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SUMMARY

We address the peak covariance stability of time-varying Kalman filter with possible packet losses in
transmitting measurement outputs to the filter via a packet-based network. The packet losses are assumed
to be bounded and driven by a finite-state Markov process. It is shown that if the observability index
of the discrete-time linear time-invariant (LTI) system under investigation is one, the Kalman filter is
peak covariance stable under no additional condition. For discrete LTI systems with observability index
greater than one, a sufficient condition for peak covariance stability is obtained in terms of the system
dynamics and the probability transition matrix of the Markov chain. Finally, the validity of these results
is demonstrated by numerical simulations. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Kalman filtering [1, 2] plays an essential role in systems theory and has found a wide range
of applications in engineering and non-engineering systems. A number of properties including
stability and convergence of Kalman filtering have been well understood. For linear time-invariant
(LTI) systems, it is well known that the Kalman filter converges to the steady-state filter under very
mild hypotheses on some detectable and stabilizable conditions of the original system. Recently,
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there has been a lot of interest on networked systems and sensor networks due to increasing
applications of networks in engineering systems. In sensor networks, Kalman filters are frequently
used in accomplishing estimation task [3, 4] and have given birth to several methods in solving
the sensor coverage and sensor selection problems [5, 6]. However, the recent trend of utilizing
networks for transmitting measurement data also introduces some interesting new problems due to
the unreliable characteristics of networks such as random transmission delays and possible packet
losses [7]. These network uncertainties, unlike the uncertainties in dynamical systems studied in
the past two decades, e.g. [8–10], are random in nature and have attracted considerable attention.

When the Kalman filter is implemented over network with packet dropouts, the evolution of
filtering error covariance for an unstable dynamical system generally depends on not only system
structure properties such as stabilizability and detectability, similar to the classical Kalman filter
case, but also packet-loss characteristics. Therefore, the filtering problem for networked systems
has attracted a great deal of attention recently. Kalman filtering for lossy sensor data was considered
in [11] based on a Markovian jump linear system modeling approach and three different models
were presented there. Sinopoli et al. [12] addressed Kalman filtering with i.i.d. Bernoulli losses and
showed that a critical value for the arrival rate exists such that the mean filtering error covariance
is bounded for any arrival rate greater than that critical value. The stability analysis of Kalman
filtering with binary Markovian packet losses can be found in [13, 14] where the notion of peak
covariance stability was first introduced in [15]. It is noted in [13, 15] that the given sufficient
condition for the peak covariance stability involves an estimation of an upper bound of the solution
of standard Riccati recursion.

However, in the aforementioned studies on filtering the number of consecutive packet losses can
be infinite, which may not be practical and can lead to conservative results. For networked systems,
control problems with finite-length packet losses have been investigated in [16, 17]. Generally,
there are two motivations for bounded packet-loss modeling. First of all, in fault-free networked
systems, infinite-length consecutive packet dropouts are usually unrealistic. On the other hand,
fault detection and fault tolerant systems can be implemented for real networked systems [18],
which can effectively avoid the performance degradation and instability of the whole system due
to excessive consecutive packet losses.

To the best of our knowledge, the stability issue related to the Kalman filtering for networked
systems with bounded Markovian dropouts remains open. We note that the stability studied in
[13–15] is in fact in terms of mean filtering error covariance, and thus the term—peak covariance
stability in the mean sense would be more precise. We still use peak covariance stability here for
the consistency of the present paper with the aforementioned ones. In the sequel, the sojourn times
of loss cycle (a period of successive packet dropouts) and normal cycle (a period of successive
packet receipts) are defined similarly to the binary dropout case [12, 13]. The main results of the
present paper include: (1) a less conservative method for estimating the upper bound of the solution
of the standard Riccati recursion and (2) a sufficient condition for the peak covariance stability
that is related to the observability index and the dynamics of the underlying system as well as the
probability transition matrix of the Markov chain that describes the packet-loss process.

The remainder of this paper is organized as follows. The time-varying Kalman filtering problem
with bounded Markovian dropouts is formulated in Section 2. Then basic lemmas as well as
conditions for peak covariance stability are presented in Section 3. Section 4 includes two numerical
examples, followed by some conclusions in Section 5.

