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Quantized feedback control for linear uncertain systems
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SUMMARY

This paper studies robust control problems under the setting of quantized feedback. We consider both the static and dynamic
logarithmic quantizers. In the static quantization case, the quantizer has an infinite number of levels, and the design problem
is to find the minimal quantization density required to achieve a given control objective. In the dynamic quantization case,
the problem is to minimize the number of quantization levels to achieve a given control objective. We present a number
of results for different controller-quantizer configurations. These results are developed using the so-called sector bound
approach for quantized feedback control, which was initiated by the authors previously for systems without uncertainties.
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1. INTRODUCTION

Control using quantized feedback can be traced back
to the work of Kalman [1] in 1956, which studied the
limit cycle behavior of a system with a finite-alphabet
quantizer in the control loop. Widrow [2] in 1961 also
studied quantization errors for sampled-data systems
using statistical analysis methods. Early work can
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also be found in Tou [3], Larson [4], Curry [5], and
Fischer [6]. Many of these researchers studied linear
quadratic control under quantized feedback. More
recent works include [7, 8], which aim at understanding
and mitigation of quantization effects.

Recently, there is a surge of interest in quantized
feedback control, with the aim to understand the
required quantization density or information rate for
control purposes. Noticeable works include [9–13].

Two most pertinent references to this paper are
the work by Elia and Mitter [13] and a follow-up
work by Fu and Xie [14]. In [13], the problem of
quadratic stabilization of discrete-time single-input–
single-output (SISO) linear time-invariant systems
using quantized feedback is studied. The quantizer is
assumed to be static and time invariant (i.e. memory-
less and with fixed quantization levels). It is proved
in [13] that for a quadratically stabilizable system, the
quantizer needs to be logarithmic (i.e. the quantization
levels are linear in logarithmic scale). Furthermore,
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the coarsest quantization density is given explicitly in
terms of the system’s unstable poles. The work of Elia
and Mitter [13] is also generalized to some extent to
guaranteed performance control [15], stabilization of
two-input systems [16], and multi-input systems [17].

In Fu and Xie [14], the work of Elia and Mitter
[13] is generalized to general multi-input–multi-output
(MIMO) systems and to control problems requiring
performances. This is done using the so-called sector
bound method, which is based on using a simple
sector bound to model the quantization error. For a
SISO system with quantized state feedback (which
is the most fundamental problem), the sector bound
method gives an identical result as in [13]. But the
main advantage of the sector bound method is that it
is easy to understand and easy to generalize to more
complicated quantized feedback control scenarios such
as those mentioned above.

In this paper, we study the problem of robust stabi-
lization for linear uncertain systems via logarithmic
quantized feedback. Our work is based on the sector
bound method in [14]. We study both static (memory-
less) logarithmic quantizers and dynamic ones. For the
former, we give conditions under which there exists a
quadratic stabilizing controller for a given quantization
density. For the latter, we introduce a simple dynamic
scaling method in combination with a static logarithmic
quantizer. This allows us to achieve robust stabilization
using a finite-level quantizer. Three cases of quantized
feedback control are considered: state feedback; output
feedback with quantization occurring at the control
input; and output feedback with quantization occurring
at the measured output. The results on robust stabiliza-
tion are then generalized to robust performance control
for two types of performance measures: H∞ and linear
quadratic costs. Several examples are also given to illus-
trate our results and to demonstrate how the required
quantization density or quantization bit rate increases
as the level of system uncertainties increases.

The rest of this paper is organized as follows:
Section 2 studies robust stabilization using static
quantized feedback. Section 3 uses a dynamic quan-
tizer for the same purpose. Section 4 generalizes
the robust stabilization results to robust performance
control. Section 5 gives illustrative examples. Section 6
concludes the paper.

2. ROBUST STABILIZATION VIA MEMORYLESS
QUANTIZED FEEDBACK

The uncertain system we consider is in the following
form:

x(k+1) = (A+�A)x(k)+(B+�B)u(k)

y(k) = (C+�C)x(k)+(D+�D)u(k)
(1)

where x(k)∈Rn is the state, u(k)∈R is the (single)
control input, y(k)∈Rr is the measured output, the
matrices A, B,C,D represent a ‘nominal’ system, the
� terms represent the uncertainties in the system, and
they satisfy[

�A �B

�C �D

]
=

[
H1

H2

]
F(k)[E1 E2], ‖F(k)‖�1 (2)

where F(k)∈Rn1×n2 represents norm-bounded uncer-
tainty and the matrices H1,H2, E1, and E2 characterize
the structure of uncertainty. This type of uncertainty is
very common in the robust control literature; see, e.g.
[18].

A memoryless quantizer is a static nonlinear
mapping from input � to output �, i.e.

�=Q(�) (3)

In this paper, we assume that both � and � are scalar
variables for simplicity, i.e. �∈R and �∈V, which are
a finite or countable subset of R. Following the works
of [13, 14] for quantized feedback control for stabi-
lization, we consider using an infinite-level logarithmic
quantizer, which can be written as

Q(�)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�i if
1

1+�
�i<�� 1

1−�
�i

i=0,±1,±2, . . .

