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SUMMARY

This paper studies an optimal state estimation (Kalman filtering) problem under the assumption that output
measurements are subject to random time delays caused by network transmissions without time stamping.
We first propose a random time delay model which mimics many practical digital network systems. We then
study the so-called unbiased, uniformly bounded linear state estimators and show that the estimator structure
is given based on the average of all received measurements at each time for different maximum time delays.
The estimator gains can be derived by solving a set of recursive discrete-time Riccati equations. The esti-
mator is guaranteed to be optimal in the sense that it is unbiased with uniformly bounded estimation error
covariance. A simulation example shows the effectiveness of the proposed algorithm. Copyright © 2013
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of state estimation for systems with random time delays has attracted great attention
due to the wide applications in signal processing, control and communication systems [1–5]. The
random measurement problem for state estimation was studied as early as in [6]. In the recent years,
many results have been reported for networked control systems with random time delays [7–13].

In [8] and [14], the least mean square filtering problem was discussed for systems with a single
random sampling delay. Estimation problems for systems with random delays and uncertain mea-
surements were also investigated in [15] and [7]. Zhang and Xie [16] studied the optimal estimation
problem for discrete-time systems with time-varying delays in the measurement channel, and the
measurements were time stamped. Zhang et al. [17] studied linear estimation with random delayed
observations. Schenato [18] proposed estimators subject to simultaneous random packet delay and
packet dropout, and this allowed packets to arrive in bursts or even out of order at the receiver side,
as long as the measurements were time stamped. Moayedi et al. [19] considered the state estimation
with the models corresponding to the uncertainties of random measurement delays, dropouts, and
missing measurements in networked control systems.

Without time stamping, Sun [20] proposed the optimal filtering problem for discrete-time
stochastic linear system with multiple random measurement delays. Sun [21] also investigated the
estimation problem for systems with bounded random measurement delays and packet dropouts,
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which were described by some binary distributed random variables with known probabilities.
But in [21], the network model could receive the same measurement multiple times, and at the same
time, an excessively high packet loss rate occurred, which did not fit most communication protocols.
In fact, for most network protocols, random time delays mean that more than one measurement may
be received at each time instant. That is, measurements are received in bursts of various sizes.

In this paper, we propose the optimal estimation problem where observation packets are subject to
bounded random delays. This allows packets to arrive in bursts at the receiver side. We assume that
there are no packet dropouts and the packets can not be received repeatedly, but no time stamping
is available for the measurements. A new network model is presented to describe the packet trans-
mission. Three cases are considered. The first one assumes that the maximum time delay N is equal
to 1. The second case allows N > 1 but with the restriction that there is no time reversal among
different received data bursts while allowing time reversal for packets within a burst. This is a real-
istic assumption for most network protocols when time delays are not serious. The third case allows
N > 1 and time reversal among the received data bursts. For each case in the former discussions, we
derive an optimal estimator by minimizing the estimation error covariance subject to the constraints
that the estimate is unbiased and that the estimation error covariance is uniformly bounded. The
estimator gains are given recursively and are in terms of Riccati equations.

This paper is organized as follows. Section 2 formulates the optimal estimation problem and
describes the network model for random delays; Sections 3–5 present solutions to the optimal
estimation problem using the new network model. In particular, Section 3 studies the case with
maximum delay equal to 1; Section 4 studies the case with larger maximum delay but with the
restriction that time reversal for the measurements can occur only within the packets received at the
same time; and Section 5 removes this restriction. Section 6 considers the case as in Section 4 but for
a stable system. Section 7 gives a simulation example. Concluding remarks are drawn in Section 8.

2. PROBLEM FORMATION

Consider the following discrete-time linear stochastic system:

xkC1 D Axk C vk

yk D Cxk Cwk (1)

where xk 2 Rn is the system state, yk 2 Rm is the measured output, vk 2 Rn and wk 2 Rm

are the system noise and measurement noise, respectively, A 2 Rn�n and C 2 Rm�n. The initial
state x0 and vk ,wk are Gaussian and independent, and their means and variances are denoted by
. Ox0j�1, 0, 0/ and .P0j�1,Qk ,Rk/, respectively, with Rk > 0. Without loss of generality, we assume
that Ox0j�1 D 0 and that the pair .A,C/ is observable.

