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SUMMARY 
This paper investigates the problem of finite-time-horizon robust H, tracking, for linear continuous time- 
varying systems, from the game theory point of view. Three tracking problems are considered, depending 
on whether the reference signal to be tracked is perfectly known in advance, measured on line, or 
previewed in a fixed interval of time ahead. No a priori knowledge of a dynamic model for the reference 
signal is assumed, and the parameters of the system are not completely known. A game is defined where, 
given the specific information on the tracking signal, the controller plays against nature that can choose 
any initial condition, any bounded energy disturbance input and measurement noise, and any set of 
parameters in a prescribed bounded region. A standard quadratic pay-off function is defined where the 
energy of the tracking error signal is weighted against the energy of the disturbance, the noise signal, and 
the Euclidean norm of the initial condition. 

Conditions for the existence of a saddle-point equilibrium in this zero-sum game are not easy to find. 
We, therefore, augment the state-space description of the system to convert the parameter uncertainty into 
exogenous bounded energy signals. An augmented game is then defined on the new perfectly known 
system, and it is shown that its saddle-point equilibrium solution, if it exists, guarantees a prescribed H,- 
norm performance of the tracker, in the original system, for all possible parameters. 

Necessary and sufficient conditions for the existence of a saddle-point solution to the augmented game 
are determined. H,-tracking controllers, which guarantee the prescribed performance level for all possible 
parameters, are derived for both the state and the output feedback cases. 

KEY WORDS robust tracking; uncertain systems; H-control; game theory 

1. INTRODUCTION 

One of the main reasons for the vast attention that has been paid in the last decade to the 
methods of H ,  control is the good robustness properties of the resulting control, in comparison 
to the ‘conventional’ & design.’ The linear H,  problem has been solved generally by 
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transforming the problem to fit the model of the ‘standard problem’, and using the well- 
established solution of this problem to obtain the required output feedback.2 

The H ,  design problem is, in fact, a design that aims at minimizing the effect that the 
exogenous signals have on the system, at the worst-case situation. It has been recognized very 
quickly that this problem can be looked at as a zero-sum dynamic game, where the controller 
plays against nature that can pick the worst possible disturbance to increase the performance 
index the controller wants to 

The main practical disadvantages of the H,/game theory approach are: 

(1) Although it provides a reasonable robustness, the solution of the standard problem does not 
guarantee a prescribed performance level in case of plant parameter uncertainty, where the 
parameters are allowed to stay anywhere in a given closed set. 

(2) The solution aims at securing a prescribed performance level for all possible exogenous 
input signals, and it therefore entails a significant overdesign in cases where some of the 
input signals are measurable. These include the case where the disturbance is partially 
measurable and the case where the system is required to follow an a priori given, or a 
causally measured, reference signal. 

The theory of H ,  control and filtering has been recently extended to deal with structural 
uncertainties in a prescribed The method of Reference 5 has a game theory meaning 
where nature can be considered as the adversary of the controller. Nature selects not only the 
exogenous signals to maximize the pay-off function, but also the parameters of the plant. The 
overdesign that was entailed in solving H ,  control problems with measured signals has been 
elevated lately by Reference 7. A method has been introduced there which does not consider the 
measured signals as a part of nature’s selection. A solution is proposed in Reference 7 for the 
various information patterns that are available about the measured signals. 

The results of Reference 7 constitute the first attempt to deal with the tracking problem in 
cases where the statistics of the reference signal is unknown and where the controller possesses 
some measured information on this signal. The & tracking problem of an a priori known 
reference signal has been solved long ago (e.g. Reference 10). The problem of tracking a 
reference signal with fixed preview has been investigated by Reference 11, where a knowledge 
of the statistics of the reference signal is required for the time interval that is not previewed. The 
problem of L, tracking with preview has also been treated in the frequency domain by 
Reference 12, where spectral factorization is used to derive the control signal. 

None of the above works addresses the problem of parameter uncertainty. This issue is of 
special importance in the tracking problem since owing to the uncertainty the effect of a known 
reference signal cannot be completely cancelled. It is expected that the H ,  approach of 
Reference 7 will exhibit some advantages over the traditional L, approach owing to the inherent 
robustness properties of the H ,  design. The results of Reference 7 cannot guarantee, however, a 
required performance for the whole given set of the parameter uncertainty. 

