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SUMMARY 

Several algorithms for adaptive control, as well as for static state feedback decoupling, feedback 
linearization, or inversion of nonlinear multivariable systems require that the systems have full vector 
relative degree, in order to be applied. In this paper, we provide a parameter-independent method of 
achieving full vector relative degree for nonlinear multivariable systems which do not have it. We 
determine conditions under which a diagonal dynamic precompensation is sufficient to achieve vector 
relative degree for multivariable nonlinear systems, and describe a simple algorithm which determines 
such compensation. 

KEY WORDS nonlinear systems; dynamic precompensation; vector relative degree 

1. INTRODUCTION 

There has been a considerable amount of work published in the area of adaptive control, 
feedback linearisation, stabilization, inversion and decoupling of multivariable nonlinear 
systems. A small sample of the literature in these areas is given by References 1-9, 12-17, and 
19-22. The vector relative degree of a multivariable system serves as a generalization of 
relative degree for single-inputlsingle-output systems (see Section 2 for definition). Just as is 
the case for linear multivariable systems, multivariable nonlinear systems which do not have 
vector relative degree require dynamic state feedback compensation in order to  achieve it. The 
basic premise in the stabilization, feedback linearization2 and adaptive control literature 

is that the nonlinear multivariable control systems in question already have 
vector relative degree, so that the techniques described therein could not be applied directly 
to  systems without full vector relative degree. 

The problem we study in this paper may be described as follows. Given a multivariable 
nonlinear system which does not have vector relative degree, construct a diagonal linear 
precompensator such that the resulting system will achieve vector relative degree. We seek 
diagonal linear dynamic precompensators in order to achieve vector relative degree because of 
their simplicity, and because exact knowledge of system parameters is then unnecessary. 
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Originally, this work was motivated by the decoupling problem. Multivariable systems for 
which dynamic precompensation is required for decoupling, do not have full vector relative 
degree. When dynamic feedback is necessary for decoupling, the algorithms available in the 
literature* require exact knowledge of the system parameters in order to be implemented. The 
step of achieving full vector relative degree may be viewed as an intermediary step in the 
decoupling process. The lack of vector relative degree is, in fact, why dynamic (versus static) 
feedback is necessary in order to decouple. 

Through this study, we provide a method of achieving vector relative degree using only 
linear diagonal dynamic precompensation. Our solution is both state and parameter 
independent, and depends on the differential structure of the nonlinear systems. This makes 
this work particularly applicable to implementing adaptive control algorithms for 
multivariable nonlinear systems which do not initially have vector relative degree, and whose 
parameters are unknown. 

In what follows, we provide a necessary and sufficient condition for the existence of diagonal 
precompensation which achieves vector relative degree. Based on this, a simple algorithm for 
finding the diagonal precompensator is given. These results are an extension of those in 
References 11 and 18 for linear systems. We show that the solution to this problem is 
essentially associated with the nonsingularity or (non)generic singularity of certain matrix 
related to the system. Furthermore, our algorithm formulates a 'minimum' number of 
integrators required for the inputs, thus avoiding 'over-compensation' . 

The paper is organized as follows. Section 2 deals with some preliminaries relevant to vector 
relative degree. The main result on dynamic compensation, an algorithm and some illustrating 
examples are presented in Section 3, and we conclude with some observations in Section 4. 

2. DEFINITIONS AND PRELIMINARIES 

In this paper, we consider the class of multivariable nonlinear systems modelled by 

T: x ( t )  = f ( x ( t ) )  + g<x( t ) )u( t )  
y ( t )  = h(x( t ) )  + k(x ( t ) )u ( t )  

where the state x ( t )  E M, with M being an n-dimensional submanifold of Rq,  q 2 n, which we 
will assume can be treated as a connected open subset of R"; the control u ( t )  E R"', the output 
y ( t )  E Rm, f(-) and gl(*), ...,gm(.) are smooth vector fields on M (where g;(.) forms the ith 
column of g(*)), and h ( - )  and k ( . ) ,  are smooth (matrix) functions of appropriate dimensions. 
The matrix k ( x )  is called the direct transmission matrix. In the sequel, we will denote the 
system above by y = T(u)  or simply T, the components of the local coordinate descriptions 
o f f  and h by f; and hi respectively, and the differential operator dldt by p. 