2.1. Network delay model

For the state estimation problem, we study in this paper, the output measurements are transmitted
over a digital network and are thus subject to random time delays. We are interested in the scenario
where the measurements are transmitted without time stamping (neither by the measurement sensor
nor by the network protocol). To establish a suitable time delay model, we consider the following
typical features in most modern communication networks (e.g., networks based on the popular IEEE
802.15.4 Standard):

� The network is designed with a low packet loss probability pl . For wired networks, pl 6 10�6
is typically required. For wireless networks, it is common to require pl 6 10�3.
� The communication protocol ensures that a transmitted packet is received no more than once.

The combined effect of the two properties earlier and random time delay means that the number
of packets received at each sampling time (for the discrete-time system) varies, in contrary to many
commonly used random time delay models where the number of received packets at each sampling
time is constant (typically one measurement).
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With the previous discussions in mind, the following assumptions about the network transmission
will be made in the sequel:

A1: The measurements are not time stamped.
A2: There are no packet losses, that is, every measurement arrives at the receiver end.
A3: The maximum time delay N > 1 is finite and is known.
A4: Denoting by �k the network transmission delay associated with the output measurement yk ,

that is, yk is received at the time instant k C �k , then the delay probabilities Prob.�kDi /,
i D 0, 1, � � � ,N , are assumed to be nonzero and independent of the measurement time, that
is, Prob.�kDi /D �i > 0 for some known �i , with �0C �1C � � � C �ND1.

With the previous assumptions, we understand that the measurement yk will be received once and
once only with time delay 06 �k 6N � 1. This implies that at each time k, the number of received
measurements can vary from 0 to N. Denoting the set of received measurements at time k by ´k ,
then its cardinal number ranges from 0 to N. We emphasize that ´k is a set rather than an ordered
sequence because of lack of time stamping in the transmission.

The network delay model introduced earlier applies to situations where transmission delays
dominate, whereas problems such as transmission errors, packet losses, and quantization errors are
negligible. This model is distinct from two commonly used models in the literature, as detailed in
the succeeding discussions.

The first commonly used model assumes that measurements are time stamped. As shown in [1],
time-stamped delayed measurements can be re-aligned easily, and the resulting state estimation
problem is still more or less a standard Kalman filtering problem. More precisely, at time k, the mea-
surements y0 to yk�N are fully obtained so that the one-step prediction of xk�NC1 (i.e., prediction
of xk�NC1 based on y0 to yk�N ) can be carried out using the standard Kalman filter, and the esti-
mation error covariance Pk�NC1 is easily established and deterministic (i.e., independent of the
random time delays). Also, between k �N C 1 and k, there may be some measurements available,
and the prediction of xkC1 can be carried out using a Kalman filter with missing data. The only
technical difficulty is that the measurements between k �N C 1 to k are available randomly, thus
the estimation error covariance at PkC1 at time kC1 is random and its stochastic properties may be
somewhat difficult to analyze. Nevertheless, PkC1 is evolved from Pk�NC1 linearly, which means
that the stability of the state estimator is always guaranteed.

The second commonly used model does not assume time stamping, but assumes instead that, at
each time k, one and only one randomly delayed measurement is received, that is,

Qyk D yk��k (2)

where �k D 0, 1, � � � ,N for some N with probabilities Prob.�k D i/ D �i as in the previous
discussion. This model has been widely used, as shown in, for example, [20–22]. On the surface,
this model appears to be similar to our model, but there is a sharp difference between the two.
Indeed, we claim that the model (2) is inappropriate for most communication protocols. To illus-
trate this, we consider the case whereN D 1 and �0 D �1 D 0.5. With (2), Qyk D yk with probability
of 0.5 and QykC1 D yk with probability of 0.5 as well. Because yk can be received only at k or
k C 1, it is clear that the probability that yk obtains lost equals the probability that Qyk D yk�1 and
QykC1 D yk , which equals 0.25. It is not possible to perceive any network protocols to be designed
to produce such a high inherent packet loss probability.