Notation: := means ‘defined as’. The superscript ′ denotes the transpose of vector or matrix.
M−1,�(M) represent, respectively, the inverse and the spectral radius of square matrix M . Rn,N,
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and N0 stand for the n-dimensional Euclidean space and the sets of positive and non-negative
integers, respectively. When X and Y are real symmetric matrices, the notation X�Y (X>Y )
indicates that X−Y is positive semidefinite(positive definite), and Sn denotes the set of n×n
positive semidefinite real matrices. In refers to the n×n identity matrix, and I and 0 represent
respectively identity matrix and zero matrix with compatible dimensions. �i j is the Kronecker
delta function; col(x, y) denotes a column vector with entries x, y. ‖·‖ represents the Euclidean
norm for vectors or the corresponding induced norm for matrices. Furthermore, let (�,�,Pr) be a
complete probability space and E(·) stands for the mathematical expectation operator. The inner
product is defined by 〈x, y〉 :=E(xy′) for column random vectors x, y.

2. PROBLEM FORMULATION

Consider a standard discrete-time LTI system:

xt+1 = Axt +Bwt , t�0 (1)

yt =Cxt +vt (2)

where xt ∈Rn and yt ∈Rm are the state and output of the system. The process noise wt ∈Rp and
the measurement noise vt ∈Rm are vector-valued zero-mean white-noise processes, while the initial
state x0 is a random variable with zero mean and covariance matrix �0�0, and is independent of
the sequences {wt },{vt }. The above assumptions can be compactly expressed as

〈⎡⎢⎣
wi

vi

x0

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

w j

v j

x0

1

⎤
⎥⎥⎥⎥⎦
〉
=

⎡
⎢⎢⎣
Q�i j S�i j 0 0

S′�i j R�i j 0 0

0 0 �0 0

⎤
⎥⎥⎦ , Q>0, R>0 (3)

We also assume that {wt } and {vt } are uncorrelated, i.e. S=0 in (3). Moreover, A, B,C,Q, and
R are constant and known matrices with compatible dimensions. In this paper, (A, B) is stabilizable
and (A,C) is observable with observability index Io. Here Io is defined to be the smallest integer
such that rank [C ′, A′C ′, . . . , (A′)Io−1C ′]=n.

On account of reduced wiring and ease of system maintenance/diagnosis, there have been
significant interests in transmitting sensor/controller data through networks, especially wireless
networks. While networked systems have clear advantages, they also introduce new problems such
as packet losses in transmission. Suppose there exists a communication channel between sampler
and filter, and a single packet containing the data of system output is unreliably transmitted at
each time step without quantization error. Let {ik,k�0} be a strictly monotonically increasing
subset of N0, representing the sequence of time instants at which the data packets are successfully
transmitted from the sampler at the system to the filter. Without loss of generality, set i0=0. The
packet-loss process is defined as

�(ik) := ik+1−ik−1, k�0 (4)

In the same way as in [17], we assume that the packet-loss process is driven by a time-
homogeneous Markov chain on a complete probability space (�,�,Pr) with finite-state range set
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M0={0,1,2, . . . ,s}, where �(ik)=0 indicates that there is no packet dropout during the time
interval (ik, ik+1] and s represents the maximal length of consecutive packet losses. Denote M=
M0\{0} the packet-loss subset of M0. {�(ik),k�0} is assumed to be independent of {wt },{vt } and
x0. The corresponding transition probability is

�i j :=Pr(�(ik+1)= j |�(ik)= i)�0

and the initial distribution of �(0) is: {� j :=Pr(�(0)= j), j ∈M0}. Note that � :=(�i j )(s+1)×(s+1)
is a known matrix and for all i ∈M0,

∑s
j=0�i j =1.