Definition 2.1. 

Given xo E M, the system T in (1) is called bicausal at xo if there exists a neighbourhood N 
of xo in M such that k ( x )  is nonsingular for all X E  N. The system T is called bicausal on M 
if it is bicausal at every point x E M. 

Remark 1 .  If the system T i n  (1) is bicausal (at a point or on M), then its inverse system 

* See, for example, References 8, 13, 4, 12, and 19, on dynamic decoupling of  nonlinear systems. 
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where i? is the state of the inverse system. Obviously, the inverse system is also bicausal. 
The following definition, essentially duplicated from Reference 13, provides the concept of 

relative degree for a class of multivariable nonlinear systems. In the definition, LfX(x)  denotes 
the Lie derivative of a function X(x)  in the direction of the vector field given in local 
coordinates by f ( x ) ,  i.e., 

Similarly, 

and 

with LjX(x)  denoting the q ' th  derivative of X(x) along f, and LJX(x) = X(x) .  

Dejhition 2.2 l 3  

Given a neighbourhood, N,  of xo E M ,  N c M, the nonlinear system T i n  (1) with k ( x )  = 0 
has vector relative degree (rl, r2 ..., r m ) ,  ri 2 1, i = 1, ..., m ,  at XO,  if the following conditions 
are satisfied: 

(a) Lg,LJhi(X) 0 (6)  

for all 1 < i , j  < m, 0 < q < r; - 1 and all X E N .  
(b) the m x m matrix 

is nonsingular for all x E N. 
Moreover, T has (invariant) vector relative degree (rl. r2, ..., rm 1 on M if it has the same vector 
relative degree at all points in M .  

Remark 2. When the system (1) has vector relative degree (r l ,  r2, ..., r f n ) ,  we have the 

(8) 

following input-output relationship: 

z ( t )  = b ( x )  + A ( x ) u ( t )  



142 

with 

C. A.  SCHWARTZ, P. W. GIBBENS AND M. FU 

(10) 
d 

R(p)=diag(p",  . . . , p r m ) ,  p = -  d t  

Remark 3. By construction, this definition applies only to systems of the form, ( l ) ,  for 
which k(x)  = 0, (note, ri 2 1). When k(x) is not zero, the system may still have vector relative 
degree if there exists a diagonal operator of the form, ( lO),  with ri 2 0, such that when applied 
to y( t ) ,  as in (9), z(t)  satisfies an output equation such as (8), with nonsingular A(x),  as in 
(7), but with the ith row replaced by the ith row of k(x) whenever Ti = 0. 

Remark 4. The existence of vector relative degree can be interpreted as that the resulting 
system: 

Tz: . i ( t )  =f (x ( t ) )  + g(x(t))u(t)  
z( t )  = b(x(t)) + A(x(t))u(t)  (12) 

is bicausal, i.e., the A ( x ( t ) )  matrix is nonsingular. l 3  Thus, systems with full vector relative 
degree can be decoupled by static state feedback of the form u(t)  = c(x) + d(x)u(t) ,  which 
is applied after applying a state transformation on x,  which brings it to a (partially) 
linearizable Brunovsky canonical form. l 3  Note that only a limited class of multivariable 
systems have vector relative degree, even in the linear case. In fact, in the linear case, the vector 
relative degree corresponds to a diagonal interactor matrix. The interactor matrix, which has 
been used for study of linear systems for a number of years, can also be defined for nonlinear 
systems to represent the concept of relative degree. It is, however, sufficient to use the vector 
relative degree for the results of this paper. 

We now give a definition which is a prerequisite to the results established in Section 3. It 
concerns the concepts of generic and nongeneric singularity of transfer matrices as discussed 
by Singh and Narendra;" however, as we find the discussion and definition therein to be 
somewhat unclear, we outline these concepts from a different and more precise viewpoint. 

Definition 2.3 

A singular square matrix is called generically singular if by eliminating a certain number (or 
none) of its rows and all the zero columns in the remaining rows, we either vacuum the matrix 
or form a tall* submatrix. A singular square matrix is called nongenerically singular if it is not 
generically singular. 

Remark 5. A result of the nongeneric (resp. generic) character of a singular matrix is that 
if the nonzero constants in the nongenerically (resp. generically) dependent rows or columns 
of a singular constant matrix are perturbed slightly, the matrix can no longer (resp. will still) 
be singular. 

