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Ha ESTIMATION FOR DISCRETE-TIME LINEAR 
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SUMMARY 
This paper is concerned with the problem of H m  estimation for linear discrete-time systems with time- 
varying norm-bounded parameter uncertainty in both the state and output matrices. We design an 
estimator such that the estimation error dynamics is quadratically stable and the induced operator norm 
of the mapping from noise to estimation error is kept within a prescribed bound for all admissible 
uncertainties. A Riccati equation approach is proposed to solve the estimation problem and it is shown 
that the solution is related to two algebraic Riccati equations. 

KEY WORDS H m  estimation Uncertain discrete-time systems Robust estimation Algebraic Riccati 
equations 

1. INTRODUCTION , 
The problem of optimal filtering has been well studied over the past decades with much 
attention being focused on systems subject to input and measurement noises, which are 
assumed to be ‘white’ processes with known spectral density; see, for instance, the celebrated 
Kalman filtering approach. In many situations, however, the statistics of the noise sources are 
not fully known. In order to cope with this problem, considerable interest has been devoted 
to the problem of estimation for systems with noise of partially unknown statistics, e.g. noise 
with bounded energy or bounded amplitude; see, for instance, References 3,6,8,10,12,13 and 
15-19. More specifically, H m  estimation has been developed to deal with energy-bounded 
noises, i.e. where only upper bounds on the spectral density of the input and the measurement 
noises are known. 

Most of the work in H, estimation has been focused on continuous-time systems. Initially, 
a frequency-domain approach was proposed to solve this problem, e.g. Reference 12. 
Following the dramatic development of the Hm control theory (see, for example, References 5 
and 7 and the references therein), many results on the H m  estimation have been derived based 
on the Riccati equation approach; see, for example, References 3 and 15-19. In addition, the 
interpolation theory has recently been used by Reference 8 in Hm estimation for both 
continuous-time and discrete-time systems. The discrete-time H m  estimation has also been 
discussed in References 6 and 13 using a polynomial equation approach whereas a Riccati 
equation approach has been used in Reference 19. Note that all of the above work was 
accomplished for systems where the only uncertainty in the model is in the form of a bounded 
energy noise and thus it cannot be applied directly to systems with parameter uncertainty. 
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Very recently, there has been some attempt to deal with the H m  estimation of uncertain 
systems. The basic characteristics of this problem is that the system considered contains not 
only uncertainty in the form of a bounded energy noise but also parameter uncertainty. This 
problem is referred to as robust H,  estimation and has been solved via both the interpolation 
theory and the Riccati equation approaches in the continuous-time context in Reference 10. 
The focal point of Reference 10 is to convert the parameter uncertainty to an extra parameter 
(constant) scaled noise with bounded energy. 

In this paper we solve the problem of robust Hm estimation for discrete-time systems. The 
linear discrete-time systems under consideration are subject to time-varying norm-bounded 
parameter uncertainty and input and measurement noises with bounded energy. The parameter 
uncertainty appears in both the state and output matrices. We are concerned with the following 
robust H m  estimation problem: designing an estimator such that the estimation error dynamics 
is quadratically stable and the induced operator norm of the mapping from the noise to the 
estimation error is kept within a prescribed bound for all admissible parameter uncertainties. 
The paper can be regarded as the discrete-time counterpart of Reference 10. Although the 
interpolation approach can also be used as in Reference 10, only the Riccati equation approach 
is presented for simplicity. Similar to the continuous time case," two algebraic Riccati 
equations (ARES) are required to solve the problem, which raises no duality to the state 
feedback robust H, control problemg where only one Riccati equation suffices. Compared with 
the H, estimator for systems without parameter uncertainty, the results in this paper indicate 
that the estimator structure should take into account the parameter uncertainty. Finally, we 
point out that when there is no parameter uncertainty in the system, the robust Hm estimator 
proposed in this paper will recover well-known Hm estimation results. 

2. PROBLEM AND PRELIMINARIES 

Consider the class of discrete-time uncertain systems described by a state-space model of the 
the form 

(la) (Xi): ~ ( k  + 1) = [ A  + AA (k ) ]x (k )  + Bw(k)  
y ( k )  = [C + AC(k)]x(k) + Dw(k) 
z (k)  = Lx(k) 

where x ( k )  E IR" is the state, w(k)  E Rm is the noise which belongs to 12 [0, a), y ( k )  E IR' is the 
measured output, z ( t )  E Rp is a linear combination of the state variables to be estimated, 
A, B, C, D and L are known real constant matrices that describe the nominal system and 
AA (k) and A C ( k )  represent the time-varying parameter uncertainties which have the following 
structure: 

with F ( . ) :  Z + IRiX' being an unknown matrix satisfying 

FT(k)F(k) < I ,  vk = 0, 1, ... (3) 
and NI, H2 and E being known real constant matrices with appropriate dimensions. 