The state prediction error covariance matrix Pt , t�0 can be written as

Pt :=E[(xt − x̂t |t−1)(xt − x̂t |t−1)
′]

where x̂t |t−1 stands for the optimal estimate at time t . Intuitively speaking, at each time step,
the time-varying Kalman filter performs both the time and measurement updates when a packet
arrives; otherwise it performs the time update only; see [12] for more details. As in [12], we use
�t ∈{0,1} to represent the loss (with �t =0) or arrival (with �t =1) of single packet at each time
point. Henceforth, we can derive the following random Riccati equation easily:

Pt+1=APt A
′+BQB′−�tAPtC

′(CPtC
′+R)−1CPt A

′ (5)

with initial condition

P0=E[(x0− x̂0|−1)(x0− x̂0|−1)
′]=E[x0x ′

0]=�0

It is worth mentioning that the random process {�t , t�0}, which is driven by the packet-loss
process {�(ik),k�0}, is neither the i.i.d. Bernoulli process as in [12] nor the binary Markovian
process like [13], and the stochastic characteristic of {�t , t�0} is still unknown although it is totally
determined for any given realization of {�(ik),k�0}.

The notion of sojourn times is usually defined as follows. Set �0=0 and

�1 := inf{ik+1 : ik��0,�(ik)�1}, �1 := inf{ik+1 : ik+1>�1,�(ik)�1}
...

...

�l := inf{ik+1 : ik��l−1,�(ik)�1}, �l := inf{ik+1 : ik+1>�l ,�(ik)�1}
...

...

thus, �l ,�l�1 are two stopping times of {�t , t�0}. The sojourn times are the lengths of the lth
excursion to the state 1 or 0, as defined by:

��
l :=�l −�l−1, ��

l :=�l −�l , l�1

To illustrate the notions of �t , ik,�(ik),�l ,�l ,�
�
l ,�

�
l , we assume that there is one sample path of

�t as shown in Figure 1. Thus, the corresponding sequence {ik,k�0} is given by

{i0, i1, . . . , i14}={0,1,4,5,6,10,11,12,13,14,16,17,18,19,20}
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Figure 1. An example: one possible sample path of �t .

and by (4) we can get the packet-loss process as follows:

{�(i0),�(i1), . . . ,�(i13)}={0,2,0,0,3,0,0,0,0,1,0,0,0,0}
From the definition of stopping time and sojourn time, it is also easy to obtain:

{�1,�2,�3} = {2,7,15}, {�0,�1,�2,�3}={0,4,10,16}

{��
1,�

�
2,�

�
3} = {2,3,5}, {��

1,�
�
2,�

�
3}={2,3,1}

We recall the following definition of peak covariance stability introduced by Huang and Dey
[13, 15].
Definition 2.1
The Kalman filter with packet losses or the random Riccati equation (5) is said to be peak covariance
stable if supl�0 E[‖P�l‖]<+∞, where the expectation is taken with respect to the packet-loss
process.

The sequence {P�l }, l�1 is a collection of the prediction error covariance matrix after every
consecutive packet losses (see also Figure 1). Note that for an unstable scalar model, {P�l } gives
the upper envelop of the covariance process [13]. For higher-order systems, intuitively, with the
number of consecutive packet losses increases, one would expect that the filtering performance
is getting worse although in general the covariance matrix may not necessarily be monotonically
increasing over the period of packet losses. Hence, the peak covariance stability that captures the
boundedness of supl�0 E[‖P�l‖] makes sense and is a reasonable measure of stability.

As any possible Pt would be bounded if �(A)<1 [14], in the remainder of the paper we consider
the non-trivial case: �(A)�1.
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3. MAIN RESULTS

3.1. Preliminaries

First of all, if we define the general mapping �(·) as
�(P, A, B,C,Q, R, S) :=APA′+BQB′−(APC′+BS)(CPC′+R)−1(APC′+BS)′ (6)

then the Lyapunov recursion Pt+1=G(Pt ) and the Riccati recursion Pt+1=F(Pt ) with initial
value P0 can be generated by � as follows:

G(P) := lim
	2→∞

�(P, A, B,C,Q,	2 I,0)=APA′+BQB′ (7)

F(P) := �(P, A, B,C,Q, R,0)=APA′+BQB′−APC′(CPC′+R)−1CPA′ (8)

where P ∈Sn .
The following lemma can be found in [3, 6, 13].