Remark 6. For illustration, let us consider the following two singular matrices. 

* A tall matrix has more rows than columns. 
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The first matrix is generically singular because by eliminating the third row the second and 
third columns (which are zero in the first two rows), we end up with a tall matrix. The second 
matrix is nongenerically singular because a tall matrix cannot be formed by such an 
elimination. 

Remark 7. The rows and columns can be interchanged in deciding the (non)generic 
singularity of a matrix. It can be easily proved that a singular matrix is generically singular 
if and only if by eliminating a certain number (or none) of its columns and eliminating the zero 
rows in the remaining columns, we either vacuum the matrix or form a wide submatrix. This 
follows from the following observation: any generic square matrix A can be transformed into 
the following form by permuting its rows and columns: 

where A11 is tall which also means A22 is wide. Hence, by eliminating the columns involving 
,411 and A21 and then the rows associated with the zero block, we get a wide submatrix unless 
,422 is void. 

In order to extend the notion of (non)generic singularity to matrix functions, we define the 
index function for any given matrix function F ( x )  = ( F ; j ( x ) )  on M as follows: 

0 if Fij(X)=O V X E M  
1 otherwise 

Z(F) = (z;j):  z ; j=  

Definition 2.4 

A square matrix function F ( x )  on M is called nonsingular on M if it is nonsingular for all 
x E M .  It is called generically singular on M if it is not nonsingular on M and its index matrix 
is generically singular. Further, F ( x )  is called nongenerically singular on M if it is neither 
nonsingular nor generically singular on M. 

Remark 8. If a matrix function F ( x )  is generically singular on M ,  then it is generically 
singular for every x E M .  However, F ( x )  being nongenerically singular on M does not 
necessarily mean that F ( x )  is nongenerically singular for every x E M .  In fact, F ( x )  can be 
nonsingular when evaluated at some x and generically singular at some other x .  The following 
example exhibits this important point to  an extreme: that a nongenerically singular matrix 
function on M can even be a generically singular matrix when evaluated at each x E M .  Take 

(16) 

where r ( x )  is a ramp function defined by 

x x 2 0  
0 x < o  

r ( x )  = 

To check that the above matrix function is generically singular when evaluated at each x E M ,  
one forms the required submatrix by eliminating the third row, third column and either the 
first or second column or both, depending on x.  However, F ( x )  is not generically singular on 
M because its index function is nongenerically singular. 
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The reason we categorize matrix functions like (16) as nongenerically singular is because the 
singularity structure of the matrix changes with state changes and/or parametric perturbations 
of its entries. Furthermore, examples of nongenerically singular matrix functions, such as (16), 
do not arise often in practice, since that requires functions which are constant on a set of 
nonzero measure, but not constant everywhere. Often, for example, no analytic functions have 
this property. For functions which do not satisfy this 'nonconstant on a set of nonzero 
measure' property, F ( x )  nongenerically singular on M means F ( x )  can be generically singular 
at most on a set of zero measure, i.e., the matrix F ( x )  must be nongenerically singular at some 
XEM. 

3. MAIN RESULT 

Given the system Tin (1) and M, we wish to define conditions under which we can find a linear 
diagonal dynamic precompensator of the form 

D ( p - ' )  = d i a g ( ~ - ~ j ) ,  dj 2 0, 1 < j  < m (18) 

which ensures that the composite system TOD(p-') has vector relative degree. Such 
precompensation would, in principle, attach dj integrators to the j th  input, to define 

rn 

j =  I 
l = C  dj 

new states with linear dynamics. 

and let 
Assuming the precompensator (18) is applied, let z ( t )  and R( p)  be defined as in (9) and (10) 

u ( t )  = D ( p - ' ) v ( t )  (19) 

we define a new system K =  R ( p )  0 T o D ( p - ' )  and express it by 

where RE M, which is an I + n dimensional manifold, and R is the state of the new system 
which contains the state of T and new internal state variables introduced by D ( p - ' ) .  When 
I = 0, we will refer to E and in (20) simply as x and M. 