To properly model the transmission time delays, we define mk to be the number of missing
measurements at time k (prior to accepting ´k) and denote the cardinal number of ´k by rk . It
is clear that 06mk 6N and it obeys the following simple dynamic model:

mkC1 DmkC1 � rk (3)

Because of Assumption A2, we have the following constraint for rk:

rk 6mk C 1I rk >
²
1 if mk DN I
0 otherwise

(4)

which simply means that the resulting mkC1 must be between 0 and N.
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When rk > 1, there are rkŠ ways to order the measurements in ´k , which will be denoted by
´
.1/

k
, ´.2/
k

, � � � , ´.rk Š/
k

, blueand rkŠ is the factorial of rk . Thus, ´k , when viewed as a random vector
(instead of a set, which involves some abuse of notation), can be written as

´k D �
.1/

k
´
.1/

k
C �

.2/

k
´
.2/

k
C � � � C �

.rk Š/

k
´
.rk Š/

k
(5)

where � .i/
k

are random variables such that only one of them equals 1 and the rest are 0. We

denote �k D
°
�
.1/

k
, � .2/
k

, � � � , � .rk Š/
k

±
. To reflect the fact that the particular ordering of the received

measurements is unknown due to the lack of time stamping, we further assume that

A5: p.i/
k
D Prob

�
�
.i/

k
D 1

�
> 0 for all i D 0, 1, � � � , rkŠ.

We note that p.i/
k

are related to �i , but the exact relationship is not important for the study in the
sequel.

2.2. State estimation criteria

Denote Zk D
Sk
iD0 ´k . We seek a linear state estimator for one-step-ahead prediction, that is, we

want to compute an estimate OxkC1jk D LkC1jk.Zk/ of the state xk using a linear operator LkC1jk . It
is useful also to consider a linear estimate Oxt jk D Lt jk.Zk/ of the state xt for any time t. We define
the estimation error et jk and estimation error covariance Pt jk as follows:

et jk D xt � Oxt jk (6)

Pt jk D E
h
et jke

T
t jk

i
(7)

where the superscript T stands for matrix transpose, E is the expectation with respect to all vk ,wk ,
x0, and �k .

The optimal estimator we seek is required to satisfy the following properties:

C1 : Unbiased estimate, that is, E ŒekC1jk�D 0 for all k;
C2 : Uniformly bounded estimation error covariance, as defined in the succeeding discussions;

and
C3 : Minimum estimation error covariance PkC1jk .

Definition 1
The estimation error covariance PkC1jk is called uniformly bounded if there exists a constant
M > 0, independent of P0j�1, such that

PkC1jk 6M , for all k D 0, 1, 2, � � � (8)

The associated state estimator will be called uniformly bounded.

3. OPTIMAL ESTIMATOR FOR AN UNSTABLE SYSTEM WITH N D 1

This section considers the case where the system is unstable and the random delay �k is either 0
or 1. It follows that mk is either 0 or 1, and the state transition diagram of mk is easily shown in
Figure 1, which involves the following cases:

Case 1
mk D 0. This means that measurements y0,y1, � � � ,yk�1 all have been received. There are two
possible cases by the number of received measurements rk:

Case 1.1 : rk D 0, that is, no measurement is received at time k. This will result in mkC1 D 1;
Case 1.2 : rk D 1, that is, one measurement is received. Because mk�1 D 0, this measurement

must be yk , and the resulting mkC1 D 0.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2014; 24:2653–2668
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Figure 1. State transition diagram for N D 1.

Case 2
mk D 1. This means that yk�1 is missing at time k� 1, and all previous measurements are received
(due to Assumptions A2–A3). Again, there are two possible cases by rk:

Case 2.1 : rk D 1. Because of Assumption A2, the received measurement at time k must be yk�1
and mkC1 D 1 because yk is still missing;

Case 2.2 : rk D 2. The received measurements must be yk�1 and yk (but without known order).
Subsequently, mkC1 D 0.

Note that for Case 2.2, following (5) and Assumption A5, we have

´k D .1� �k/

�
yk�1
yk

�
C �k

�
yk
yk�1

�
(9)

where �k takes value of 0 or 1 with Prob.�k D 1/ D pk and Prob.�k D 0/ D 1 � pk for some
0 < pk < 1.