Lemma 1
For G(·) and F(·), the statements below hold:

(i) both G(·) and F(·) are monotonically increasing, i.e. for any P1�P2�0, we have
G(P1)�G(P2)�BQB′ and F(P1)�F(P2)�BQB′;

(ii) there exists a constant K>0 such that for any P ∈Sn
0, F

k(P)�K In for all k�Io, where
Sn

0 is a convex subset of Sn as

Sn
0 :={P :0�P�G(P̄), for some P̄ ∈Sn}

where Fi (P) denotes the result of the i th recursion of (8);
(iii) there exists a constant K>0 such that for any P ∈Sn , Fk+1(P)�K In for all k�Io;
(iv) if Io=1, i.e. C is invertible, then F(P)�AC−1R(C−1)′A′, i.e. there exists a positive

constant d(0)
1 such that

‖F(P)‖�d(0)
1 (9)

(v) if Io�2, then for 1�i�(Io−1), there exist positive constants d(0)
i and d(1)

i such that

‖Fi (P)‖�d(1)
i ‖P‖+d(0)

i (10)

It is indispensable to derive a systematic method for estimating d(1)
i , due to its importance in

checking the peak covariance stability. In the first place, we need the following lemma related to
the so-called global approach; see [1, p. 539].
Lemma 2
The covariance of the estimate error at time step t, t�1 from the standard Riccati recursion (8),
i.e. Pt =Ft (P0), can be alternatively evaluated by

Pt =�(P0, A
(t), B(t),C (t),Q(t),D(t)Q(t)(D(t))′+R(t),Q(t)(D(t))′)
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in one step, where A(t), B(t),C (t),D(t),Q(t), R(t) are defined as

A(t) = At , B(t) =[At−1B, At−2B, . . . , B], C (t) =col{C,CA, . . . ,CAt−1}

D(1) = 0 for t=1; D(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

CB 0 · · · 0

...
...

. . .
...

CAt−2B CAt−3B · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

for t�2

Q(t) = diag(Q,Q, . . . ,Q), R(t) =diag(R, R, . . . , R)

Proof
Suppose there is no packet dropout, thus we can put the state–space model (1), (2) into global form:

xt = A(t)x0+B(t)w(t) (11)

y(t) =C (t)x0+D(t)w(t)+v(t) =C (t)x0+[D(t) I ]
[
w(t)

v(t)

]
(12)

with w(t) :=col{w0,w1, . . . ,wt−1}, y(t) :=col{y0, y1, . . . , yt−1}, v(t) :=col{v0,v1, . . . ,vt−1}, and

〈⎡⎢⎢⎣
w(t)

v(t)

x0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
w(t)

v(t)

x0

⎤
⎥⎥⎦
〉
=

⎡
⎢⎢⎣
Q(t) 0 0

0 R(t) 0

0 0 �0

⎤
⎥⎥⎦

The result of this lemma follows by the optimality of the Kalman filter. The only non-trivial
thing here is the correlation between the process noise term and measurement noise term in the
global model (11), (12), which can be solved by introducing some non-zero S in the Riccati
recursion. �

It is easy to see A(t), B(t),C (t),D(t) are the state transition matrix, observability map, controlla-
bility map and the impulse response matrix, respectively. Based on the above lemma, it is possible
to study some properties of {Pt , t�0} without resorting to the Riccati recursion (8) step by step
explicitly.

Lemma 3
For 1�i�(Io−1), Io�2, the positive constants d(1)

i in inequality (10) can be bounded by

d(1)
i �
i
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and 
i , 1�i�(Io−1) are the solutions to the following set of convex optimization problems in
terms of LMI:

minimize 
i

subject to

[

i I (A(i)+K (i)C (i))′

A(i)+K (i)C (i) I

]
�0

(13)

where A(i),C (i) are defined similar to Lemma 2 and K (i) are unknown parameter matrices with
compatible dimensions.

Proof
First consider the case i=1. Similar to [12], let

�(K , P) :=(A+KC)P(A+KC)′+KRK′+BQB′

By taking ��(K , P)/�K , it is easy to get that

K =KP :=−APC′(CPC′+R)−1

minimizes �(K , P) and �(KP , P)=F(P), which implies that

‖F(P)‖=‖�(KP , P)‖�‖�(K , P)‖�‖A+KC‖2‖P‖+‖KRK′+BQB′‖
Compare the above inequality with (10), then we can conclude that d(1)

1 can be bounded by

‖A+KC‖2 for any K , which further implies d(1)
1 �minK {‖A+KC‖2}. We also have

‖A+KC‖2=min{
1|
1 I −(A+KC)′(A+KC)�0}
and 
1=minK {‖A+KC‖2} can be easily obtained through (13) with i=1.