0 if �=0

−Q(−�) if �<0

(4)

where 0<�<1 represents the quantization density of
Q(·), and � is related to � by

�= 1−�

1+�
(5)
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(a) (b)

Figure 1. Quantized feedback control: (a) Cases 1 and 2
and (b) Case 3.

The associated quantized set V is given by

V={±�i , i=0,±1,±2, . . .}∪{0} (6)

We study three cases, as depicted in Figure 1:

Case 1: The full state is available for feedback
design, i.e. y(k)= x(k) in (1). We will call this
case the quantized state feedback.
Case 2: The control input is quantized. In this case,
the construction of a pre-quantized control signal
is done at the output end where the measured
output perfectly available. The control signal is
then quantized and transmitted to the input side.
We will call this case the output feedback with
quantized input.
Case 3: The measured output is quantized. In this
case, the construction of the control signal is done
at the input end using quantized output signal.
No more quantization happens to the control input
signal. We will call this case the output feedback
with quantized output.

In all the cases above, we use a single quantizer.
Obviously, it is possible to have more complicated
scenarios. For example, quantization may happen to
both measured output and control input [19]; a MIMO
system may require multiple quantizers, one for each
feedback channel [14].

For Case 1, we use a static quantized state feedback
controller, i.e.

u(k)=Q(Kx(k)) (7)

Dynamic output feedback is allowed for Cases 2
and 3. For Case 2, we use

xc(k+1) = Acxc(k)+Bc ȳ(k)+B1u(k)

v(k) = Ccxc(k)+Dc ȳ(k)+D1u(k)

u(k) = Q(v(k))

(8)

where

ȳ(k)= y(k)−Du(k)=(C+�C)x(k)+�Du(k) (9)

xc(k) is the state of the controller with its dimension
with xc(0)=0 and matrices Ac, Bc,Cc,Dc, B1, and D1
to be designed. Note that using ȳ(k) instead of y(k)
does not alter the available feedback information.

For Case 3, we use

v(k) = Q(y(k))

xc(k+1) = Acxc(k)+Bcv(k)

u(k) = Ccxc(k)+Dcv(k)

(10)

with xc(0)=0. Note that the B1 and D1 terms are not
needed because the mapping from v to u is linear.

Denote by x̃ the state of the closed-loop system for
any of the three cases above, it can be verified that

x̃(k+1) = Ã(�)x̃(k)+ B̃(�)�(k)

�(k) = C̃(�)x̃(k)+ D̃(�)�(k)

�(k) = Q(�(k))

(11)

where Ã(�), B̃(�), C̃(�), and D̃(�) depend on F(k)
in (2).

Definition 2.1
The uncertain quantized system (11) is said to be

quadratically stable if there exists a constant Lyapunov
matrix P̃= P̃ ′>0 such that the corresponding Lyapunov
function V (x̃)= x̃ ′ P̃ x̃ satisfies:

V (x̃(k+1))−V (x̃(k))<0

∀x̃(k) 	=0, ‖F(k)‖�1 (12)

along the trajectory of (11).

We now study the three cases separately.
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2.1. Case 1: Quantized state feedback

The use of static state feedback implies that x̃(k)=
x(k). In this case, we denote V (x)= x ′Px . The corre-
sponding closed-loop system (11) becomes

x(k+1)=(A+�A)x(k)+(B+�B)Q(Kx(k)) (13)

with (2) simplified to

[�A �B]=HF(k)[E1 E2], ‖F(k)‖�1 (14)

The admissible quantization density � depends on
V (x) (or P) and K . This raises the key question: What
is the coarsest density among all possible P and K ?
In [13], this problem is studied for systems without
uncertainties, and the answer is given for a specially
chosen K :

K =KGD =− BTPA

BTPB
(15)

More specifically, for K =KGD , the coarsest density is

�inf=
∏

i |�ui |−1∏
i |�ui |+1

(16)

where �ui are the unstable eigenvalues of A. It is shown
in [14] that the result on � (or �) remains the same even
when K is allowed to be a free variable.

When the system is subject to uncertainties, the
approach in [13] seems to be difficult to generalize.
It turns out that the coarsest quantization density is
in general difficult to characterize. We therefore aim
to search for an upper bound of it, which guaran-
tees quadratic stabilizability. That is, we consider the
following problem: Given a (logarithmic) quantization
density �>0, determine (possibly sufficient) conditions
under which there exists a quadratically stabilizing
quantized state feedback controller with a given quan-
tization density. Once an algorithm is found for this
problem, the required quantization density can be
easily searched by repeatedly applying the algorithm.

To solve the above problem, we resort to the sector
bound method used in [14]. This method uses the
following simple observation: For a given quantization
density �>0, the quantization error is bounded by

Q(v(k))−v(k)=�(k)v(k), |�(k)|�� (17)

for all k, where � is related to � by (5). When there are
no uncertainties, it is shown in [14] that the quantized
state feedback controller (13) and (15) is quadratically
stabilizing if and only if the (unquantized) state feed-
back controller (15) is quadratically stabilizing in the
presence of the sector bound uncertainty (17). That is,
the quantized feedback stabilization problem is equiva-
lent to the well-known quadratic stabilization problem
with a sector-bounded uncertainty. This is a key obser-
vation that allows [14] to generalize the work of [13]
to stabilization problem for MIMO systems and perfor-
mance control problems.