In the present paper we combine the methods of References 5 and 7 to obtain a game theory 
solution to the problem of achieving a prescribed level of tracking and disturbance attenuation 
in the presence of some measurable disturbance and reference signals and some uncertainty in 
the plant. The uncertain part of the plant state-space matrices is known to be norm-bounded and 
it may be time-varying. Three cases are considered. In the first, we treat the case where the 
tracking signal is perfectly known in advance. This case corresponds to situations where one 
wants to obtain a good tracking to, say, a step input, or else, in the stochastic case where the 
random reference signal has a known nonzero average component. The second case deals with a 
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reference signal that is measured on-line, and the third one is the case where the reference signal 
is previewed in a fixed interval of time ahead and this future information on the signal is used to 
improve the tracking performance. 

The paper is organized as follows. We begin in Section 2 by formulating the tracking problem 
and describing the plant uncertainty and the different information patterns that we treat. The 
performance index that we use is essentially the worst-case L,-norm of the tracking error, for a 
specific reference signal, over all the initial states, the L, disturbances and measurement noise 
signals, and the admissible parameters. In Section 3 we augment the state-space description of 
the system to convert the parameter uncertainty into exogenous, energy-bounded, signals. An 
augmented game is then defined and solved. The saddle-point solution of the latter, if exists, 
guarantees the required H,  performance of the original tracking problem for all admissible 
parameters. 

We demonstrate the use of the theory of Section 3 in an example in Section 4. In this example 
we solve the state feedback tracking problem for a second-order system using both the method 
of Reference 7, for the nominal plant, and the new method of the present paper. We compare 
the results in the case where the reference signal is not a priori known but is measured on line. 
We demonstrate in the example how preview improves the tracking performance for the worst 
possible value of the uncertain parameter of the system. 

2. PROBLEM STATEMENT 

Consider uncertain time-varying systems described by 

( C )  1 = ( A + A A ) x + B , w + ( B , + A B ) u + B 3 r ;  x(O)=x, (la) 

z = C , x +  D,,u+ D13r (1b) 

(1c) y =  (C,  +AC)x+ U +  (D,+AD)u 

where x E  R" is the state, x, is an unknown initial state, w E RP is the disturbance input, 
U ER" is the control input, r E R' is a known or measurable reference signal, y E R" is the 
measured output, t~ E R' is the measurement noise, and z E R9 is the controlled output. The 
matrices A, B,, B,, B3, C,, C,, D I 2 ,  0 1 3 ,  and D,  are known real time-varying, piecewise 
continuous, bounded matrices of appropriate dimensions that describe the nominal system, and 
AA, AB, AC and AD are real-valued matrix functions representing time-varying parameter 
uncertainties. These uncertainties are assumed to be of the form 

where F E  R'"' is an unknown time-varying matrix with Lebesgue measurable elements 
satisfying 

FT( t )F( t )  G I ,  V t  (3) 

and H,, H,,  E, and E, are known piecewise continuous matrix functions of appropriate 
dimensions that specify how the nominal system matrices A, B,, C, and D,, are affected by the 
uncertain parameters of F. 

The deterministic input signal r ( - )  provides a tracking trajectory -D13r(.) for the system 
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output C,x+ D,,U,  and the signal z(-) in (lb) represents the tracking error. Note that the input 
signal r ( - )  is also allowed to affect the system dynamics and that it may use an input channel 
different from that used by the control input U(-). 

In this paper we are concerned with the following robust tracking problems: design a control 
law U(-) over the horizon [0, T ] ,  using the available measurements y ( - ) ,  and the known 
reference signal, r(e),  to make z(-) uniformly small, in a certain sense, for any w, and v in 
4 [0, T ]  and xo E R", and for all admissible uncertainties. 

The admissible control law is assumed to be of the form 

u = Gyy + G,r (4) 

where G, is a linear causal dynamic operator and C, is a linear dynamic operator which can be 
either causal or non-causal, depending on whether the reference signal r ( . )  is, respectively, 
measured on line or known a priuri. 

Three tracking problems will be considered, depending on the information pattern for r ( . ) .  
We define the history up to time r of the measurement y and the reference signal r by 

Y , = { y ( t ) ,  0 < z < t )  and R , = ( r ( z ) ;  O < t < t )  

The tracking problems we shall investigate are: 

(i) 'Ikacking of a non-causal r(*). The signal r(-) is assumed to be known a priori for the 
whole interval [0, T ] .  The control law u(t), Vr E [0, T ]  is based on Y, and RT. 