For i>1, we have Fi (P)=�(P, A(i), B(i),C (i),Q(i),D(i)Q(i)(D(i))′+R(i),Q(i)(D(i))′) based
on Lemma 2. Further denote R̄(i) =D(i)Q(i)(D(i))′+R(i), S(i) =Q(i)(D(i))′ and define the quantity

�̄(K (i), P) :=(A(i)+K (i)C (i))P(A(i)+K (i)C (i))′+[B(i) K (i)]
[

Q(i) S(i)

(S(i))′ R̄(i)

][
(B(i))′

(K (i))′

]

Therefore, K (i) =K (i)
P :=−(A(i)P(C (i))′+B(i)S(i))(C (i)P(C (i))′+ R̄(i))−1 minimizes �̄(K (i), P)

and �̄(K (i)
P , P)=Fi (P). We have

‖Fi (P)‖ = ‖�̄(K (i)
P , P)‖�‖�̄(K (i), P)‖

� ‖A(i)+K (i)C (i)‖2‖P‖+
∥∥∥∥∥[B(i) K (i)]

[
Q(i) S(i)

(S(i))′ R̄(i)

][
(B(i))′

(K (i))′

]∥∥∥∥∥
Similarly, after comparing it with (10), we have d(1)

i �
i =minK (i){‖A(i)+K (i)C (i)‖2} and
(13) again offers a way to compute 
i when 1<i�(Io−1). This completes the proof of this
lemma. �
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Obviously, 
i as upper bounds for d
(1)
i can be obtained through (13) via standard LMI toolbox

directly.

Remark 3.1
From the proof of Lemma 3, there always exists K (i) such that d(1)

i =0 for i�Io, since (A,C) is
assumed to be observable and thus C (i) has full-column rank when i�Io.

Remark 3.2
In the simulation example of [13], ‖F(P)‖�‖AA′‖‖P‖was used to estimate d(1)

1 in inequality (10);
in [15], the same authors applied a suboptimal estimator to aid stability check and adopted a
numerical method to search for a better estimation of d(1)

1 for a two-dimensional example. The
method in [14] does not involve estimating these constants and was shown to be less conservative
in some cases; however, it approximates Fi (P) by Gi (P) when i ∈[1, (Io−1)] with Io�2, which
is still conservative. Compared with the aforementioned papers, Lemma 3 presents an easy and
efficient way to estimate d(1)

i ; see also the first simulation example of this paper.

When the packet losses are driven by a binary Markovian process, the sojourn times are proved
to be i.i.d.; see Lemma 2 in [13]. In this note, the stochastic characteristic of sojourn times with
bounded Markovian packet losses is given in the following lemma.

Lemma 4
Denote the joint distribution of sojourn times ��

l ,�
�
l by

Pr(l) :=Pr(��
1=a1,�

�
1=b1,�

�
2=a2,�

�
2=b2, . . . ,�

�
l =al ,�

�
l =bl)

where for any positive integer i , ai ∈N and bi ∈M. Then, we have:

Pr(1) =
{

�b1 if a1=1

�0(�00)
a1−2�0b1 if a1�2

Pr(l+1) =
{

�blbl+1Pr(l) if al+1=1

�bl0(�00)
al+1−2�0bl+1Pr(l) if al+1�2

Proof
The result can be obtained based on the Markov property of the packet-loss process {�(ik)}. �

3.2. Peak covariance stability

Now we are in the position to present our main results. We start with considering the peak
covariance stability for the special case: Io=1.

Theorem 3.1
If the observability index Io of the observable linear system or the pair (A,C) equals to 1, then
the Kalman filtering with bounded Markovian packet losses is always peak covariance stable.
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Proof
First of all, E[‖P�0‖]=‖P0‖ since P0∈Sn is a given constant matrix. Let {al ,bl , l�1,al ∈N,bl ∈
M} denote one realization of the random process {��

l ,�
�
l , l�1}. As P�1 is uniquely determined for

fixed ��
1,�

�
1, and P0, we have:

E[‖P�1‖] =
+∞∑
a1=1

s∑
b1=1

‖P�1‖Pr(1)