Now let us return to the uncertain system (1). Given
a quantization density �>0, we apply the sector bound
(17). For this purpose, we define the following auxiliary
system:

x(k+1) = Ax(k)+Bv(k)+[B �−1H ]w(k)

�(k) =
[

�v(k)

�(E1x(k)+E2v(k)+[E2 0]w(k))

]
(18)

where w(k) is an exogenous input, v(k) is the control
input, �(k) is the controlled output, and �>0 is a scaling
parameter, which can be searched numerically.

Theorem 2.1
The system (1) is quadratically stabilizable for a given
a quantization density �>0 if there exists a scaling
parameter �>0 and a state feedback controller

v(k)=Kx(k) (19)

for the auxiliary system (18) such that the H∞ norm
of the transfer function from w to � is less than 1.
Further, the control gain K and Lyapunov matrix P for
the auxiliary system will also work for the uncertain
system (1).

Proof
Combining (13) and (17) gives

x(k+1) = (A+�A)x(k)

+(B+�B)(1+�(k))v(k) (20)
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Define

�̄(k) = �(k)/�

	(k) = �(k)v(k)= �̄(k)�v(k)


(k) = F(k)(E1x(k)+E2v(k)+E2	(k))

w(k) = [	T(k) �
T(k)]T

(21)

for any �>0. Using (14) and (20) becomes

x(k+1)= Ax(k)+Bv(k)+B	(k)+H
(k)

which is the same as (18) using w(k) defined in (21).
From (18) and (21), w(k) and �(k) are related by

w(k)=diag{�̄(k),F(k)}�(k) (22)

which implies

wT(k)w(k)��T(k)�(k) (23)

It is well known [18] that the system (18) subject to
(23) is quadratically stabilizable if the H∞ norm for
the closed-loop transfer function of (18)–(19) from w

to � is less than 1 for some �>0. Hence, our result is
proved. �

If the system (1) does not involve any uncertainty,
Theorem 2.1 reduces to the following result (see [14]).
Corollary 2.1
Suppose the system (1) does not involve any uncer-
tainty (i.e. H =0,E1=0,E2=0). Then, it is quadrati-
cally stabilizable for a given quantization density �>0
if and only if there exists a state feedback controller
(19) for the following auxiliary system:

x(k+1) = Ax(k)+Bv(k)+Bw(k)

�(k) = �v(k)
(24)

such that the H∞ norm of the transfer function from
w to � is less than 1. Furthermore, the control gain K
and Lyapunov matrix P for the auxiliary system (24)
will also work for the system (1).

2.2. Case 2: Output feedback with quantized input

We first consider the special case when no uncertain-
ties exist in the system. This case has been studied

in [14], and the result is that the output feedback
with quantized input is equivalent to quantized state
feedback for quadratic stabilization, provided the
system is detectable. That is, if the state feedback
can quadratically stabilize the system for a given
quantization density, so can the output feedback. The
corresponding quantized output feedback controller is
an observer-based one, taking the following form:

xc(k+1) = Axc(k)+L(ȳ(k)−Cxc(k))+Bu(k)

v(k) = Kxc(k)

u(k) = Q(v(k))

(25)

with xc(0)=0, where L is the observer gain and K
is the state feedback gain. Note that L= Bc, B1= B,
and D1=0 if we compare (25) with (8). Returning to
the uncertain system (1), motivated by the above, we
restrict the quantized feedback controller (8) to be

xc(k+1) = Acxc(k)+Bc ȳ(k)+Bu(k)

v(k) = Ccxc(k)+Dc ȳ(k)

u(k) = Q(v(k))

(26)

with xc(0)=0, i.e. we set B1= B and D1=0.
Next, we define an auxiliary system

x(k+1) = Ax(k)+Bv(k)+[B �−1H1]w(k)

ȳ(k) = Cx(k)+[0 �−1H2]w(k)

�(k) =
⎡
⎣ �v(k)

�(E1x(k)+E2v(k)+[E2 0]w(k))

⎤
⎦

(27)

where � is computed from a given quantization density
�>0, and �>0 is a scaling parameter. We also define
an auxiliary controller

xc(k+1) = Acxc(k)+Bc ȳ(k)+Bv(k)+[B 0]w(k)

v(k) = Ccxc(k)+Dc ȳ(k)
(28)

with xc(0)=0.

Theorem 2.2
Consider the uncertain system (1) and a given quan-
tization density �>0. Suppose there exists an auxil-
iary output feedback controller (28) for the auxiliary
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system (27) such that the H∞ norm of the transfer
function from w to � is less than 1. Then, the system
(1) is quadratically stabilizable via the quantized feed-
back controller (26) with the same controller parameters
Ac, Bc,Cc, and Dc.