In this paper, we are concerned with designing an estimator for z ( k )  of the form 

V e ) :  xe(k + 1) = Aexe(k) + Key(k) 
Ze (k) = L e X e  (k) 

(4a) 
(4b) 
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where xe(k) E R' is the estimator state, the matrices A,, Ke and Le and the dimension 1 are to 
be chosen. The estimation error is defined by 

( 5 )  e(k)  = ~ ( k )  - ~ e ( k )  = Lx(k)  - LeXe(k) 

Before proposing the problem of robust H, estimation, we introduce the following definition 
of stability for uncertain systems. 

A 

Definition 2.1. 

Consider the uncertain system 

x(k  + 1) = [ A  + AA(k) ]x (k )  

This system is said to be quadratically stable if there exists a matrix P =  PT > 0 and a scalar 
a > 0 such that this system admits a Lyapunov function V ( x )  = xTPx satisfying 

U x ( k  + I ) ]  - J"X(k)l = XT(k) ( [ A  + AA (k)] T P [ A  + AA(k)]  - P )  ~ ( k )  
< - ax'(k)x(k) 

for all admissible uncertainty AA(k) ,  x(k )  E R" and k = 0, 1,2, ... . U 

In this paper, we consider the following robust H, estimation problem: given a prescribed 
level of noise attenuation y > 0, find an estimator of the form (4) for the system (1) such that 
the following conditions are satisfied: 

(a) The augmented system of (El) and the estimator ( C e )  is quadratically stable; 
(b) With zero initial conditions for x ( k )  and xe(k), the induced operator norm of the 

mapping %from the noise, w,  to the estimation error, e, satisfies the following condition: 

(6) II $2 I1 < Y 
for all admissible F(k)  satisfying (3) .  

Note that the condition (a) of the above definition is needed to guarantee the uniform 
asymptotic stability of the error dynamics in the presence of time-varying parameter 
uncertainty; see, for example, References 2 and 9. 

In connection with the robust H, estimation problem for the system (l), we introduce the 
following parameterized discrete-time system 

(C2): x(k  + 1) = Ax(k)  + (7a) 

y ( k ) = C x ( k ) +  D YH2 * ( k )  
[ c l  

wherex(k) E IR" is the state, G(k)  E IR"" is the noise which belongs to 12 [0, m), y ( k )  E R r  is the 
measured output, A,  B, C,D,  HI  and H2 are the same as in the system ( l ) ,  E > 0 is a parameter 
to be chosen and y > 0 is the level of noise attenuation we wish to achieve for the estimator. 
Associated with the system (7), let the following linear combination of the state variables of 
(C2) be estimated: 
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Moreover, we define an estimate of Z(k) obtained from the estimator (4) as given by 

Hence, the corresponding estimation error reads 

Also, we denote by F(z)  the transfer function from the noise, G, to the estimation error, 2. 
The following theorem estabIishes the relationship between the robust Hm estimation 

problem associated with (1) and the Hm estimation problem associated with (7) and estimation 
error (10). 

Theorem 2.1. 

an estimator in the form of (4) such that 
Given a prescribed level of noise attenuation y > 0, if there exist some constant E > 0 and 

then the robust Hm estimation problem for the uncertain system (1) is solvable with the same 
estimator (4). 

Proof See Appendix A. 

A 
In the above, 11 H(z)  11, = sup umax[H(eio)], where umax(-) stands for the maximum 

By Theorem 2.1, the robust Hm estimation problem for system (Cl) can be solved by finding 
a constant E > 0 such that the Hm estimation problem for the system (7) with estimation error 
(10) is solvable via the estimator ( C e ) .  Although there is no parameter uncertainty in the system 
(7), the zero entry in (9) makes this estimation problem a non-standard one. As it can be seen 
from ( lO),  the estimator has no influence on P2, which renders the choice of the matrices in 
( C e )  less trivial. 

In the remainder of this section we shall list some results on H m  estimation for linear time- 
invariant discrete-time systems. These results can be established by dualizing the Hm control 
results for discrete-time systems in References 11, 14 and 20. 

singular value. 0 6 o62r 

Consider the system 
(E3): x(k  + 1) = Ax(k)  + Bw(k)  (124 

y ( k )  = Cx(k) + Dw(k) ( 12b) 
z (k)  = Lx(k) ( 12C) 

where x(k )  E R" is the state, w(k)  c Rm is the noise which belongs to h [0, CO), y ( k )  € Rr is the 
measured output, z (k)  € IRp is a linear combination of state variables to be estimated, 
A, 3, C, D and L are constant matrices with appropriate dimensions. We also make the 
following assumptions: 

Assumptions A 

(A.1) (C, A )  is detectable; 
(A.2) R = DD' > 0; 
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(A3) r a n k r  -:J*' i] = n + m, Vw E [O, 2a1. 