The main result in this section is given later:

Theorem 1
Consider the one-step-ahead linear state estimation problem for system (1) with unstable matrix A,
assumptions A1–A5 and optimality criteria C1–C3. The state estimate update at time k > 0 is given
as follows:

� For Case 1.1, the state estimate update is given by

OxkC1jk D A Oxkjk�1 (10)

with the estimation error covariance update given by

PkC1jk D APkjk�1A
T CQk (11)

� For Case 1.2, the state estimate update is given by

OxkC1jk D .A�HkC/ Oxkjk�1CHkyk (12)

with the estimation error covariance update given by

PkC1jk D APkjk�1A
T �Hk

�
CPkjk�1C

T CRk
�
HT
k CQk (13)

where

Hk D APkjk�1C
T
�
CPkjk�1C

T CRk
��1

(14)

� For Case 2.1, the state estimate update is given by

Oxkjk�1 D .A�HkC/ Oxk�1jk�2CHkyk�1 (15)

OxkC1jk D A Oxkjk�1 (16)
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with the estimation error covariance update given by

Pkjk�1DAPk�1jk�2A
T CQk�1

�Hk
�
CPk�1jk�2C

T CRk�1
�
HT
k (17)

where

Hk D APk�1jk�2C
T
�
CPk�1jk�2C

T CRk�1
��1

(18)

and

PkC1jk D APkjk�1A
T CQk (19)

� For Case 2.2, the state estimate update is given by

OxkC1jk D

�
A2 �

1

2
Hk.C CCA/

	
Oxk�1jk�2CHk Ńk (20)

with the estimation error covariance update given by

PkC1jk D A2Pk�1jk�2.A
2/T �HkMkH

T
k CAQk�1A

T CQk (21)

where Ńk D
1
2
.yk�1C yk/,

Hk D
1

2

�
A2Pk�1jk�2.C CCA/

T CAQk�1C
T
�
M�1k (22)

and

Mk D
1

4



.C CCA/Pk�1jk�2.C CCA/

T CCQk�1C
T CRk�1CRk

�
(23)

The proof of Theorem 1 will be deferred as a special case of Theorem 2.

4. OPTIMAL ESTIMATOR FOR AN UNSTABLE SYSTEM WITH N > 1 AND
RESTRICTED TIME REVERSAL

In this section, we generalize the result of Theorem 1 to allow multiple step delays (i.e.,N > 1), but
with the following assumption:

A6: The measurements are not time stamped, but the received measurement bursts are in order.
That is, the received bursts follow the first-in-first-out (FIFO) principle, but the order of the
measurements within each burst is not known.

This assumption holds for networks where time delays are not excessive. Also, it is straightfor-
ward to see that this assumption is automatically satisfied for N D 1 under assumptions A1–A5.
The state transition diagram for N > 1 is given in Figure 2.

Figure 2. State transition diagram for N > 1.
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Becausemk measurements are missing at time k before ´k arrives, all the measurements from time 0
to k�mkCrk�1.D k�mkC1/will be received after ´k is received (because of assumption A5). Our
state estimation problem then involves computing the one-step-ahead linear estimate OxkC1�mkC1jk
and using this to compute the estimate OxkC1jk . We want OxkC1�mkC1jk (respectively, OxkC1jk) to be a
linear function of Zk , the estimation error

ekC1�mkC1jk D xkC1�mkC1 � OxkC1�mkC1jk

(respectively, ekC1jk D xkC1 � OxkC1jk) to be unbiased and uniformly bounded, and its covariance
PkC1�mkC1jk (respectively, PkC1jk) to be minimized. The Theorem 1 is given as follows:

Theorem 2
Consider the one-step-ahead linear state estimation problem for system (1) with unstable matrix
A, assumptions A1–A6 and optimality criteria C1–C3. The state estimate update at time k is given
as follows:

Step 1: If rk > 0, the estimate for xkC1�mkC1 is given by

OxkC1�mkC1jk DHk Ńk C

 
Ark �Hk

1

rk

rk�1X
iD0

CAi

!
Oxk�mk jk� (24)

where Ń is the average of the elements in ´k , k� is the time instant just before k with a
nonzero rk� ,

Hk D
1

rk

0
@ArkPk�mk jk�

 
rk�1X
iD0

CAi

!T

C

rk�2X
iD0

iX
jD0

AiC1Qk�mkCrk�2�i .CA
j /T

1
AM�1k (25)

and

Mk D
1

r2
k

0
@ rk�1X

iD0

CAi

!
Pk�mk jk�

 
rk�1X
iD0

CAi

!T

C

rk�1X
iD0

Rk�mkCi C

rk�2X
iD0

iX
jD0

CAjQk�mkCi�j .CA
j /T

1
A (26)

The corresponding estimation error covariance is given by

PkC1�mkC1jk D ArkPk�mk jk�.A
rk /T �HkMkH

T
k C

rk�1X
iD0

AiQk�mkCi .A
i /T (27)