Proof
The proof is similar to that of Theorem 2.1. Using (1)
and (8), it is straightforward to verify that the closed-
loop system (11) is given by

x(k+1) = (A+�A)x(k)+(B+�B)u(k)

xc(k+1) = Bc(C+�C)x(k)+Acxc(k)

+Bc�Du(k)+Bu(k)

v(k) = Dc(C+�C)x(k)+Ccxc(k)+Dc�Du(k)

u(k) = Q(v(k))

Using (2), (17) and the definition (21), the above can
be rewritten as

x(k+1) = Ax(k)+Bv(k)+B	(k)+H1
(k)

xc(k+1) = Acxc(k)+Bc ȳk+Bv(k)+B	(k)

ȳ(k) =Cx(k)+H2
(k)

v(k) =Ccxc(k)+Dc ȳ(k)

which is the same as (27)–(28) with w(k) and �(k)
related as in (22)–(23). As for the proof of Theorem
2.1, the system (27)–(28) subject to (23) is quadratically
stabilizable if the H∞ norm for the closed-loop transfer
function of (27)–(28) from w to � is less than 1 for
some �>0. �

When no uncertainty is involved in the system,
Theorem 2.2 reduces to the following [14].
Corollary 2.2
Suppose the system (1) does not involve any uncertainty
(i.e. H1=0,H2=0,E1=0,E2=0) and the quantiza-
tion density �>0 is given. Then, the following three
problems are equivalent:

(a) The system (1) is quadratically stabilizable via
output feedback with quantized input.

(b) The following auxiliary system:

x(k+1) = Ax(k)+Bv(k)+Bw(k)

ȳ(k) = Cx(k)

�(k) = �v(k)

(29)

can be controlled by the following auxiliary
controller:

xc(k+1) = Acxc(k)+Bc ȳ(k)

+Bv(k)+Bw(k)

v(k) = Ccxc(k)+Dc ȳ(k)

(30)

with xc(0)=0, such that the H∞ norm of the
closed-loop transfer function from w to � is less
than or equal to 1.

(c) The system (1) can be quadratically stabilized
via quantized state feedback with the given
density �.

2.3. Output feedback with quantized output

In this case, the corresponding auxiliary system is given
by

x(k+1) = Ax(k)+Bu(k)+[0 �−1H1]w(k)

v(k) = Cx(k)+Du(k)+[1 �−1H2]w(k)

�(k) =
[
�(Cx(k)+Du(k)+[0 �−1H2]w(k))

�(E1x(k)+E2u(k))

] (31)

We have the following result:

Theorem 2.3
Consider the uncertain system (1) and a given quantiza-
tion density �>0. Suppose there exists an output feed-
back controller (10), without quantization (i.e. v(k)=
y(k)), for the auxiliary system (31) such that the H∞
norm of the transfer function from w to � is less than 1.
Then, the system (1) is quadratically stabilizable via the
same controller with quantized output and quantization
density �.

Proof
The proof is similar to those of Theorems 2.1–2.2. The
details are omitted. �
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When the system uncertainties disappear, again we
have the following special result [14]:
Corollary 2.3
Suppose there is no uncertainty in (1). Then the
following are equivalent:

(a) The system (1) is quadratically stabilizable via
output feedback with quantized output and quan-
tization density �>0.

(b) There exists an unquantized output feedback
controller for the following auxiliary system:

x(k+1) = Ax(k)+Bu(k)

v(k) = Cx(k)+Du(k)+w(k)

�(k) = �(Cx(k)+Du(k))

(32)

such that the H∞ norm of the transfer function
from w to � is less than 1.

3. ROBUST STABILIZATION VIA DYNAMIC
QUANTIZATION

We now turn our attention to dynamic quantization.
For simplicity, we only consider the case of output
feedback control with quantized output (i.e. Case 3),
but the ideas here can be easily generalized to other
quantization settings. The control problem is the same
as described in the previous section, except that we
now want to use a dynamic quantizer. The goal is to
achieve robust stabilization by using a quantizer with
only a finite number of quantization levels.

The approach we take here follows from [20]. More
precisely, we first design a robust quantized feedback
controller using a static logarithmic quantizer, then use
a dynamic scaling parameter to scale the input signal to
the quantizer. At the same time, we truncate the scaled
input when it is either too small or too large. That is,
we replace the infinite-level logarithmic quantizer with
a finite-level one. By adjusting the scaling parameter
appropriately, robust stabilization can still be achieved.

We define an 2N -level logarithmic quantization with
quantization density �>�inf as

V={±�i , i=0,1,2, . . . ,N−1} (33)

The associated quantizer Q(·) becomes:

Q(y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i if
1

1+�
�i<y� 1

1−�
�i

0<i<N−1

�N−1 if 0�y� 1

1−�
�N−1

1 if y>
1

1+�

−Q(−y) if y<0

(34)

The idea of dynamic scaling is to scale y(k) so that
it is within the quantization range as much as possible.
That is, we use

v(k)=g−1
k Q(gk y(k)) (35)

where gk is the scaling parameter at time k defined by

gk+1=

⎧⎪⎪⎨
⎪⎪⎩
gk�1 if |Q(gk yk)|=1

gk/�2 if |Q(gk yk)|=�N−1

gk otherwise

(36)

with any initial g0>0. The constants �1,�2∈(0, 1) are
design parameters to be discussed later.