=
+∞∑
a1=2

s∑
b1=1

�0(�00)
a1−2�0b1‖Gb1(Fa1(P0))‖+

s∑
b1=1

�b1‖Gb1(F(P0))‖ (14)

In the above, Lemma 4 has been applied to obtain (14), whose first part describes all the possible
trajectories starting from initial condition �0=0 and reaching ��

1=b1,b1∈M before the first peak
time �1, and the second part corresponds to �0=b1,b1∈M. Then, by applying Lemma 1, we
have

E[‖P�1‖] �
s∑

b1=1

+∞∑
a1=2

�0(�00)
a1−2�0b1‖Gb1(K In)‖

+
s∑

b1=1
�b1(d

(1)
1 ‖Ab1‖2‖P0‖+d(0)

1 ‖Ab1‖2+c1) (15)

�
s∑

b1=1

+∞∑
a1=2

c2�0�0b1(�00)
a1−2

+
s∑

b1=1
�b1(d

(1)
1 ‖Ab1‖2‖P0‖+d(0)

1 ‖Ab1‖2+c1) (16)

� c3

where c1,c2 are constants and c3 is a function of P0. Note that if �00=1, i.e. it is the trivial case,
the first part of (17) is 0 due to �0b1 =0 and it is convergent for �00<1.

Furthermore, for any l�1 we can deduce that

E[‖P�l+1
‖] =

+∞∑
a1=1

s∑
b1=1

. . .
+∞∑

al+1=1

s∑
bl+1=1

‖P�l+1
‖Pr(l+1)

=
+∞∑
a1=1

s∑
b1=1

. . .
+∞∑

al+1=2

s∑
bl+1=1

�bl0(�00)
al+1−2�0bl+1‖Gbl+1(Fal+1(P�l ))‖Pr(l)

+
+∞∑
a1=1

s∑
b1=1

. . .
s∑

bl+1=1
�blbl+1‖Gbl+1(F(P�l ))‖Pr(l)
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Then, by using Lemma 1 again, the following inequalities can be obtained:

E[‖P�l+1
‖] �

+∞∑
a1=1

s∑
b1=1

. . .
+∞∑

al+1=2

s∑
bl+1=1

�bl0(�00)
al+1−2�0bl+1‖Gbl+1(K In)‖Pr(l)

+
+∞∑
a1=1

s∑
b1=1

. . .
s∑

bl+1=1
�blbl+1‖Gbl+1(K In)‖Pr(l) (17)

�
+∞∑
a1=1

s∑
b1=1

. . .
+∞∑

al+1=2

s∑
bl+1=1

c4�bl0�0bl+1(�00)
al+1−2Pr(l)

+
+∞∑
a1=1

s∑
b1=1

. . .
s∑

bl+1=1
c5�blbl+1Pr(l)

�
+∞∑
a1=1

s∑
b1=1

. . .
+∞∑
al=1

s∑
bl=1

c6Pr(l)+
+∞∑
a1=1

s∑
b1=1

. . .
+∞∑
al=1

s∑
bl=1

c7Pr(l)

� c8

where c4, . . . ,c8 are constants, and (18) is due to the fact that for l�1, any possible value of P�l
belongs to Sn

0. Hence, the two inequalities: E[‖P�1‖]�c3 and E[‖P�l+1
‖]�c8 complete the proof

of this theorem. �

Remark 3.3
By the above theorem, we can conclude that every Kalman filter with bounded Markovian packet
losses is peak covariance stable for observable scalar systems, since their observability index
always equals to 1.

The following theorem will extend the peak covariance stability result to Io�2.

Theorem 3.2
When the observability index Io�2, then the Kalman filtering with bounded Markovian packet
losses is peak covariance stable, if �(H)<1, where H =(hi j )s×s and

hi j =
(

�i j d
(1)
1 +

Io−1∑
m=2

�i0(�00)
m−2�0 j d

(1)
m

)
‖A j‖2 (18)

Proof
By a similar argument as in Theorem 1, we have:

E[‖P�1‖] =
+∞∑
a1=1

s∑
b1=1

‖P�1‖Pr(1)

