) = xo being the unknown initial state of (1) and zero initial condition for the estimator 
is assumed. The weighting matrix R is a measure of the confidence in the apriori knowledge 
of the initial state. A ‘large’ value of R reflects that the initial condition is very certain to be 
very close to zero. Now, the problem of robust H, estimation with unknown initial state is 
stated as follows: 

Given y > 0,  find an estimator (Ce) such that: 

(a) the augmented system of ( E l )  and ( C e )  is quadratically stable; 
(b) Je < yz  for all admissible F( t )  satisfying (3) .  
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approach is given by the following state-space realization 

1 -135.4895 142.8206 
-91.7539 93.7555 A e =  [ 
- 138.9606 

K e =  [ -93.49611 

Le= [ I  01 

Alternatively, the transfer function of the estimator is as follows: 

(s + 2-3377) 
Ge(s )=  -5.2056 (s+ 15-0396)(0.0375s+ 1 )  

The above estimator can be used to estimate z ( t )  for the system (51) and will guarantee that 
for any parameter uncertainty f ( t )  such that I f ( t )  I < 1 and for any non-zero w E LZ [O, a), 
the estimation error dynamics is quadratically stable and I( z - Ze ((z < 0.52 (1 wz ((2. Figure 5 
shows the spectrum of the estimation error for a time-invariant uncertainty f(t) = 1 obtained 
by using the robust H, estimator Ge(s) (the bold line) and that by using the optimal H, 
estimator for the nominal system of (51) (the dotted line). It can be observed that the robust 
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Figure 5 .  The estimation error spectra of the robust H, estimator and the optimal H, estimator based on the nominal 
system of (51) when f ( t )  1 
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H, estimator Ge(s) achieves more preferable noise attenuation and performance than the 
standard optimal H, estimator which is based on the nominal system. 

6. CONCLUSION 

This paper has analysed the Hm estimation problem for systems with parameter uncertainty. 
Two approaches have been proposed to solve this problem, one based on the interpolation 
theory and another on the Riccati equation technique. The first method seems more 
numerically attractive, especially when the minimum H m  norm of the estimation error 
dynamics needs to be achieved. The second approach, on the other hand, provides a simple 
structure for the estimator and an interpretation of the ‘worst-case’ uncertainty. 

When this paper was revised, we came across a recent paper by Yaesh and Shaked2’ which 
treats a similar robust H m  estimation problem and converts it into a scaled H, control problem 
by using a linear quadratic game approach. This approach can be viewed as a dual version of 
ours. 
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APPENDIX A: PROOF OF THEOREM 2.1 

To derive the transfer function @ z ( s ) F ( s )  
weighting matrices: 

(s), we assume the following state-space realizations for the 

wi(s)= y*j, i =  1 ,  2 (A. 1) 

where the matrix notation for a state-space realization of a transfer function is used, i.e., 

Defining 

(A.2a) 
(A.2b) 

it is straightforward to verify that the augmented system associated with (3, (10)-(13), (A.l) and (A.2) 
(see Figure 2) is given by 

(A.3a) 

(A.3b) 
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where 

H c =  [ [A2] 

(A.3d) 

(A.3e) 

Cc= [0 D2L -D2Le Cz]  (A.3f) 

Ec= [0 E 0 01 (A.3g) 
and and t 2  are states of (A.l) for i = 1, 2, respectively. Furthermore, the transfer function from 

[;J to EJ 
gives @Z(s)T(s) @I (s). 

there exists a positive-definite and symmetric matrix P such that 
Suppose condition (14) holds for some E > 0 and the estimator ( 5 ) .  From Theorem 3.1 of Reference 15, 

A f P +  P A , + y - ' P  [ B, ?HC E ] [ B, ; q p +  [f2]T[f:] < O  

i.e. 
1 

A : P +  P A , + ~ - ~ P B , B F P + -  PH,H,TP+c:c,+E~EFE, o (A.4) 
E 2  

Using Lemma 3.1 of Reference 20, (A.4) implies 

[A,  + H,F(t)E,] ' P  + P[Ac  + H,F(t)Ecl + y-2PBcBfP + C,'C, < 0 (A.5) 

On the other hand, it is straightforward to show that the augmented system associated with (I), (9, 
for all F ( t )  E m i x i  satisfying (3). 

(A.l) and (A.2) (see Figure 1) is given by 

- [ i] = [A,  + H,F(t)E,] + B,W 
dt 

t 2  

e = . ; [  i] 
(A.6a) 

L I.J 

(A.6b) 

Finally, using Lemma 2.2 of Reference 20, (AS) 
Ile 112 < y 11 W 112 for all non-zero W c L2 [0, m). This completes the proof. 

implies that (A.6) is quadratically stable and 

APPENDIX B: PROOF OF LEMMA 3.1 

Initially note that the existence of a stabilizing solution P = P' 2 0 to the ARE (34) follows immediately 
from well known results on H, control4 and the fact that A is stable and 11 T~,z(s) (IoJ < y- Moreover, 
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from Reference 5 we have 

Consider the transformation matrix 

u=[ :  "I] 
Using (31)-(34), it is easy to show that 

and 
[O BT] u= [d BT] 

Therefore, [; 7 1 7 
[ I -  y-'TT,z( - s)T3,z(S)I -' = 

which is the state-space realization of V(s)VT( - s) given in (29) and (31)-(33). Note that P bei 
stabilizing solution of the ARE (34) guarantees the stability of A. Finally, it can be easily seen from 
that V(s )  is invertible and the poles of V -  '(s) are the eigenvalues of A which are stable. 

APPENDIX C: PROOF OF THEOREM 4.1 

In view of Remark 2.1, without loss of generality let a state-space realization of estimator G,(s) 1 
in ( 5 ) .  Then, the control law uc = Ge(s)yc for (39) is given by 

(Zc):  &(t)  = Aexc(t) + Keyc(t), xc(0) = 0 (( 

uc(t) = L e X c ( t )  (( 

Now, letting 7 = [xT x:] the closed-loop system associated with (39) and (C.l) is of the form: 

where 

zc= [E 01, L,= [ L  -L,1 

On the other hand, with the assumption of identity weighting matrices for noise and estimation el 
follows from the proof of Theorem 2.1 that the augmented system associated with ( S ) ,  (10) and ( 
also given by (C.2). Therefore, by considering Theorem 2.1 the desired result follows immediate1 
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