Assumption 3. I (well posedness) 

satisfied: 
The nonlinear system (1) is called well-posed if the following 'reachability' conditions are 

(i) For every 1 < i < m there exists some uE IRrn and integer r ;  2 0 such that the direct 

(ii) For every nonzero U € R'", there exists 1 < i < m and i; such that the direct transmission 
transmission from U to p r y ;  is nonzero at some x E M .  

from U to pi'yi is nonzero at some x E M .  

Remark 9. Condition (i) is equivalent to saying that there exists ( r l ,  . . . , r,, 1, ri 2 0, such that 
every row of the matrix A ( x )  in (8) is nonzero for all x E M (but A ( x )  is not necessarily 
nonsingular). That is, each output, y ;  should be 'influenced' by some U directly (through 
pr 'Y i ) .  Condition (ii) implies that every U should have 'influence' on some output y; directly 
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through pp'yi. These two conditions are satisfied by most nonlinear systems arising in 
engineering applications and all linear systems with nonsingular transfer matrices. 

We now have the main result of the paper. 

Theorem 3.1 

Given the system y = T ( u )  in (1) satisfying Assumption 3.1, one of the following two cases 

(a) There exists a pair D ( p - ' )  and R ( p )  in the form of (18) and (10) such that the direct 
transmission matrix k(X) of the resulting system K in (20) is nonsingular on a. Ir, this 
case, T O D ( p - ' )  has vector relative degree described by R ( p ) .  

(b) There exists D ( p - ' )  and R ( p )  in the form of (18) and (10) such that the direct 
transmission matrix k(X) is nongenerically singular on a. In this case, there does not 
exist any other diagonal precompensator D ( p - ' )  of the form (18) such that T o D ( p - ' )  
has vector relative degree on a. 

The theorem above indicates that we only need to find R ( p )  and D ( p - ' )  which make k(X) 
either nonsingular or nongenerically singular on A in order to determine whether a suitable 
precompensator exists or not. The means for finding such a precompensator is given in the 
following algorithm. The proof for Theorem 3.1 and Algorithm 3.2 is given in Appendix A. 

must occur and they are mutually exclusive: 

Algorithm 3.2 

Initially let D ( p - ' )  = I .  

Step 1 .  Find R ( p )  = diag(p'0, with ri 2 0, as small as possible, such that each row of k ( Z )  

There are three possibilities: 

1. k(X) is nonsingular on a: D ( p - ' )  is a diagonal precompensator for T and R ( p )  gives 

2 .  k(X) is nongenerically singular on M: no diagonal compensator exists which will give a 

3. k(X) is generically singular on M: proceed to Step 2 .  

Step 2. Form the tallest submatrix of the index matrix I(k) used to  indicate the generic 
singularity (the submatrix cannot be vacuous because of the choice of R ( p ) ) .  Then for each 
column index j of the submatrix, increment dj by 1. Return to step 1. 

is nonzero at some R E M (guaranteed by condition (i) of Assumption 3.1).  

the associated vector relative degree. 

vector relative degree. 

The algorithm is complete when either of cases (i) or (ii) is achieved. 

Remark 10. It is clear that this algorithm provides a minimal degree diagonal 
precompensation when such precompensation is possible because only enough integrators are 
added to remove the generic singularity in the direct transmission matrix at every step. 

Remark 11. This algorithm relies only on the relative degree structure to construct D( p - I ) .  
Also, D ( p - ' )  could just as well contain arbitrary linear rational diagonal entries, so long as 
the relative degree of the ith term is di, as determined by this algorithm (see (18)). In 
particular, one may require D ( p - ' )  to be stable. 
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We illustrate the algorithm and Theorem 3.1 with two examples. The first example will lead 
to the existence of a diagonal compensator and second one will fail to do so. 

Example 1. The system T with M =  R S  is given by 

1 0 0  

i ( t ) =  [ xx3 i + x4 ] + [; 8 / ]w 
0 0 1  

y ( t ) =  [Xl  x2 X s l T  (21) 
This system satisfies Condition (i) of Assumption 3.1 because for any i = 1,2,3, u ( t )  = ( l , O ,  l )T 
and r; = 1 suffice. To check that condition (ii) also holds, let U = [UI, 242, u31' be any nonzero 
vector, if u1 (or 243) is nonzero, we take i = 1 (or 3) and i i  = 1 is what is required. Otherwise, 
u2 is nonzero and we take i = 2 and i; = 2. 