=
s∑

b1=1

+∞∑
a1=Io+1

�0(�00)
a1−2�0b1‖Gb1(Fa1(P0))‖

+
s∑

b1=1

Io∑
a1=2

�0(�00)
a1−2�0b1‖Gb1(Fa1(P0))‖+

s∑
b1=1

�b1‖Gb1(F(P0))‖
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Then from Lemma 1, we get

E[‖P�1‖] �
s∑

b1=1
�b1(d

(1)
1 ‖Ab1‖2‖P0‖+d(0)

1 ‖Ab1‖2+e2)

+
s∑

b1=1

+∞∑
a1=Io+1

�0(�00)
a1−2�0b1‖Gb1(K In)‖

+
s∑

b1=1

Io∑
a1=2

�0(�00)
a1−2�0b1(d

(1)
a1 ‖Ab1‖2‖P0‖+d(0)

a1 ‖Ab1‖2+e1)

� e3+
s∑

b1=1

(
Io∑

a1=2
�0(�00)

a1−2�0b1d
(1)
a1 +�b1d

(1)
1

)
‖Ab1‖2‖P0‖

= e3+FD

where e1,e2,e3 are constants, D=[1 1 . . . 1]T∈Rs×1, F=[�1 �2 . . . �s]∈R1×s and for i=
1,2, . . . ,s

�i =
(

�i d
(1)
1 +

Io∑
m=2

�0(�00)
m−2�0i d

(1)
m

)
‖Ai‖2‖P0‖

For every l�1, we have:

E[‖P�l+1
‖] =

+∞∑
a1=1

s∑
b1=1

. . .
+∞∑

al+1=1

s∑
bl+1=1

‖P�l+1‖Pr(l+1)

=
+∞∑
a1=1

s∑
b1=1

. . .
s∑

bl+1=1

+∞∑
al+1=Io

�bl0(�00)
al+1−2�0bl+1‖Gbl+1(Fal+1(P�l ))‖Pr(l)

+
+∞∑
a1=1

s∑
b1=1

. . .
s∑

bl+1=1

Io−1∑
al+1=2

�bl0(�00)
al+1−2�0bl+1‖Gbl+1(Fal+1(P�l ))‖Pr(l)

+
+∞∑
a1=1

s∑
b1=1

. . .
s∑

bl+1=1
�blbl+1‖Gbl+1(F(P�l ))‖Pr(l)

:= �1+�2+�3

It is easy to estimate that

�1 �
+∞∑
a1=1

s∑
b1=1

. . .
s∑

bl+1=1

+∞∑
al+1=Io

�bl0(�00)
al+1−2�0bl+1‖Gbl+1(K In)‖Pr(l)�e4 (19)

�2 �
+∞∑
a1=1

s∑
b1=1

. . .
s∑

bl+1=1

Io−1∑
al+1=2

�bl0(�00)
al+1−2�0bl+1

×(d(1)
al+1

‖Abl+1‖2‖P�l‖+d(0)
al+1

‖Abl+1‖2+e5)Pr(l) (20)

�3 �
+∞∑
a1=1

s∑
b1=1

. . .
s∑

bl+1=1
�blbl+1(d

(1)
1 ‖Abl+1‖2‖P�l‖+d(0)

1 ‖Abl+1‖2+e6)Pr(l) (21)
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with constants e4,e5,e6 and it follows recursively that

E[‖P�l+1
‖]�FHl D+e7 (22)

where e7 is a constant and H is described in Equation (18).
Based on (22), if �(H)<1, E[‖P�l+1

‖] is bounded as l→+∞, which implies that
supl�1 E[‖P�l‖]<+∞. This completes the proof. �

Note that when the observability index Io=2, the second item in the parenthesis of (18) vanishes.

Remark 3.4
In [4], the authors presented a modified observer-based estimator running parallel with the Kalman
filter. The scheme can reduce the error covariance by switching to the suboptimal estimator when
the error covariance of the Kalman filter is above some bound due to packet losses; however,
this advantage is achieved at the expenses of sending a series of previous measurements through
the network at each time step. Another difference is that the metric they considered is Pr[Pt�M]
with upper-bound matrix M instead of E[Pt ] or E[‖P�l‖] adopted in this paper. The relationship
between these two metrics could be an interesting topic for future studies.