(ii) 'Ikacking of a causal r(-). The signal r(-) is measured on line but cannot be predicted. 
The control law u(r) ,  Vr E [0, T ]  is based on Y, and R,. 

(iii) Fixed-review tracking. It is assumed that at the current time the signal r ( - )  is 
previewed in a known fixed interval of time ahead. Given a positive scalar A <  T, the 
control law u( t ) ,  V t  E [0, T ]  is based on Y, and R,,,. 

The tracking performance that is used here is a standard quadratic pay-off function given by 

J(r ,  U, V, W, xo, F)=ll~lI~- ~2~11~I I~+I I~ I I~+ I I~o I I~ -~ l  (5 )  

where y > 0 is a given scalar that indicates the level of tracking performance of the controlled 
system, and R = RT > 0 is a given weighting matrix for the initial state. 

In the above, Ilxll: denotes x T h ,  L,[O, T ]  stands for the space of square integrable real 
vector functions in [0, T ] ,  and 11.112 denotes the L,[O, T ]  norm. 

The robust tracking problems are to find a control law U(-) E k [ O ,  T ]  of the form (4), using 
the available information on y(-) and r ( - ) ,  that minimizes 

where v, w E &[O,  T ]  and xo E R". 
The above tracking problems are indeed dynamic game problems, where given a specific 

information on the reference signal r,  the controller plays against nature that can choose any 
initial state, any bounded energy disturbance input and measurement noise, and any uncertain 
matrix F satisfying (3). All the three games that are related to the tracking problems (i)-(iii) 
stem from the cost function (5). The only difference between these games is in the form by 
which the reference signal is available to the controller. The desired control law for each of the 
tracking problems (i)- (iii) corresponds indeed to the saddle-point minimizing strategy for each 
of the corresponding games. 
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Remark 2 .I 
Note that when the reference signal r ( . )  is identically zero, the above tracking problems 

reduce to the robust H, control synthesis which has been analysed in References 5 and 8 for, 
respectively, continuous and discrete time systems. 

Remark 2.2 

We note that problems (i)-(iii) have been solved in Reference 7 for the case where there is 
no parameter uncertainty in (1). Also, it should be noted that in the absence of the reference 
signal r ( - )  and parameter uncertainty, the above problems reduce to the standard H, control 
problem. 

We end this section by introducing the following assumption which is standard in nonsingular 
H, control problems. 

Assumption A 

D,, (t) is of full column rank for all t E [0, T ] .  

3. MAINRESULTS 

The game problem introduced in the previous section is very difficult to solve. We shall, 
therefore, solve an auxiliary game problem which does not involve uncertainty and is such that 
the worst-case value of its pay-off function is an upper bound for the worst-case value of the 
criterion in (6). The key idea behind this approach is to convert the parameter uncertainty into 
exogenous bounded-energy signals. Justification for this technique is provided in the sequel. 

We introduce the following auxiliary system: 

(C,) f = Ax, + [.I 5 Hl]w, + B2u, + B3r, x,(O) = xo0 (7a) 

and 

y, = C2x, + [o 5 H,]w, + v, + D22u, 

where x, E R "  is the state, x, is an unknown initial state, U, E R" is the control signal, 
w, E RP" is the disturbance input, v, E Rk is the measurement noise signal, y, E Rk is the 
measurement, z, E R4'j is the controlled output, r, A ,  B,, B,, B,, C,, C,, D,,, D13, D,,, H,, 
H,, El and E, are as in (1)-(2) and E(t) is a piecewise continuous scaling function to be chosen 
that is nonzero for all t E  [0, T]. Associated with the system (E,) we define the following 
performance index: 

(8) JAr,  4. v,, w,, x,, E )  = 11z,1122- r2[llw,llz2+ Il?J,1122+ ll%i3Il;-11 
where y and R are as in (5). 
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We have the following result: 

Lemma 3 .I 

Consider the systems (E) and (Z,) together with the performance indices (5) and (8), 
respectively. Assume that U and U, are generated by the same controller, namely, U = Gyy + Grr 
and U, = Gyyu + Grr. Then, the following holds: 

sup [J(r, U ,  w, ~ 0 ,  F)] < sup [J,(r, U,, v,, w,, xao, E ]  for any admissible E. 
v,w,x,,.F "aswa *xaO 

Proof. For any given x,, F ,  w, v ,  and t i n  (5) for the system (X), and any admissible E ,  take 