Applying Step 1 of Algorithm 3.2, we let D ( p - ' )  = Z and easily verify that 
R(p)p = diag(p,p,p). The resulting z ( t )  is given by 

Since the resulting matrix k(x) is generically singular on M ,  we go to Step 2. The index matrix 
is obtained simply by replacing x3 by 1 in k ( x ) .  The required tall submatrix indicating the 
generic singularity consists of rows 1 and 2 and column 1 .  Therefore, we update D ( p - ' )  to 
be diag(p-', 1 , l )  which modifies R ( p )  to diag(p2,p2,p) and we have 

Z ( t ) =  R(p)y ( t )=  

for which k(Z) is nonsingular on M. The compensated system is given by 

0 0 0  
0 0 0  

0 1 0  
0 0 1  
1 0 0  

(24) 

where E l  E R, Z = [ x  E l  I T, and, along with (23), its vector relative degree is (2,2, 1 J. 

Example 2. The system T, with M =  R 6 ,  satisfying Assumption 3.1, is given by 

x3 - 1 0 0  
x4 + xs - 1 

x2 x6 

y ( t )  = 1x1 x2l 
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Similary, with the initial setting of D ( p - ’ )  = I, we have R ( p )  = diag(p2, p 2  1 and 

Since the resulting direct transmission matrix is k(3)  is nongenerically singular (for all nonzero 
x E M ) ,  we stop the algorithm and conclude that no diagonal precompensator exists which can 
establish a vector relative degree. 

4. CONCLUDING REMARKS 

A necessary and sufficient condition has been provided which determines whether a diagonal 
dynamic precompensation can give vector relative degree to a multivariable nonlinear system. 
In addition, a simple algorithm is given to  determine a ‘minimal’ dynamic compensator 
necessary to achieve vector relative degree. These results are an extension to similar ones given 
by the authors l 1  for treating linear systems. As in the linear case, we conclude that nonlinear 
systems for which diagonal precompensation leads to nongenerically singular direct 
transmission matrices can only achieve vector relative degree through nondiagonal dynamic 
precompensation. 

Thus, with these results, we provide a robust method for implementing dynamic 
compensation in order to achieve vector relative degree: when the algorithm provides positive 
results, the diagonal dynamic precompensation constructed is independent of both the original 
state and small variations of the system parameters. It is the choice of diagonal linear 
precompensation which provides a solution which is parameter and state independent. This 
opens up the possibility of implementing parameter adaptive control schemes for some 
multivariable nonlinear systems which do  not originally have full vector relative degree, to 
which, previously, none of those adaptive schemes could have been applied. 

The notion of (non)generic singularity plays an important role in achieving vector relative 
degree. In particular, systems with nongenerically singular direct transmission matrix 
functions, (E(?)), must be excluded from the class of systems which may be dynamically 
precompensated to achieve vector relative degree using the methods we propose, because of 
their sensitivity to structural changes in the system due to state variations and/or small 
parameter perturbations. To design for large parameter variations in the system, i.e., when the 
vector relative degree must be invariant on a large set of parameters, our algorithm can be 
easily modified for this purpose. One possible remedy is to augment the parameter vector, say, 
p ,  to the state, and add the following fictitious state equation: p = 0. In this way, the resulting 
direct transmission matrix will be guaranteed to be nonsingular on the augmented state 
manifold. 

We have a final remark concerning systems whose direct transmission matrix, k(X) ,  cannot 
be made nonsingular on &?by the introduction of a diagonal precompensation. If the system 
in question is controllable, then for some control purposes, such as tracking, it may be viable 
to restrict the flow of this system to an open submanifold of &? which does not include the 
singularity points of E(3). With this restriction, it may be possible to achieve full vector 
relative degree on that submanifold. 
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APPENDIX;  P R O O F  OF THEOREM 3.1 A N D  ALGORITHM 3.2 

To aid in the proof of Theorem 3.1, we require the following lemma, and for simplicity we denote the 
direct transmission matrix of a system Tas D [ T ] ,  which will be a function on the internal state manifold, 
M ,  of T. 