Step 2: If mkC1 > 0, the estimate for xkC1 is given by

OxkC1jk D A
mkC1 OxkC1�mkC1jk (28)

with the corresponding estimation error covariance given by

PkC1jk D AmkC1PkC1�mkC1jk.A
mkC1/T C

mkC1�1X
iD0

AiQk�i .A
i /T (29)

It is straightforward to check that Theorem 2 includes Theorem 1 as a special case.
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Before proving Theorem 2, we state some properties of the optimal state estimator. Define the
innovation "k as

"k D ´k � Ók (30)

where Ók is the one-step-ahead prediction of ´k , that is,

Ók D E Œ´kj Oxk�mk jk� � (31)

where k� is as defined in Theorem 2. The expression for Ók depends on the realization of (5). We
take N D 1 for example. For Case 1.1, ´k is void, so Ók is void; For Case 1.2, we have ´k D yk ,
so Ók D C Oxkjk�1; for Case 2.1, we have ´k D yk�1, so Ók D C Oxk�1jk�2; for Case 2.2, ´k is given
by (9), so

Ók D

"
.1� pk/C C pkCA

pkC C .1� pk/CA

#
Oxk�1jk�2 (32)

The optimal state estimator given in Theorem 2 enjoys the following properties:

Theorem 3
For any time instants k and t with rk > 0 and rt > 0, we have

� "t and "k are uncorrelated if k ¤ t ;
� ekC1�mkC1jk and "t are uncorrelated if k > t .

We now provide a proof for Theorems 2 and 3 together.

Proof
The proof is carried out recursively. Given any time k with rk > 0, because OxkC1�mkC1jk is a linear
function of Zk , it is also a linear function of "0, "1, : : : , "k and Oxk�mk jk� , that is,

OxkC1�mkC1jk D Fk Oxk�mk jk� C

kX
tD0

G
.t/

k
"t (33)

for some Fk and G.t/
k

, t D 0, 1, � � � , k. We assume that the state estimates prior to k are such that,
for any t < k, "k is uncorrelated with "t and ek�mk jk� is uncorrelated with "t . We will prove that
ekC1�mkC1jk is uncorrelated with "t for all t 6 k. Then, letting kC be the earliest time after k with
rkC > 0, the previous text will imply that "kC is uncorrelated with "t for all t 6 k because "kC is a
linear function of ekC1�mkC1jk plus some independent noise. Once the above results hold, then by
recursion, the results in Theorem 2 holds.

Indeed, from (1) and (33), we obtain

ekC1�mkC1jk D A
rkxk�mk C

rk�1X
iD0

Aivk�i�mkC1 �Fk Oxk�mk jk� �

kX
tD0

G
.t/

k
"t

To ensure the estimate unbiased, we set E
�
ekC1�mkC1jk

�
to zero and obtain Fk D Ark . Hence,

ekC1�mkC1jk D A
rkek�mk jk� C

rk�1X
iD0

Aivk�iCmkC1 �

kX
tD0

G
.t/

k
"t

Now, we consider the condition for the estimate error covariance to be uniformly bounded. Note
that, in the previous discussion, all the vk�i�mkC1 are independent of "t . Recall the expression for
´t in (5) and note that, for rt > 1, ´t depends on �t (i.e., the ordering of the packets) but Ó t does
not. Hence, "t depends on �t , thus is a function of not only the past estimation errors but also the
past state of the system (1). It follows that, unless G.t/

k
are chosen in a way that G.t/

k
"t does not

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2014; 24:2653–2668
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depend on �t , the estimation error ekC1�mkC1jk must depend on the past state of (1), which in turn
depend on x0, implying that the covariance of ekC1�mkC1jk will depend on P0j�1. Thus, due to the
instability of the matrix A, to ensure the estimation error covariance uniformly bounded, we must
have G.t/

k
DH

.t/

k
ŒI I : : : I �=rt for some H .t/

k
. Consequently,

G
.t/

k
"t DH

.t/

k
N"t

where N"t is the average of the elements in "t , thus independent of �t . For notational simplicity, we
denote H .k/

k
by Hk .