With the estimator (4), the estimation error associated with (E,) is given by 

e (k )  = ~ ( k )  - Ze(k) = Lx(k)  - Lexe(k) (13) 
Also, let G(z) be the transfer function from the noise, w, in (12) to the estimation error, e. 
Then, the following result holds. 

Theorem 2.2. 

noise attenuation. Then there exists an estimator (E,) for z (k)  such that 
Consider the system (E,) satisfying Assumptions A and let y > 0 be a prescribed level of 

I I  G(z)  llDo .c Y 
if and only if there exists a solution P= PT 2 0 to the ARE 

P= APAT-(APCT+ BDT)(C/PCT+RI)-'(APCT+BD:)~+BB~ (14) 
such that 

(a) U =  I- y - 2 ~ ~ ~ T  > 0; 
(b) The matrix 

A - (APCI + BDT)(C/PCT + R,)-'C/ 

is asymptotically stable, where 

Moreover, if the above conditions are satisfied, a suitable estimator is given by 

xe(k + 1) ( A  - KeC)xe(k) + Key(k) 
Ze ( k )  = Lxe ( k )  

where 
Ke = (BDT + A VCT)(CVCT + LIDT))-' 
v =  P+ y - 2 ~ ~ T ~ - ' ~ ~  

Remark 2. I .  

Note that Assumption (A.2) together with condition (a) will guarantee the non-singularity 
of the matrix CrPCf + RI. Moreover, it is easy to see that when y + 00 the above result recovers 

0 

Finally, we introduce the following assumptions for the system (1) which will be used to 
guarantee the existence of a desired estimator and the stability of the estimation error 
dynamics: 

that of the Kalman filter for system (&). 
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Assumptions B 

(B.l) The nominal system matrix A is stable and invertible; 
(B.2) (C, A )  is detectable; 
(B.3) DDT > 0. 

Note that Assumption (B.3) is similar to the standard assumption in Kalman filtering for the 
nominal system (A, B, C, D )  which amounts to that all components of the measured output 
are noisy. It should be pointed out that cases with noise-free measurements are rarely 
encountered in practice. 

3. RICCATI EQUATION APPROACH TO ROBUST U, ESTIMATION 

This section is devoted to solving the robust H, estimation problem via a Riccati equation 
approach. This will be accomplished by using Theorem 2.1 which relates the robust H ,  
estimation problem to an U, estimation problem and the latter is solved via two algebraic 
Riccati equations. 

Consider the system (C2) and denote by Gl(z) and Gz(2) the transfer functions from @(k) 
to y(k) and to Z(k) respectively, i.e. 

Observe that Gl(z) and G2(z) are parameterized by E .  Also, consider that the estimator (Ce)  
is used to estimate &(k) and we denote by Ge(z) the transfer function between y(k) and ze(k) 
of (Ee), i.e. 

Ze(Z)  = G ~ ( z ) Y ( z )  (18) 
With the above notations, (9) and (10) imply that the transfer function from G(k) to P(k) is 
given by 

By taking into account that 

T T ( l / Z ) F ( Z )  = FT(l/z>T1(z) + m / z ) T 2 ( z )  

it is now clear that to find an estimator (Ce) such that for some E > 0, 

It n z )  IL < Y 

II G d Z )  II, < Y 

(21) 

(22) 
it is necessary that 

for the same E > 0. 

in the following co-spectral factorization form 
It should be noted that condition (22) will dlow us to decompose [I- 7-2GT2(1/z)Gz2(z)} 

[ I -  Y - ~ G F ~ ( ~ / z ) G ~ ~ ( z ) J  = W)VT(l/z) (23) 
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where V(z )  is a (m + i )  x (m + i )  invertible rational matrix with both V(z)  and V -  ‘ ( z )  being 
stable. ’ 

Hence, it follows that (21) holds if and only if 

Remark 3.1. 

Note that finding an estimator ( C e )  to satisfy (24b) is equivalent to designing an estimator 
(Ce) for the linear combination, Zl(k), of the state variables of (CZ) such that 
11 21 - ze 112 < y 11 G ((2, where D is a new noise belonging to 12[0,00) that generates B in (Et) 
via V(z ) ,  i.e. 