Lemma A.1 

system p o  Top- ' ,  are identical. 
Given any system T, the direct transmission matrices D [ T ]  of T and D [ P O  T o p - ' ]  of the composite 

Proof. Expressing T as 

the system p 0 Top-' can be written as 

Differentiating i, we have the output 

Noticing that the first two terms above are functions of only x(t) and i i ( t ) ,  which are internal states, 
0 

To prove Theorem 3.1, it is sufficient to show that possibilities 1 and 2 of Step 1 of Algorithm 3.2 are 
exclusive, and that given any system T with its direct transmission matrix function D [ T ]  generically 
nonsingular on M ,  the application of Algorithm 3.2 will result in either case 1 or case 2, i.e., we will end 
up with a direct transmission matrix function which is either nonsingular or nongenerically nonsingular 
on M. 

In the following, Case (i) implies the exclusiveness of the possibilities 1 and 2, and Case (ii) proves that 
one or the other can always be achieved. 

(i) Suppose D [R( p )  0 T o D ( p - ' ) ]  is nongencically singular on R for some pair R (  p )  and D( p - ' )  
in the form of (10) and (18) (at some ZEM),  then for any other pair R l ( p )  and D l ( p - ' )  (in the 
same form), the matrix D I R l ( p ) o  T o D l ( p - ' ) ]  cannot be nonsingular on m. 

(ii) Given any system T, the application of Algorithm 3.2 will &ad to another pair R ( p )  and DQ-') 
such that D [R(  p )  0 T o D (  p - ' ) I  is either nonsingular on M or nongenerically singular on M. 

For (i) it is sufficient to show the following: 
(iii) Given a system K for which D [K] is nongenerically singular on-m, there do not exist R2( p )  and 

then the direct transmission matrix for p o  Top-' is therefore k(x(t)) as for T. 

D2(p- ' )  such that D[R2(p)oKO&(p- ' ) ]  is nonsingular on M. 
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To prove that (iii) implies (i), suppose (iii) holds and that D [ K ]  is nongenerically singular on a for 
K =  R ( p ) o T o D ( p - ' ) .  Then, for any given R l ( p )  and D I ( ~ - ' ) ,  define 

D 2 ( p - ' )  = D ( P ) o D l ( P - L ) o P - *  
R2 ( P I  = P* 0 RI ( P )  0 R ( P -  I )  

where 6 2 0 is the minimum integer which keeps D2(p- ' )  and R 2 ( p - ' )  causal. We have 

R2(p)  OKoD2(p- ' )  = p * O R i (  p ) O  TODi(p - ' )  O p - *  

using Lemma A.1, 

D [Rz( p )  oKoD2( P -  ' ) I  = D [ R I  ( P I  0 T o  DI ( P - ' ) I  
Because D [ R z (  p )  o K o D 2 ( p - ' ) ]  cannot be nonsingular on I%? (implication of (iii)), then neither can 
D I R l ( p ) o T o D l ( p - ' ) ]  for any given R l ( p )  and D I ( p - ' ) ,  Le, (i) &lds. 

To show (iii) we suppose that D [ K ]  is nongenerically singular on M ,  and assume on the contrary that 
there exist matrices R 2 ( p )  and_Dz(p-') such that D[Rz(p)OKOD2(p- ' ) ]  is nonsingular on M. We 
denote R 2 ( p ) o K o D , ( p - ' )  by K .  Without loss of generality we assume that we can choose 

where ZI, I2 are identity matrices, and D22( p - I )  and Rzz( p )  d o  not contain constant diagonal terms (the 
dimensions of ZI and Z2 can be zero in general). This can be achieved by using row/column interchanges 
of inputs and outputs which do not effect the nonsingularity of D [ K ]  , but place K in the following form: 

where the dimensions of the subsystems correspond to  those of R 2 2 ( p ) ,  4 2 ( p - ' ) ,  ZI and Z2.  We now 
argue that & ( p )  and D z ( p - ' )  can be chosen such that either ZI or 12 (or both) will have dimension at 
least-one witho_ut loss of generality. This is easily accomplished by rewriting R2(p)  and & ( p - ' )  as 
p C o A 2 ( p )  and 4 ( p - ' ) o p - ' w J e r e  is th_e minimal order of the diagonal terms of R2(p)  and Dz(p) .  
According to  Lemma A,1, D[R2(pLo ToD2(p- ' ) ]  must be nonsingular on M. We could then replace 
& ( p )  and Dz(0- I )  by R2(p)  and D l ( p - l )  respectively and drop off the accent. Note that there must 
be an identity term in either the new R2(p)  and/or the new Dz(p- ' ) .  