By using the orthogonal assumptions on "t and ek�mk jk� , we have

PkC1�mkC1jk D cov

´
Arkek�mk jk� �Hk N"k C

rk�1X
iD0

Aivk�i�mkC1

μ
C

k�1X
tD0

cov
°
H
.t/

k
N"t

±

It is clear from the previous discussion that we must set H .t/

k
D 0 to minimize PkC1�mkC1jk . Now,

it is straightforward to compute that

N"k D

 
1

rk

rk�1X
iD0

CAi

!
ek�mk jk� C

1

rk

rk�2X
iD0

iX
jD0

CAj vk�mkCi�j C
1

rk

rk�1X
iD0

wk�mkCi

By denoting

˘k D A
rk �

1

rk
Hk

rk�1X
iD0

CAi

it follows that

ekC1�mkC1jk D˘kek�mk jk� C

rk�1X
iD0

Aivk�iCmkC1

�
1

rk
Hk

rk�2X
iD0

iX
jD0

CAj vk�mkCi�j �
1

rk
Hk

rk�1X
iD0

wk�mkCi

and

PkC1�mkC1jk D˘kPk�mk jk�˘
T
k C

rk�1X
iD0

AiQk�iCmkC1A
iT CHk

1

r2
k

rk�1X
iD0

Rk�mkCiH
T
k

CHk
1

r2
k

rk�2X
iD0

iX
jD0

CAjQk�mkCi�jA
jTC THT

k

�
1

rk

rk�2X
iD0

iX
jD0

AiC1Qk�mkCrk�2�i .HkCA
j /T

�
1

rk
Hk

rk�2X
iD0

iX
jD0

CAjQk�mkCrk�2�i .A
iC1/T

Minimizing the previous discussion with respect to Hk results in (27) with Mk and Hk given in
(26) and (25). The corresponding state estimate xkC1�mkC1 in (24) follows directly. Because Hk
is chosen to minimize PkC1�mkC1jk , it follows that ekC1�mkC1jk is uncorrelated with ek�mk jk� .
Also, ekC1�mkC1jk is uncorrelated with "k because the latter is a linear function of ek�mk jk� plus
some independent noise. �
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5. OPTIMAL ESTIMATOR FOR AN UNSTABLE SYSTEM WITH N > 1 AND
ARBITRARY TIME REVERSAL

In this section, we consider the situation where N > 1 and the received bursts ´k are allowed to be
out of order. That is, we will drop assumption A6. The transition diagram for mk in Figure 2 is still
valid. We denote by Lk the set location of ´k , that is, Lk is the set of time indices of ´k . There are
four cases at time k:

Case 1: rk D 0.
Case 2: rk D 1Cmk , which implies that mkC1 D 0 and Lk is unique.
Case 3: mk D N and rk D 1, which implies that mkC1 D N . The received measurement must

be yk�N (due to the definition of N);
Case 4: 0 < rk 6mk and 0 < mkC1 <N . In this case, Lk is not unique.

It is clear that Cases 1–3 have been considered before, so we only need to consider Case 4. In
this case, in addition to the non-unique ordering of the elements in ´k as expressed in (5), these
rk elements are taken from 1Cmk.> rk/ locations yt , k �mk 6 t 6 k. It is clear that there are
�k D C

rk
1Cmk

(choosing rk from 1Cmk) possible set locations for ´.i/
k

in (5), which will be denoted

by ´.i ,j /
k

, j D 1, 2, : : : , �k . Thus, we can write

´
.i/

k
D ıi ,1

k
´
.i ,1/
k
C ıi ,2

k
´
.i ,2/
k
C � � � C ı

i ,�k
k

´
.i ,�k/
k

(34)

where ıi ,j
k
D 0 or 1 with ıi ,1

k
C ıi ,2

k
C� � �C ı

i ,�k
k
D 1. We will denote the set of ıi ,j

k
for all i and j by

ık . To reflect the fact that the set location Lk is non-unique, we assume that

A7: For any 16 i 6 rkŠ, Prob
�
ı
i ,j
k

�
> 0 for at least two values of j.