B(z) = V(z)D(z) (25) 

In the above, 11.112 stands for the usual h [ O ,  a) norm. 
This implies that the H, estimation problem for (7) can be solved using existing results on 

U 

The following lemma provides a suitable state-space realization for the co-spectral factor V(z) .  

H,  estimation, provided that a state-space realization for V(z)  is available. 

Lemma 3.1. 

Consider the transfer function matrix G22(z) satisfying Assumption (B. 1) and 
11 GZZ(Z) 11, c y.  Then, there exists a co-spectral factor V ( z )  of (23) with state-space realization 

(26) V(z)  = d(zZ- A)-% + b 
where 

B =  B - H I  [ : I  

and P =  PT 2 0 is a solution to the following ARE: 

A ~ P A  - P + r - 2 ~ T ~ B ( ~ -  y - 2 B T ~ B ) - 1 B T ~ ~  + ~ E ~ E  = o (32) 

which guarantees that 

r -  y2BTpE > o 
and that 

A + y - 2 B ( r -  y-’BTPB)-’BTPA 

is asymptotically stable. 

Proof. See Appendix B. 
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Remark 3.2. 

It should be noted that the existence of the matrix P in Lemma 3.1 is guaranteed by the 
given assumptions. In fact, by the results in Reference 4, the existence of such a matrix P is 

0 

By considering (25) and assuming 11 G22(z) 11, < y, Lemma 3.1 leads to the following state- 
space representation for the system (7) and Zl(k): 

equivalent to 11 G22(z) 11, < y and A being stable. 

where 

La= [L 01 (341) 

and with .?, 8, c, and fi given as in Lemma 3.1. 
It can be observed from (7), (24b) and the definition of V(z)  that there are n pairs of stable 

zero-pole cancellation in (34). Therefore, the system (34) can be reduced to nth order by using 
a linear transformation on xa(k). Indeed, by introducing the following transformation: 

and considering zero initial conditions, the system (34) reduces to: 

(Cs): ~ ( k  + 1) = Ax(k)  + BG(k) 
y(k) = &(k) + S i q k )  
ZI (k) = Lx(k)  

where 
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Now, in view of Remark 3.1, the design of an estimator (Ce) for the system (7) to guarantee 
that (24b) holds is reduced to finding an estimator ( E , )  for the system (CS) and estimation error 

21 ( k )  = Lx(k) - LeXe(k) (35h) 

such that 11 El  112 c y 11 112. Note that this problem is a standard H, estimation problem and 
therefore ( E , )  can now be determined by using Theorem 2.2. A complete solution is presented 
in the next theorem. In particular, the estimator ( E , )  is of nth order. 

Theorem 3.1. 

Consider the uncertain system ( 1 )  satisfying Assumptions B. Given a prescribed level of 
noise attenuation y > 0, the associated robust H, estimation problem is solvable if for some 
E > 0 the following conditions are satisfied: 

(a) There exists a solution P =  PT 2 0 to the ARE: 

ATPA - P +  y-'ATPB(I- y-'BTPB)-'BTPA + e2ETE= 0 (36) 

such that 
I - y-2B'PB > 0 (37) 

and the matrix A + y-'B(Z- y-'BTPB)-'BTPA is stable; 

(b) There exists a solution Q = QT 2 0 to the ARE: 

Q = AQAT - (AQCF + BbT)(C,Qe: + &)-'(AQeT + BD:)T + BBT (38) 

such that 

(i) O= Z- y - 2 ~ ~ ~ T  > 0; 
(ii) The matrix 

A - (AQe: + BDT)(C,QC'T + &)-'G 
is asymptotically stable, where 

In the above, A^, B, c, and b are the same as in (35). Moreover, if the above conditions are 
satisfied, a suitable estimator is given by: 

xe(k + 1 )  = Axe(k) + Ke b ( k )  - &e(k)l (394 
(39b) Ze (k )  = Lxe (k )  

where 

Ke = (BDT + APcT)(ePeT + DDT)-' 
P= Q +  y - 2 ~ ~ T O - 1 ~ ~  

Remark 3.3. 

Note that the estimator (39) can be rewritten as 

xe(k+ l ) = ( A  + AAwo,st)xe(k) + K e b ( k ) -  ( C +  ACworst)Xe(k)I (40) 
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Similar to the continuous-time case," AAwors, and ACwOrst can be interpreted as the worst 
case uncertainty in the state and output matrices, respectively. Also, it can be seen from (39c) 
that the estimator gain matrix, Ke, depends on the uncertainty. When there is no parameter 
uncertainty in system (l), then P= 0 and thus the condition (a) in Theorem 3.1 will be 

0 superfluous. In this case, the estimator (39) will reduce to that in Section 2. 