With the given choice of & ( p )  and D2(p- ' ) ,  we have 

1 K1z ODzz( p -  ' 
= [ R22(:;: KZI R22( p )  0 Kz2 0 Dz2( p - ' )  

In order for D [ E ]  to  be nonsingular on a, Rz2(p)oKzl  must be causal, which means that the relative 
degree of K21 is positive, that is, D [Kzl  J = 0. This implies that K22 cannot be a tall matrix, otherwise 
D [ K ]  would be generically singular on a, contradicting the initial assumption. Similarly, 
D [K12 oD22(p-')] = 0 because K12 is causal, which implies that K11 cannot tall, otherwise D [ K ]  would 
be generically singular, thus contradicting the initial assumption that D [ K ]  is nonsingular. Therefore 
both KI1 and K22 must be square matrices. This implies that 11 and 12 are of the same dimension. 

Owing to the nonsingularity of D [ K ]  and that D [KlzoD22( p - I ) ]  is zero, we know that D [ K I I  I and 
D[R22(p) oK220D22(p-~)]  must both be nonskgular on a. 

Using the nongeneric singularity of D [K  ] on M ,  nonsingularity of D [KII]  and the fact that D [KZI  I = 0 ,  
we know that D [K22] must be nongenerically singular on M .  In conclusion, our initial assumption leads 
to  two observations: 

(i) D 
(ii) 3 R22(p), D22(p-') such that D[R22(p)oK22oDzz(p-')l is nonsingular on m. 
Noticing however that the dimension of KZ2 is lower than that of K, the problem described in (iii) is 

repeated in a lower dimension, with K22, R22(p), and D22(p-') replacing K ,  R2(p) ,  and D2(p- ' ) .  We 
can repeat the above argument until in the limit we must have a 1 x 1 nongenerically singular matrix 

must be nongenerically singular a. 
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function D[K22] on a, which is not possible. This conclusion contradicts the initial assumption and 
therefore D[K(s ) ]  cannot be made nonsingular on by any choice of R2(p) ,D2(p - ’ )  if D [ K ]  is 
nongenerically singular on H.  

To show (ii) we suppose that D ( p - ’ )  is initialized to be Z, R ( p )  is chosen according to Step 1 of 
Algorithm 3.2 and that D [ K ]  is generically singular on M ,  where K is given by (20). Note that the 
existence of the required R ( p )  is guaranteed by condition (i) in Assumption 3.1 and Lemma A. 1. Without 
loss of generality, let the index matrix Z ( D [ K ] )  be given by 

where I:2 = 0 and 111 is tall. Further, take ZII to be as tall as possible. This implies that 122 is not 
generically singular. 

Denote the dimensions of Ill by i x j and decompose K into K11, K12, K Z I ,  K22 according to the blocks 
of Z(D[K] ) .  Formulate D l ( p - ’ )  = diag(Zlp-’,Zz) where Z1,Z2 are identity matrices of dimensions j x j 
and (m - j )  x (m - j )  respectively. The application of Step 1 of the algorithm and R I  ( p )  = diag (pZ1, I2 
gives 

Here, the lower block of R l ( p )  is an identity because the every row of D[K22] is nonzero. 

be reorganized in the form (30), Le., 
The resulting system E, if its direct transmission matrix is still generically singular on m, can again 

Obviously, the number of columns of E12 will be reduced if any column of D [ p  0 KL2 ] is nonzero at some 
FE&’. If every column of pOK12 is identically zero, the number of columns of K12 remains the same. 
However, the latter case cannot continue to happen after a sufficient number of applications of the 
algorithm because every such iteration will force an additional differentiation on K Q .  The fact that this 
increase in the number of differentiations will eventually force some column of D [p 0 K12] to become 
nonzero is guaranteed by condition (ii) of Assumption 3.1. To see this, one simply needs to consider 
condition (ii) with U = [0 u2] where u2 # 0 is such that D[K22] u2 = 0 ,  which is always possible because 
K22 must be wide. 

We can apply the algorithm as many times as is required until the number of columns of K 1 2  is’educed 
to zero, in which case the resulting D [ K ]  is either nonsingular or nongenerically singular on M .  
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