Lemma 1
Consider the one-step-ahead linear state estimation problem for system (1) with unstable matrix A,
assumptions A1–A5, A7 and optimality criteria C1–C3. At given time k, suppose Case 4 in the pre-
vious discussion occurs. Given any t > 0, let the estimate for xk�mkCt conditioned at time k take
the following linear form:

Oxk�mkCt jk D Fk,t Oxk�mk jk� CGk,t´k (35)

where k� is the closest time instant before k having nonzero rk� and Oxk�mk jk� is an unbiased esti-
mate of xk�mk . Then, in order for Oxk�mkCt jk to be unbiased and the estimation error covariance to
be uniformly bounded, we must have

Fk,t D A
t I Gk,t D 0 (36)

Proof
We can write ´k as

´k D˘.�k , ık/xk�mk C noiseŒv,w�

where˘.�k , ık/ is a matrix depending on �k and ık and noiseŒv,w� is a zero-mean noise term. The
estimation error can be written as

ek�mkCt jk D xk�mkCt � Oxk�mkCt jk

D
�
At �Gk,t˘.�k , ık/

�
xk�mk

�Fk,t Oxk�mk jk� C noiseŒv,w�

To ensure the unbiased property, we must have

Fk,t D A
t �Gk,tE Œ˘.�k , ık/�
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Then, due to the instability of the matrix A, to ensure that the estimation error covariance to be
uniform bounded, we must have

Gk,t˘.�k , ık/DGk,tE Œ˘.�k , ık/�,W

(Otherwise ek�mkCt jk would be an explicit function of xk�mk ). By fixing ık first and taking the
expectation with respect to �k , we must have Gk,t D Hk,t ŒI I � � � I � (as shown in the proof of
Theorem 2). Moreover, because of assumption A7, Hk,t ŒI I � � � I �˘.�k , ık/ will still take at least
two different values if Hk,t ¤ 0. Thus, Hk,t must be zero. �

Combining Theorem 2 and Lemma 1, we have the following result:

Theorem 4
Consider the one-step-ahead linear state estimation problem for system (1) with unstable matrix A,
assumptions A1–A5, A7, and optimality criteria C1–C3. The state estimate update at time k is given
as follows:

If rk D mk C 1 (Case 2) or mk D N and rk D 1 (Case 3), compute OxkC1�mkC1 according to
Theorem 2.

If rk D 0 (Case 1), we have OxkC1jk D A Oxkjk�1 and PkC1jk D APkjk�1AT CQ.
If 0 < rk 6 mk and 0 < mkC1 < N (Case 4), we have OxkC1jk D A Oxkjk�1 and PkC1jk D

APkjk�1A
T CQ. In addition, we need to delay ´k by adding it to ´kC1 and remove rk frommkC1,

that is, reset mkC1 D 1Cmk .

Proof
The proof for Cases 1–3 follows from the proof of Theorems 2–3, thus not repeated here. The proof
for Case 4 is based on Lemma 1. More specifically, by Lemma 1, OxkC1jk D Ark Oxk�mk jk� . It is clear
from Theorem 2 that Oxkjk�1 D Ark�1 Oxk�mk jk� , thus OxkC1jk D A Oxkjk�1. The proof for PkC1jk is
similar. We point out that, in Lemma 1, OxkC1jk is limited to a linear function of Oxk�mk jk� and ´k
instead ofZk . But this is carried out without loss of generality, as shown in the proof of Theorems 2
and 3. Finally, because ´k is not used in Case 4, these measurements need to be saved for time kC1.
This needs to be continued until the time � > k such thatm�C1 D 1Cm��r� D 0 (i.e., Case 2). �

6. OPTIMAL ESTIMATOR FOR A STABLE SYSTEM WITH N > 1 AND
RESTRICTED TIME REVERSAL

The results in Sections 3–5 assume that the system is unstable, which yields a unique common
property, that is, the filter gain for each received measurement is identical. This property is needed
to ensure the uniform boundedness of the estimation error covariance. For stable systems, uniform
boundedness of the estimation error covariance is guaranteed automatically. Thus, better filter gains
can be used to further minimize the estimation error covariance.