Remark 3.4. 

The result in Theorem 3.1 can be easily extended to the case when the uncertainty in (2) and 
(3) is of a block-diagonal form, i.e. 

F(k) = diag(Fi(k), F2(k), ..., Fa(k)l 
with FT(k)K(k) < I, 1 = 1,2, ..., a. However, in this situation the corresponding scaled H m  

estimation problem will involve a scaling parameters. This can be obtained by applying 
Theorem 3.1 on the scaled (2) given by the following: 

where 

The details are omitted. 0 

Remark 3.5. 

It should be noted that the choices of the structure matrices HI, Hzand E in (2) are not 
unique. Therefore, the following interesting question arises: does the choice of these matrices 
affect the solvability of the robust H, estimation problem? The answer to this problem is not 
clear in the general case. However, it is easy to verify that rescaling and the so-called unitary 
transformation of these matrices do not affect the solvability. By rescaling, we mean to rewrite 
H 1 , H ~ a n d  E, respectively, as HI/X,H~/X and X E  for some X > 0; and by unitary 
tranpformation, we mean to rewrite [HT, HT] T, E and F(k) ,  respectively, as [HT, HT] T U ~ ,  U2E 
and UilF(k)UF1 for some unitary matrices U1 and UZ. Indeed, the scaling parameter X can 
be absorbed by E; and the introduction of U1 and U2 does not change (3) and the ARES (36) 
and (38). 0 

CONCLUSION 

In this paper we have solved the discrete-time H m  estimation problem for systems subject to 
time-varying norm-bounded parameter uncertainty in both the state and output matrices. It is 
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shown that the robust H, estimation problem can be converted to solving a discrete-time co- 
spectral factorization and an H, estimation problem for a discrete-time system without 
parameter uncertainty. A Riccati equation approach has been proposed and a solution to the 
robust H, estimation problem has been given in terms of two algebraic Riccati equations. 
Since the state feedback robust H, control can be solved in terms of only one algebraic Riccati 
equation, no duality result has arisen between this problem and the corresponding robust H, 
estimation problem. 

APPENDIX A. PROOF OF THEOREM 2.1. 

The augmented system associated with (4), (7) and (10) is given by 

where 

cc= [L -Le] 
E,= [E 01 

(A.lb) 

(A. lc) 

(A.ld) 

(A.le) 

(A.lf) 

(A. 1g) 
(A. 1 h) 

Suppose condition (11) is satisfied for some E > 0. Then, by Lemma 2.1 of Reference 11 there exists a 
matrix X =  XT > 0 such that 

Now, using the same argument as in the proof of Theorem 3.2 of Reference 9, (A.2) implies that there 
exists a symmetric matrix P > 0 such that 

(A.3) [Ac + HcF(k)Ec] T P [ A ,  + HcF(k)Ec] - P + Y - ~ P B , ( I  + y-ZBzPBc)-lB;fP + CFCc < 0 
for all ~ ( k )  E mix' satisfying (3). 

On the other hand, the augmented system associated with (l), (4) and ( 5 )  is of the form 

5(k + 1) = [ A c  + HcF(k)EcI €(k) + Bcw(k) (A.4a) 
e (k )  = C C W )  (A.4b) 

Finally, by Lemma 2.1 of Reference 9, it follows from (A.3) that (A.4) is quadratically stable and 
condition (6) holds. 

APPENDIX B. PROOF OF LEMMA 3.1 

Initially note that since A is stable and (1 G 2 2 ( ~ )  11- < 7,  it follows4 that the required solution P = PT 2 0 
to the ARE (32) exists. 

Considering that 
czz(z) = EE(ZZ- A ) - ' B  
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we have that a state-space realization for [ I -  y-2G%(l/z)G2z(~)l -' is 

-y-2BBTA-T A -y-2E2BBTA-TETE y-lB 
[I- y-ZG&(l/z)Gzz(~)] -' = [ A - T  1 I ] - E B ~ A - ~ E ~ E  - Y-'BTA -= 

where the matrix notation for a state-space realization of a transfer function is used, i.e. 

c(d- A ) - ' B + D  = 
A [*I 

Now, let us introduce the linear transformation matrix 

and 

Therefore 

- BBTA -T b@T - B T A  - T C T )  [ A - T  I A-Td;T ] [I- y-ZGT2(l/~)G22(~)l = 
- 5 k T A - T  f i @ T - k T A - T C T )  

which is a state-space realization of V(z)  VT(l/z). 

non-singular. 
Finally, note that both V(z)  and V - ' ( z )  are stable because both A and A are stable and fi is 
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