Then, it is easy to verify that for all t E [0, T ]  

which implies that: 

JAr, % , ~ , , ~ u , X u o , E ) =  11z1122- rZ[ll~1122+11~1122+II~oll?R-~l + ~2[ I I~1X+~2~1122- I IF(~,x+~z~)11221 

the result follows immediately. 0 
Now, considering (3) and (5) we obtain that J,(r, U, ,  v,, w,, x,, E )  > J(r ,  U ,  v,  w ,  x,, F )  and 

In view of Lemma 3.1, our approach for solving the robust tracking problems involves 
solving the game problem of (8) in lieu of the game of (5). More precisely, we will solve the 
following auxiliary game problem: 

Find E # 0, U E &[O, T ] ,  worst-case signals v:,w: E &[O, T ] ,  and a worst-case initial state 
x*., E R" satisfying the following saddle-point condition: 

8 8  

J,(r, 4, vu,w,, ,xd,  E)<J,(r, U,, v,w,,x.OO, E)<J,(r, U, ,  v:,w:,x',, E )  

where the strategy u,'(t), t E [0, T ] ,  is based on the available information at time t on the 
measurement y,(-)  and the reference signal r ( - ) .  Note that the system (X,) is parameterized by 
E ,  which is a scaling function to be searched in order that a saddle-point equilibrium in the game 
problem of (8) can be found. 

The minimizing control law 

U,' = Gyy, + Grr 

with y, replaced by y, will provide the control law of the related H ,  tracking problem for the 
system (Z). 

Remark 3.1 

We note that when the reference signal r ( - )  is identically zero, it has been shown in 
References 5 and 8 that the above controller guarantees the following H ,  performance: 

llzllz < r[llw1122 + llvllzz + Ilxol12R-~11/2 
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for any w and v in &[O, T] and x, E R", and for all admissible uncertainties, whenever 
llw1122 + llv1122 + llXollZR-~ # 0. 

A solution to the auxiliary game problem of (8) subject to (7) can be readily solved using the 
recent results of Reference 7. To this end, introduce the following Riccati differential equations 
(RDEs) 
- X =  ( A  - B2VlDy2El)TX+ X ( A  - B2V1By2Cl) + X ( Y - ~ B , F -  B2V1B:)X, 

+ C?(I- Dl2v lDy2)c1;  X ( T )  = 0 (9) 
and 

Y =  (A-B,D,T,V2C2)Y+ Y(A-B,D:1V2C2)T+ Y(y-'C:Cl -C,TV,C,)Y 
+B,(Z-D,T, V2D21)c;  Y(O)=R (10) 

where 

and 
v, = (D;,D12)-1; v, = (z+D21D;1)-l (lle-f) 

We also consider the following conditions: 

Condition 1. There exists an E such that (9) has a solution X(t) over [0, T ]  satisfying 
X ( 0 )  < ?R-'. 

Condition 2 .  There exists an E such that: 

(a) The equation (9) has a solution X ( t )  over [0, T ]  satisfying X ( 0 )  < y2R-' 
(b) The equation (10) has a solution Y ( t )  over [0, T ]  
(c) 1- y-'X(t)Y(r) > 0 over [O, T ]  

Remark 3.2 

Note that since X(T) = 0 and Y(0)  > 0, it follows from well-known results on RDEs that if 
there exist solutions X ( t )  and Y ( t )  to (9) and (10) over [0, T ] ,  respectively, then 
X(t)=P(r)>Oand Y ( t ) =  F(t)>Oover [0, T ] .  

We first deal with the case where perfect state measurements are available. 

3.1. State feedback case 

0 and 
the controller has access to the state x,. In view of Theorem 3.1 in Reference 7 we have the 
following result. 

Our first theorem provides a solution to the auxiliary game problem of (8) where v, 

Theorem 3.1 

Consider the system (C,) subject to the assumption of perfect state measurements, and where 
the time history R,+,,, h E [0, T ]  of the reference signal r ( - )  is available at time t. Then, the 
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auxiliary game problem of (8) has a saddle-point solution if and only if Condition 1 is satisfied. 
Moreover, a saddle-point strategy is given by: 

(12) 

(13) 

(14) 