The following result comes from [20]:
Lemma 1
Suppose the system (1) without uncertainties can be
quadratically stabilized by the quantized feedback
controller (10) with a density-� (static) logarithmic
quantizer, 0<�<1. Then there exist �1,�2∈(0, 1) and
some finite N>0 such that when the quantizer in (10)
is replaced with the dynamically scaled 2N -level quan-
tizer (35)–(36), the quantized feedback controller (10)
asymptotically stabilizes the system (1) for any g0>0.

Remark 3.1
The role of �1 and �2 is to keep the scaled input gk y(k)
to be within the quantization range as much as possible.
Roughly speaking, �1 makes the gk+1 smaller than gk ,
thus plays a zoom-out role; Similarly, �2 plays a zoom-
in role. In particular, �1 is chosen to be small such that
�1A to be stable; �2 is chosen to close to 1 such that
Ã/�2 is also stable. In the above, A is the open-loop
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state matrix and Ã is the closed-loop state matrix. These
two parameters together with the initial g0 can be opti-
mized to give a minimal N . See details in [20].

Combining Lemma 1 and Theorem 2.3, we have the
following main result:

Theorem 3.1
Consider the uncertain system (1). Suppose its auxil-
iary system (31) can be quadratically stabilized via
a quantized feedback controller (10) with a density-�
(static) logarithmic quantizer, 0<�<1. Then, (1) can
be robustly asymptotically stabilized using the same
controller (10) and a dynamically scaled finite-level
quantizer (35)–(36) for some finite N and constants
�1,�2∈(0, 1) and any g0>0.

Proof
By Lemma 1, quadratic stabilization of the auxil-
iary system (31) via (10) with a density-� (static)
logarithmic quantizer implies that (31) can be asymp-
totically stabilized by the same controller when the
quantizer is replaced by (35)–(36) for some finite N
and constants �1,�2∈(0, 1). By Theorem 2.3 (or by
following its proof to be more precise), we conclude
that the original uncertain system (1) is asymptotically
stabilized by the same dynamically scaled quantized
feedback controller. �

Remark 3.2
A typical behavior of the system is as follows: If the
initial state is very large, the feedback signal tends to be
saturated, forcing gk to decrease fast. This would result
in a period of overshoot. Once gk is sufficiently small,
saturation will stop and the state decays exponentially.
When the state is sufficiently small, gk will increase
gradually, causing the quantizer to bounce back and
forth between the dead zone and logarithmic region.
During this phase, the state also decays exponentially,
but at a lower rate.

Remark 3.3
One may think that the number of quantization levels
needs to be high in order to achieve the above behavior.
In reality, a moderate number of quantization levels is
typically sufficient. This will be seen in examples in
Section 5.

4. ROBUST PERFORMANCE CONTROL UNDER
QUANTIZED FEEDBACK

In this section, we show that the sector bound approach
used in this paper can be applied to study robust perfor-
mance control problems as well. Two performance
control problems are to be treated: linear quadratic
control and H∞ control.

4.1. Robust linear quadratic control

In this subsection, we consider the robust linear
quadratic regulation with quantized input. For
simplicity, we consider the state feedback control.
But our treatment can be easily generalized to output
feedback control.

Consider the system (1)–(2) with the following
performance cost function:

J (x(0)) =
∞∑
k=0

xT(k)Qx(k)+ru2(k)

Q = QT�0, r>0

(37)

Our objective is to design a quantized state feedback
control u(k)=Q(Kx(k)) such that an upper bound of
the above cost function for all admissible uncertainties
satisfying (2) is minimized.

As in Section II, a logarithmic quantizer is adopted.
In view of (17), the closed-loop system of (1) under

the quantized state feedback can be described by

x(k+1)= A�(k)x(k) (38)

where

A�(k)=(A+�A)+(B+�B)(1+�(k))K

Furthermore, the cost function (37) can be given by

J (x(0))=
∞∑
k=0

xT(k)(Q+r(1+�(k))2KTK )x(k) (39)

Let V (x)= xTPx, P= PT>0 be the associated
Lyapunov function candidate for considering the
quadratic stability of (38). Denote

�V (x(k))=V (x(k+1))−V (x(k)) (40)
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Then, using (38) the performance cost function is given
by

J (x(0)) = xT(0)Px(0)

+
∞∑
k=0

xT(k)�(�A,�B,�(k))x(k) (41)

where

�(�A,�B,�(k))

= AT
�(k)PA�(k)−P+Q+r(1+�(k))2KTK

In the absence of system uncertainty and quan-
tization, �(�A,�B,�(k))=0,∀k and the optimal
cost can be obtained by minimizing tr(P). With the
uncertainty and quantization, we formulate our perfor-
mance control problem called quantized guaranteed
cost control (QGCC) as follows: Given a performance
bound � and quantization density �>0, find P and K ,
if exist, such that

tr(P)<� (42)

subject to

�(�A,�B,�(k))<0 (43)

with �A and �B satisfying (2) and |�(k)|��, where �
is related to � by (5).