Remark 3.5
From (18), it can be observed that if the maximum number of consecutive packet dropouts s is
large but transition probabilities �0 j and �i j are very small for large values of i and j and the
system does not grow very fast, the stability condition of Theorem 2 may still be dominated by
the part of the matrix H corresponding to lower values of consecutive packet dropouts.

4. NUMERICAL EXAMPLES

4.1. Case I: a second-order system

Consider the same system model as in [13, 14]:

A=
[
1.3 0.3

0 1.2

]
, C=[1 1]

The covariance of w(t),v(t) are chosen as Q= I2, R=1. First, we consider the packet-loss
model of [13, 14] where the packet loss at each time step is a Markov chain, which implies that
the number of consecutive packet losses could be infinite. In this situation, it is easy to check
that Io=2 and we need to estimate d(1)

1 only. From Lemma 3, we have d(1)
1 =1.2200, which is

much smaller than the estimation: 2.00813 in [13]. Further, if we apply Lemma 3 of this note to
Theorem 3.1 in [14], the condition there can be rewritten as

∞∑
i=1

‖Ai‖2(1−q)i−1q
Io−1∑
j=1

d(1)
j (1− p) j−1 p<1

then for the same recovery rate q=0.65, we can easily obtain that the maximum failure rate p
is 0.1960, which also shows that the estimation in Lemma 3 is better than that of [14] where the
maximum failure rate p is 0.1191.
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Figure 2. Case I: �t and ‖Pt‖ vs time steps.

Next, we consider the bounded Markovian packet-loss case. Suppose the maximum successive
packet losses of the underlying network is 2 and the transition probability matrix is given by:

�1=
⎡
⎢⎣
0.6 0.2 0.2

0.8 0.1 0.1

0.8 0.1 0.1

⎤
⎥⎦

From Theorem 2, we have �(H)=0.7352<1; thus, the Kalman filtering is peak covariance
stable. Figure 2 illustrates a sample path of �t and ‖Pt‖ with the given �1.

Moreover, if the maximum number of successive packet losses shrinks to 1 with transition
probability matrix

�2=
[
0.6 0.4

0.8 0.2

]

then �(H)=0.4900<1. Hence, we can conclude that the Kalman filtering is peak covariance stable
as well.

4.2. Case II: a third-order system

Consider the following third-order system:

A=
⎡
⎢⎣

0 0.1 1.2

0 0.5 0

1.3 0.1 0

⎤
⎥⎦ , C=[1 0 0]
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Figure 3. Case II (C=[1 0 0]): �t and ‖Pt‖ vs time steps.

with Q= I3, R=1. The eigenvalues of A are 1.2490,−1.2490,0.5000, and the observability index
Io is 3. Suppose the maximum consecutive packet losses here is 5 and

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.1 0.1 0.1 0.1 0.1

0.1 0.4 0 0.3 0 0.2

0.1 0.3 0.1 0.3 0 0.2

0.1 0.4 0 0.3 0 0.2

0.1 0.3 0 0.3 0.1 0.2

0.1 0.4 0 0.3 0 0.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

After obtaining d(1)
1 =1.4522,d(1)

2 =0.0933 from Lemma 3, we have �(H)=5.7932>1 by
Theorem 2 again, and Figure 3 shows that a sample path of ‖Pt‖ can reach a relatively high level
even before 100 time steps. Note that the rapid drop of ‖Pt‖ around the 50th time step is mainly
due to the double successive packet receipts.

Furthermore, if we set the matrix C= I3 with Io=1, then according to Theorem 1, no additional
condition is needed for the peak covariance stability. Figure 4 gives a sample path of �t and ‖Pt‖
with the same �.

5. CONCLUSIONS

The main contributions of this paper include: (1) a less conservative approach to the upper-bound
estimation of Riccati-recursion solution; (2) some sufficient stability condition for time-varying
Kalman filter with finite consecutive packet losses driven by a Markov chain. Two numerical
examples were presented to illustrate the usefulness of the derived results. It is worth noting that
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Figure 4. Case II (C= I3): �t and ‖Pt‖ vs time steps.

the sufficient condition may still be conservative and better stability conditions could be a future
research topic. Conditions for covariance stability in a usual sense and the relationship between the
peak covariance stability and usual covariance stability deserve future studies. The corresponding
control problem for networked systems with possible packet losses is another interesting topic
worth of investigation.
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