~f = [Y'R-' - X(O)]-'e(O) 

w,' = Y-~B:[XX,' + e] 
U,' = - v, [B;X + ay, C, )x,' + DT2D13 r + B; ec 1 

where X* denotes the optimal trajectory of x, with U, = U:, w, = w,' and x, = x k ,  e(t), 
Vt E [0, T] satisfies 

b=-A;O+B,r,  8(T)=0 (15) 

and ec(t)  is the 'causal' part of e(.) at time r ,  given by 

t + h i f t + h < T  (174 T i f t + h > T  &(z) = -A:(z)O,(z) + B,(z)r(z), t < z < tf, 

and 

e C ( t , ) = o  

J,(r, U,', w,', x*,, E )  = J(r,  E )  + 11 V:nB,'t9, 11; 
Furthermore, the value of the game is 

where 

e1 ( t )  = e(t) - ec(t), vt E 10, TI 

and 

Remark 3.3 

Observe that in the case of a non-causal signal r ( - ) ,  i.e. h =  T, O c ( t ) =  e(t)  over [0, T]. 
Hence, it follows that the values of the game reduces to J(r, E ) .  On the other hand, when the 
signal r ( - )  is measured on line, i.e. h=0,  it follows from (17) that O C ( t ) = O  for all t E  [0, T], 
and the value of the game is given by J(r, E) + llV:'B~eIl~. 

In view of Theorem 3.1, we can easily obtain a solution to each of the three robust tracking 
problems (i)-(iii) when perfect state measurements are available. Indeed, the control law (14) 
with x, and w, not playing their optimal strategy will provide a suitable control law for the 
tracking problems. 
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Corollary 3.1 

Consider the system (C) subject to the assumption of perfect state measurements, and let 

(a) A suitable control law for the problem of H ,  tracking of a non-causal r ( . )  is given by 

y > 0 be a given scalar. Then, if Condition 1 is satisfied we have the following results: 

U =  K p +  K,r+ K,8 (22) 
where 

K, = - V, (B:X + DT2 C, + E’E;E, ); K, = - V, DT2 D13 ,  and K, = - V ,  B; (23a-c) 

and where O(.) is as in (15). Furthermore, the controller guarantees the performance 

llzllzz G r2[11w112 + II~ollzR-~l + J(r, E )  

(b) A suitable control law for the problem of H,  tracking of a causal r(.) is given by 

U =  Ks+ K,r (24) 
with the guaranteed performance 

lbIl:< r2[llw112,+ Ilxol12R-ll +J(r, E )  + iiv:’zB,Teii; 
(c) A suitable control law for the problem of H,  fixed-preview tracking is given by 

U =  K$+ K,r+ K,Oc (25) 
with Oc(.) given by (17). Furthermore, this controller guarantees the performance 

11z11~ r2[11wllzz + l l ~ o l l ; - ~ l  + Jk E )  + IIV:’zB:~lllzz 
where 0, ( a )  is as in (19). 

Remark 3.4 

In the case where r(t) is identically zero over [0, T], Corollary 3.1 reduces to the main result 
of Reference 9. In this situation, it has been shown there that the above controller guarantees the 
performance 

llzll2 < r[llwll2’+ lholl;-Y2 
for any w E L2[0, T] and xo E R” and for all admissible uncertainties, whenever 
llw1122 + Ilxoll;-~ + 0. 

3.2. Output feedback case 

We shall first provide a solution to the auxiliary game problem of (8) via output 
measurements for a non-causal r ( . ) .  The result that follows iseasily obtained from Theorem 3.3 
in Reference 7. 

Theorem 3.1 

Consider the system (C,) where the time history R, of the reference signal r ( - )  is available in 
advance. Then, the auxiliary game problem of (8) has a saddle-point solution if and only if 
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Condition 2 is satisfied. Moreover, a saddle-point strategy is given by: 

x; = [ Y 2 ~ - l  - X ( O ) I - ~ ~ ( O )  

v:=o 
w,‘ = ~-~R(xf+ e )  

and 

U: = - V ,  [ (BZX + b T 2  C, ) f + D:2D,3 r + BZe] (29) 

k = A , f +  B ~ u : +  B , r+L(y , -  C z f - D 2 2 ~ : ) +  Bee ,  f ( O ) = O  (30) 

A, = A + y-’(<B, - ) e x  (3 la) 

(31b) 

(31c) 

where e(t) is as in (15) and f ( t )  satisfy Vt E [0, T ] :  

with 

Be = y-’(B, - LD2,)K 

L = ( I -  y-2Yx)-’(Yc; + E1b~,>v2 
and 

Furthermore, the value of the game is J(r, E )  of (20). 