The following theorem provides a solution to the
QGCC problem.

Theorem 4.1
Consider the uncertain system (1)–(2) and the cost
function (37). Given a quantization density �>0 and

a performance bound �>0, the QGCC problem has
a solution if the following linear matrix inequalities
(LMIs):

tr(P̃)<�,

[−P̃ I

I −S

]
�0 (44)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S ∗ ∗ ∗ ∗ ∗
AS+BW −S+�HHT+�2BBT ∗ ∗ ∗ ∗

W �2BT −r−1+�2 ∗ ∗ ∗
E1S+E2W �2E2B

T �2E2 −�I +�2E2E
T
2 ∗ ∗

W 0 0 0 −I 0

Q1/2S 0 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0 (45)

have a solution (P̃, S,W,�), where ∗ denotes a trans-
posed term. In this case, P and K are related to S and
W as follows:

P= S−1, K =WP (46)

Proof
By Schur complement, (45) is equivalent to⎡

⎢⎢⎢⎢⎢⎣

−S+SQS ∗ ∗ ∗
AS+BW −S+�HHT ∗ ∗

W 0 −r−1 ∗
E1S+E2W 0 0 −�I

⎤
⎥⎥⎥⎥⎥⎦

+�2MT
1 M1+NT

1 N1<0

where

M1=[0 BT 1 ET
2 ], N1=[W 0 0 0]

Since �2MT
1 M1+NT

1 N1�MT
1 �(k)N1+NT

1 �(k)M1,
the above implies that⎡
⎢⎢⎢⎢⎢⎣

−S+SQS ∗ ∗ ∗
AS+B(1+�(k))W −S+�HHT ∗ ∗

(1+�(k))W 0 −r−1 ∗
E1S+E2(1+�(k))W 0 0 −�I

⎤
⎥⎥⎥⎥⎥⎦<0
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Again, by Schur complement, the above leads to

[−S+SQS+r(1+�(k))2WTW ∗
AS+B(1+�(k))W −S

]

+�H̄ H̄T+�−1 ĒT Ē<0 (47)

where

H̄ =
[
0

H

]
, Ē=[E1S+E2(1+�(k))W 0]

Since

�H̄ H̄T+�−1 ĒT Ē�H̄ F(k)Ē+ ĒTF(k)T H̄

for any �>0 and ‖F(k)‖�1, (47) implies that

[ −S+SQS+r(1+�(k))2WTW ∗
(A+�A)S+(B+�B)(1+�(k))W −S

]
<0

for all admissible uncertainties satisfying (2). By multi-
plying the above from the left and right, respectively, by
diag{S−1, S−1} and taking into account (46), we have

[−P+Q+r(1+�(k))2KTK ∗
PA� −P

]
<0

By Schur complement, (43) follows. Finally, using
Schur complement, (42) is equivalent to tr(P̃)<�, −P̃+
P�0, which is equivalent to (44) by removing the
variable P̃ . �

Remark 4.1
We note in Theorem 4.1 that the scaling parameter �
appears linearly in the LMIs (44)–(45). Therefore, � is
automatically optimized when the LMIs are solved.

4.2. Robust H∞ control with quantized output

We shall further extend the studies in Section 2 to the
quantized H∞ control. For simplicity, we consider the
H∞ control with quantized output.

Here, we consider the system

x(k+1) = (A+�A)x(k)+(B+�B)u(k)

+B1w(k)

y(k) = (C+�C)x(k)+(D+�D)u(k)

+D1w(k)

z(k) = L1x(k)+L2u(k)+L3w(k)

(48)

where x(k)∈Rn is the state, u(k)∈R is the control
input, w(k)∈Rm is the exogenous input, which is
energy bounded, y(k)∈Rr is the measured output,
and z(k)∈Rp is the controlled output defined by
the matrices L1, L2, and L3. The uncertainties
(�A,�B,�C,�D) are given by (2).

The robust H∞ control with quantized input is stated
as: Given a scalar �>0, find a quantized output feedback
control such that the closed-loop system is asymptoti-
cally stable and under zero initial condition,

∞∑
k=0

zT(k)z(k)<�2
∞∑
k=0

wT(k)w(k) (49)

for all admissible uncertainties (2) and any non-zero
disturbance input.

By adopting a logarithmic quantizer with density
�>0, we introduce an auxiliary system

x(k+1) = Ax(k)+Bu(k)

+[0 �−1H �−1B1]w̄(k)

v(k) = Cx(k)+Du(k)

+[1 �−1H2 �−1D1]w̄(k)

z̄(k) =
⎡
⎢⎣

L1

�C

�E1

⎤
⎥⎦ x(k)+

⎡
⎢⎣

L2

�D

�E2

⎤
⎥⎦u(k)

+

⎡
⎢⎢⎣

0 0 �−1L3

0 ��−1H2 0

�E2 0 0

⎤
⎥⎥⎦ w̄(k)

(50)

where w̄(k) and z̄(k) are the associated with exogenous
input and controlled output, respectively, � is given by
(5) and �>0 is a scaling parameter.