The next theorem, which follows from Theorem 3.1 in Reference 7 deals with the auxiliary 
game of (8) where the controller strategy u,(t) over [0, T ]  is based on the information Yp and 
R,+,,, with 0 < h < T .  The notation Yp denotes the time history of y , ( . )  up to time t, defined by 
Yp=(y , ( z ) ,  o< z< t } .  

Theorem 3.3 

Consider the system (X,) where the time history R,+,,, h E [0, T ) ,  of the reference signal r ( . )  
is available at time t. Then, the auxiliary game problem of (8) has a saddle-point solution if and 
only if Condition 2 is satisfied. Moreover, a saddle-point strategy is given by (26)-(28) and 

U,‘ = - V ,  [ (BZX + 6T2C,)fc + DT2D13 r + B,TOC] (32) 

where Oc( t )  is given by (17) and f c ( t )  is the ‘causal part’ of f(.) at time t (with respect to r ( - ) )  
given by 

& = A e $ +  B2u:+ B 3 r + L ( y - C 2 f c - D 2 2 ~ ~ ) + B , r 3 c  (33) 
and 

fc(0) = [ f lR-’  - X ( O ) ] - ’ O C ( O )  

Furthermore, the value of the game is 

J,(r,  U:, U:, w:,x>, ~ ) = f ( r ,  E)+IIV:~[B;O, + ( B , ’ X + 6 ~ 2 ~ , ) 2 1 ] ~ ~ ~  

where 8, (z) and f(r, E )  are given by (19) and (20), respectively, and 

f , ( t )=x^( t ) - fc ( t ) ,  V t €  [O, T ]  (34) 
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Remark 3.5 

We note that similarly to Theorem 3.1, the conditions in Theorems 3.2 and 3.3 for the 
existence of a saddle-point equilibrium do not depend on the reference signal r ( - ) .  Indeed, r ( - )  
affects only the saddle-point signal and the value of the game. 

We also note that in the case when r ( - )  is causally measured, h = 0, 8,( t )  = 0 and 8, (t) = 8(r) 
over [0, T ] .  Hence, in Theorem 3.3 we have $(O) = 0. 

The results of Theorems 3.2 and 3.3 can be easily specialized to provide output feedback 
controllers for each of the H,  tracking problems (i)-(iii). The control law U: of (29) and (32) 
with y a ( . )  replaced by y(-)  will provide a suitable control law for the tracking problems. 

In view of Theorem 3.2 we can easily derive the following result. 

Corollary 3.2 (Robust tracking of a non-causal r ( - ) )  

Consider the system (C) where the reference signal r ( - )  is known in advance for the whole 
interval [0, T ]  and let y > 0 be a given scalar. Then, if Condition 2 is satisfied define the control 
law 

U =  - v , [ ( B ~ x + ~ ~ ~ ~ ~ ) ~ + D ~ ~ D ~ ~ ~ + B ~ ~ ]  (35) 
where 8( . )  satisfies (15) and f(-) is given by 

$= A$+ B,u + B 3 r  + L ( y  - C2f- DZ2u) + B e e ,  i ( 0 )  = 0 

This control law will guarantee the performance 

11z1122 < r"ll+4+ 114122 + IlXoll2R-~I + J(r,  E )  

where &r, E) is as in (20). 

A solution to the robust tracking with a causal r ( - )  and the robust fixed-preview tracking are 
obtained directly from Theorem 3.3 and are provided in the next two corollaries. 

Corollary 3.3. (Robust tracking of a causal r ( - ) )  

a given scalar. Then, if Condition 2 is satisfied, the control law 
Consider the system (2) where the reference signal r ( - )  is measured on line, and let y > 0 be 

(36) ic =A& + B,u + B,r+ L ( y  - C,& -&U); fc(0) = 0 

U =  - V , [ ( B : X + D T , C , ) ~ ~  + D T , O , ~ ~ ]  (37) 
will guarantee the performance 

llzllzz< r2[llwllzz+ ll41zz+ llX0112R-~l +.k d+IIv:IZ[B2T8+ <B,'x+DT*wlIIzz 
with 8( . ) ,  8, (.) andJ(r, E) satisfying (15), (19) and (20), respectively. 