We have the following result.
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Theorem 4.2
Consider the system (48) with uncertainties satis-
fying (2). Given a prescribed H∞ performance �>0
and a logarithmic quantizer with density �>0, the
robust H∞ control with quantized output problem is
solvable by a quantized output feedback controller
if there exists a scaling parameter �>0 such that
the controller asymptotically stabilizes the auxiliary
system (50) with ‖Gz̄w̄(z)‖∞<1, where Gz̄w̄(z) is the
closed-loop transfer function from w̄ to z̄.

Proof
It can be easily obtained by the following arguments in
[21] and the proofs of Theorems 2.1–2.2. �

5. ILLUSTRATIVE EXAMPLES

In this section, we give some examples to demonstrate
the results we have obtained so far.

Example 1
The first example is to show the effects of three quan-
tization schemes as studied in Section 2. The system to
be considered is given by (1) with

A =
[
0 1

0 2

]
, B=

[
0

1

]
, C=[−3 1], D=0

H1 = �

[
1

1

]
, H2=�, E1=[1 0], E2=1

(51)

In the above, the parameter �>0 controls the size of
uncertainties.

When �=0, the uncertainties vanish and the transfer
function of the system becomes G(z)=C(z I −
A)−1B=(z−3)/z(z−2). This example is analyzed
in [14]. When quantized state feedback is used, the
coarsest quantization density is computed to be �= 1

3 .
The same quantization density is reached when output
feedback with quantized control input is used. For
output feedback with quantized output, the coarsest
quantization density turns out to be �=0.8182. That
is, the latter scheme requires a much denser quantizer.

When �>0, Theorems 2.1–2.3 are applied and the
coarsest quantization densities are searched by solving

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Quantized State Feedback
Output Feedback with Quantized Input
Output Feedback with Quantized Output

Figure 2. Required quantization density versus size of
uncertainty.

the H∞ control problems associated with the auxil-
iary systems for various � and �. The parameter � is
numerically optimized to minimize the associated �.
The results for � are plotted in Figure 2.

It is clear that increasing � will increase the required
quantization density. Also, the output feedback with
quantized output requires a denser quantizer compared
with output feedback with quantized input. Finally,
although the output feedback with quantized input
requires the same quantization density as the quantized
state feedback when there is no uncertainty, the former
requires a denser quantizer when � increases. This is
because the existence of uncertainty makes it diffi-
cult to recover the state information from the output
measurement.

The next two examples are modified from those used
in [20] by adding some uncertain parameters in the
system model. The purpose of these examples is to
show how robust stabilization works under finite-level
quantization.

Example 2
We consider a first-order system

x(k+1) = (1+
k)ax(k)+u(k) (52)

y(k) = x(k) (53)
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where a>1 and |
k |�
 is an uncertain param-
eter. The corresponding uncertainty model (2) has
H1=1, E1=
, H2=0, E2=0. In order to stabilize
the system using a logarithmic quantizer (31) with
density �, the controller H(z)=h becomes a constant
because of full state feedback. The closed-loop system
is given by

x(k+1) = ((1+
k)a+h(1+�k))x(k)

|�k | � �
(54)

In [20], we showed, for the case without 
k , that the
optimal stabilizing h which leads to the minimum
number of quantization levels is given by h=−a
and the corresponding N is given by N�N0,
where

N0=1+ log(�2a
−1−�)

log(1−�)− log(1+�)
, �<a−1 (55)

In the presence of the uncertainty parameter 
k, h
needs to ensure robust stability of (54). Since this is a
scalar system, it is sufficient to ensure the stability of
(54) for 
k =
. The modified minimum N is given by

N0(
)=1+ log(�2(a(1+
))−1−�)

log(1−�)− log(1+�)
, �<a−1 (56)

The result is shown in Figure 3, which contains two
curves for the required bit rate

Nb=
log2(2N )�, N�
N0(
)� (57)

where 
·� is the integer round-up function. One curve
is for 
=0 and another for 
=1. These curves are
compared with the minimum bit rate 
log2(a)� given
in [12]. The value for �2=0.9 is used. We see that
very few bits of quantization are required for robust
stabilization.

Example 3
This example aims at demonstrating the use of a
finite-level quantizer for robust stabilization and the
robustness of the dynamic scaling method under

0 20 40 60 80 100
1

2

3

4

5

6

7

8

9

10

a

Proposed bit rate for θ = 0
Proposed bit rate for θ = 1
Minimum bit rate

Figure 3. Bit rate comparison for a first order system.
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Figure 4. State response of the closed-loop system with
N =8.

process noises. Consider the system (1) with

A =
⎡
⎢⎣
2.7 −2.41 0.507

1 0 0

0 1 0

⎤
⎥⎦ , B=

⎡
⎢⎣
1

0

0

⎤
⎥⎦

C = [1 −0.5 0.04], D=0

H1 =
⎡
⎢⎣
1

0

0

⎤
⎥⎦ , H2=0, E1=[
 0 0], E2=0
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That is, only the (1,1)th element of A is perturbed
to become 2.7+
k with |
k |�
.