It is easy to see that the above controller can be rewritten in the following observer-based 
structure: 

(38) 

(39) 

= ( A  + AA*)fc + B, W* + B2u + B,r + L [ y  - (C, + AC*)fc - D,,u], Yc(0) = 0 

U = K$, + K,r 
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where K, and K, are as in (23) and 

(40a-c) 

Remark 3.6 

In the tracking controller (38)-(39), KS, can be viewed as the estimate of the signal Kp of 
the state feedback control law (24) in the presence of the ‘worst-case’ input disturbance w* and 
‘worst-case’ parameter uncertainties. The observer (38) is a modified Luenberger observer 
where AA* and AC* reflect the effect of the ‘worst-case’ parameter uncertainties on the 
estimation of Kp. 

Remark 3.7 

The result of Corollary 3.3 can be used to solve the important case where some of the 
disturbances are measurable. Replacing B ,  w in (la) by B, w + B, w,, where w,  describes the 
measurable disturbances, and it is assumed that nature can arbitrarily choose w. The augmented 
reference signal is then r, = [rT, w;IT, and B, and D,, are replaced by [B3 B,] and [D,3 01, 
respectively. If Condition 2 is satisfied, the control law is then given by (36) and (37) with B,r  
replaced, in (36), by E ,  r + B, w,. 

Corollary 3.4 (Robust fuced-preview tracking) 

y > 0 be a given scalar. Then, if Condition 2 is satisfied the control law 
Consider the system (c) where the reference signal r ( . )  is previewed A second ahead and let 

ic =A$, + B,u + B3r+ L ( y  - Cpfc - D , ~ u )  +Beec  fc(0) = [y2R-’ - X(0)]-’0,(0) (41) 

U = - V ,  [ ( B ~ x  + DTzCl)fc + DT2D13r + ~:e,] (42) 

where 0, (. ) is given by (17) with h = A, will guarantee the performance 
11z11;~ y2[11w1122+ Il~1122+II~oIlzR-~l+ J(r* E )  +Ilv:wr~, + (B2TX+D12CI)fl11; -T - 

with 0,(.), f ( r ,  E )  and fl(.) satisfying (19), (20) and (34), respectively. 

4. EXAMPLE 

Consider the system of (1) where: 

We assume that 6 is not known and that it may lie anywhere in the interval [-0.7 0.71. We 
further assume that the two states are available for measurement, so that we can apply state 
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feedback, and we consider the stationary case, where T + W. Using the notation of Section 2 we 
have HI = [l 

We first solve the tracking problem by applying the method of Reference 7 for the nominal 
plant (6 = 0), using y = 0.42 and ignoring the plant uncertainty. We obtain the following result: 

OIT, E ,  = [0 0.71, E, = 0 and H, = 0. 

XI = 1 3'558 -0*967] K,, = [483.52 - 182.51 
-0.967 0.365 ' 

where XI is the solution of the appropriate algebraic Riccati equation and K,, is the 
corresponding state feedback gain. The resulting closed-loop transfer function from r to the first 
component of z of (lb) is 

2s + 19.2 
s2 + 9-625s + 41 

where for the nominal case q, = 25.176. For 6 = 0.7 and 6 = -0.7 the corresponding values of 
q, become 7.553 and 42.8, respectively. Note that in this case the state-feedback gain K,, is 
determined for 6 = 0, and the resulting values of q, are obtained for the same K,, by varying A. 
The magnitude frequency responses of G, - 1 for the three values of 6 are depicted in Figure 1. 

The same problem has been solved using the theory of Section 3 for the same value of y. The 
steady-state solution X of (9) and the corresponding gain matrices K, and K, of (24) are: 

G, = 

746.448 -192.235 K, = [96117 - 248371, and K, = 0 
-192.235 49.675 1 ' X = [  

where the latter is obtained for zero preview. The transference from r to the first component of z 
of the resulting closed-loop is described by 

2s + 2484.7 G, = 
s2+1242s+q;! 

1.6 k--------l 
I1t 1.1 

_- - 1.6- . I . . . .  , . * . " l ' '  ' * " ' ' ' ' '  ' " " "  

1.4 - 

1.1 - 

B t -  

c FL r" 0.1 - 

0.6 - 

' 0.4 - 

1 E 10' ' I  0.1 
10-2 

Frequency in r a m  Frequency in r a m  

Figun 1. Magnitude frequency plots of the transmission from r to [l O]C,x-r for three values of d. Using the method 
of [7] for y = 0.42. 
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where for the nominal plant q2 =4806-9, and for 6 = 0.7 and 6 = -0.7 the values of q2 are 
1442.1 and 8171.7, respectively. The corresponding magnitude frequency responses of G, - 1 
are depicted in Figure 2. Comparing the results of Figures 1 and 2 it becomes clear that the 
variation and the absolute values of Gi - 1. i = 1,2 are much larger at the low-frequency range 
in the non-robust design of Figure 1. Tracking of, say, r =  sin(O-lt), using on line measurement 
of r,  will clearly yield better results when the method of the present paper is used. 

We demonstrate next the use of preview on the worst case of 6 = 0.7. We bring in Figure 3 the 

10' 100 10' 0.4 
10-2 

Frequency in md/sec 

Figure 2. Magnitude frequency plots of the transmission from r to [l O]C,x-r for three values of 6. Using the method 
of Seaion 3 with-out preview. 

5 I0 I5 20 U 30 3s 40 45 50 

Time in sec. 

Figure 3. Simulation results fortracking r=sin(O.lt). The results of the method of Section 3 are derived for preview 
length of h =0,0.2, and 2 seconds. These results axe wmpared with the nonrobust design of [7] (h = 0). 
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simulation results that are obtained by the theory of Section 3, for r =  sin(O.lt), using preview 
of h = 0.2 and h = 2 seconds. We also bring in the figure the corresponding results for h = 0, 
using the new method and the result that is obtained by using the above K,, for the non-robust 
(NR) case. 

The example clearly shows the benefits of applying preview, when available. It should be 
noted here, however, that the preview is usually aimed at improving the tracking performance in 
the worst case (in our example b = 0.7). Its effect may not be so impressive for other values of 
the plant parameters. 

5. CONCLUSIONS 

Problems of robust H- tracking are solved for time-varying linear systems. Three tracking 
problems are investigated depending on whether the reference signal is perfectly known in 
advance, measured on line, or previewed in a fixed intervals of time ahead. Dynamic games are 
defined that convert the plant uncertainty to energy bounded pseudo-disturbance signals. It is 
shown that the saddle-point equilibrium solutions to these games, if exist, guarantee the 
prescribed level of tracking performance for the worst possible disturbance and noise signals, in 
spite of the uncertainty in the plant. Conditions are obtained for the existence of equilibria in 
these game and the resulting saddle-point tracking strategies are derived. 

The resulting H,, trackers are in general time-varying. They do not assume an a priori 
knowledge of the reference signal structure, nor do they require an a priori information on the 
statistics of the unmeasurable exogenous signals. The obtained results supplement the two 
existing methods for worst-case tracking. The first method allows the reference to be a part of 
nature’s strategy in its attempt to maximize the pay-off function. This approach does not fully 
utilize the information that is obtained by measuring the reference signal. The other approach is 
to assume some model whose response to a random input yields the reference signal. The first 
approach usually leads to an overdesign, whereas the model that is assumed by the second 
approach is inaccurate and in many cases is hardly available. The results of the present paper can 
be used to reduce the overdesign that is entailed in the first approach and the difficulties that are 
encountered, in practice, using the second approach. These results fully utilize the information 
that is gathered by measuring the reference signal and they provide the best possible tracking 
under the prescribed plant uncertainty. 

The method that is developed in the paper can also deal with cases where some a priori 
information is available on the reference signal. This information should not be necessarily 
accurate and it may involve some parameter uncertainty. The uncertain model that is known to 
produce the signal can be incorporated into the state-space description of the system, together 
with its parameter uncertainty, and the method of the paper can be applied to the augmented 
system. 

The theory of the paper can also be used in cases of measurable disturbances. The measurable 
part of the disturbance is then off-limits for nature which can only use the unmeasurable part of 
the disturbance in its game against the controller. This can be achieved by considering the 
measurable part of the disturbance as a reference signal that is also an input to the system. 
Unlike the tracking problem this signal does not appear as a part of the controlled output. Since 
we allow for arbitrary reference and measurable disturbance signals, there is hardly any 
advantage in using the measured signals in the state feedback case (with zero preview) when 
DT2D,3 = 0. In the output feedback case, both measured signals appear in the observer equation 
of (36), independently of the geometry of D,, and D13. 

In the present paper we have treated time-varying systems in a finite-time framework. A 
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question may arise what happens when T tends to infinity. The answer to this question is entailed 
in the fact that the feedback loop of our solution is identical to the one obtained in the robust 
regulator of Reference 5. It is shown in Reference 5 that under mild assumptions this loop is 
robust in the limiting infinite-horizon case. 
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