The nominal system is unstable with two unstable
open-loop poles at 1.2±i0.5 but without unstable zero
and the relative degree is 1. It follows from [14] that

�sup=|1.2±i0.5|−2=0.5917, �inf=0.2565

for the nominal system.
We choose the logarithmic quantizer with �=0.6653

and controller with

Ac =
⎡
⎢⎣

−255.6834 46.7502 217.854

616.3274 −111.8387 −523.9270

−431.7862 79.0425 368.0348

⎤
⎥⎦

Bc =
⎡
⎢⎣

5.8122

−14.0003

9.8161

⎤
⎥⎦

Cc = [81.6699 −15.0325 −69.6715]
Dc = −1.8594

We also choose �1=0.2,�2=0.8, �0=1, and N =8
(which corresponds to Nb=4 bits). Note that the
minimal bit rate required for stabilizing the nominal
system is 1 bit [12].

The state response of the closed-loop nominal system
(
k ≡0) with the initial state x0=[30−300]T, g0=0.1
is shown in Figure 4. The scaling gain gk is shown in
Figure 5.

When 
k ≡0.3, the state response of the closed-loop
system with the same controller and the initial condition
becomes that given in Figure 6. It is clear that the
quantized feedback controller is still able to stabilize
the system.

If we have a good estimate x̃0 of the initial state x0,
we may set the initial scaling gain g0 to improve the
transient performance. For example, we may set g0=
1/|Cx0| for a given x0. For the example, if x0=[30−
300]T is given, the state responses of the closed-loop
system with 
k ≡0.3 and N =8 are shown in Figure 7.
Clearly, the overshoot is much smaller than that of
Figure 6 where x0 is not assumed known.
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Figure 5. The scaling factor gk for the noise-free case with
N =8.
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Figure 6. State response of the closed-loop system with

k ≡0.3 and N =8.

Next, we study the robustness of the closed-loop
system. This is done by adding some process noise to
the system, i.e. we modify (1) to be

x(k+1) = (A+�A)x(k)+(B+�B)u(k)+
(k)

y(k) = (C+�C)x(k)+(D+�D)u(k)
(58)

where ‖
(k)‖�
̄ for some constant 
̄>0. In the simu-
lation below, we take 
k to be a saturated Gaussian
white noise with zero mean, covariance matrix Q
=3I
and 
̄=100. The same quantized controller is used
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Figure 7. State response of the closed-loop system with
N =8 and with known x0.
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Figure 8. Closed-loop response under input noise with
Qw =3I .

as before. The state response of the closed-loop nominal
system with x0=[30 −30 0]T is shown in Figure 8
with the corresponding scaling gain gk in Figure 9.
It can be observed that the final state converges to a
bounded region.

In the presence of the uncertainty of 
k ≡0.3, the
state response of the closed-loop system with the
same noise input and the initial condition is shown in
Figure 10.
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Figure 9. The scaling factor gk for the noisy case with
Q
 =3I .
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Figure 10. Closed-loop response under input noise with
Q
 =3I and 
k ≡0.3.

6. CONCLUSIONS

We have studied a number of robust stabilization
problems and robust performance problems associ-
ated with logarithmic quantized feedback. We have
considered three quantization cases, namely quantized
state feedback, output feedback with quantized input,
and output feedback with quantized output. In each of
these cases, we have shown the connection between
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quadratic stabilizability for a given quantization density
and H∞ control for a corresponding auxiliary system.
This allows us to use the standard H∞ design tools
to deal with quantized feedback control for uncertain
systems.

In the output feedback control case, we have noted
an interesting phenomenon that the quadratic stabi-
lizability depends on where the quantization occurs.
In particular, a coarser quantization density can be
achieved in general when quantization occurs at the
control input rather than at the measured output. Intu-
itively, this is because the measured information is
better preserved in the former case.

Although the sector bound method gives only suffi-
cient conditions for quantized feedback stabilization,
we make two points: (1) The results become non-
conservative when uncertainties are not present, as
shown in Corollaries 2.1–2.3 and (2) The technical
difficulties for quantized feedback stabilization of the
uncertain systems as in Theorems 2.1–2.3 are essen-
tially the same as quadratic stabilization of systems
with two blocks of uncertainties (one from F(k) and
one from �(k)). This problem has been studied for a
long time in the robust control literature, and there is
no non-conservative solution to it.

For finite-level quantized feedback control, the
proposed method in this paper involves a simple
dynamic scaling parameter that plays a similar role
to the well-known ‘zoom-in/zoom-out’ method in
[9–11]. Although this use of a logarithmic quantizer is
not optimal in minimizing the bit rate, it is a relatively
simple method, and the required bit rate is typically
moderate, as seen in our examples.
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