In this section, we consider the case as in Section 4 but for a stable system. That is, we assume
that the packets can arrive in bursts, which are in order but the packets within each burst can be out
of order. Our result is given as follows:

Theorem 5
Consider the one-step-ahead linear state estimation problem for system (1) with stable matrix A,
assumptions A1–A6 and optimality criteria C1–C3. The state estimate update at time k is given
as follows:

Step 1: If rk > 0, the estimate for xkC1�mkC1 is given by

OxkC1�mkC1jk DHk´k C

0
@Ark �Hk rk ŠX

iD1

p
.i/

k
�
.i/

k

1
A Oxk�mk jk� (37)
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where k� is the time instant just before k with a nonzero rk� , �.i/
k

is permuted from

�k D

2
664

C

CA

� � �

CArk�1

3
775

with the same permutation order as ´.i/
k

,

Hk D

0
@ArkPk�mk jk�

 
rkX
iD1

p
.i/

k
�
.i/

k

!T
C˝T

1

1
AM�1k , (38)

Mk D

0
@ rk ŠX
iD1

p
.i/

k
�
.i/

k

1
APk�mk jk�

0
@ rk ŠX
iD1

p
.i/

k
�
.i/

k

1
A
T

C

rk ŠX
iD1

p
.i/

k

�
1� p

.i/

k

�
�
.i/

k
Sk�mk

�
�
.i/

k

�T
C˝2C˝3 (39)

Sk�mk D E
�
xk�mkx

T
k�mk

�
, (40)

˝1 D E

0
@ rk ŠX
iD1

�
.i/

k
v.i/

1
A rk�1X

iD0

Aivk�i�mkC1

!T
(41)

˝2 D E

0
@ rk ŠX
iD1

�
.i/

k
v.i/

1
A
0
@ rk ŠX
iD1

�
.i/

k
v.i/

1
A
T

(42)

˝3 D E

0
@ rk ŠX
iD1

�
.i/

k
w.i/

1
A
0
@ rk ŠX
iD1

�
.i/

k
w.i/

1
A
T

(43)

The corresponding estimation error covariance is given by

PkC1�mkC1jk D A
rkPk�mk jk�.A

rk /T �HkMkH
T
k C

rk�1X
iD0

AiQk�i�mkC1.A
i /T (44)

Step 2: If mkC1 > 0, the estimate for xkC1 is given by

OxkC1jk D A
mkC1 OxkC1�mkC1jk (45)

with the corresponding estimation error covariance given by

PkC1jk D AmkC1PkC1�mkC1jk.A
mkC1/T C

mkC1�1X
iD0

AiQk�i .A
i /T (46)

Proof
Given any time k with rk > 0, OxkC1�mkC1jk is a linear function with the following linear form:

OxkC1�mkC1jk D �k Oxk�mk jk� CHk´k (47)
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for some �k and Hk . The estimation error is given by

ekC1�mkC1jk DxkC1�mkC1 � OxkC1�mkC1jk

DArkxk�mk C

rk�1X
iD0

Aivk�i�mkC1 � �k Oxk�mk jk� �Hk´k

D

0
@Ark � rk ŠX

iD1

�
.i/

k
Hk�

.i/

k

1
A xk�mk � �k Oxk�mk jk�

C

rk�1X
iD0

Aivk�i�mkC1 �Hk

rk ŠX
iD1

�
.i/

k
v.i/ �Hk

rk ŠX
iD1

�
.i/

k
w.i/ (48)

where the noises v.i/ and w.i/ are respectively permuted from

v D

2
664

0

Cvk�mk
� � �Prk�2

iD0 CAivk�mkCrk�2�i

3
775 ,w D

2
64

wk�mk
wk�mkC1
� � �

wk�mkCrk�1

3
75

To ensure unbiased state estimation, we obtain

�k D A
rk �

rk ŠX
iD1

p
.i/

k
Hk�

.i/

k
(49)

By following the definition in (7), the estimation error covariance is written as

PkC1�mkC1jk D E
h
ekC1�mkC1jke

T
kC1�mkC1jk

i

D

0
@Ark � rk ŠX

iD1

p
.i/

k
Hk�

.i/

1
APk�mk jk�

0
@Ark � rk ŠX

iD1

p
.i/

k
Hk�

.i/

1
A
T

C E

2
4 rk ŠX
iD1

�
p
.i/

k
� �

.i/

k

�
Hk�

.i/

3
5Sk�mk

2
4 rk ŠX
iD1

�
p
.i/

k
� �

.i/

k

�
Hk�

.i/

3
5
T

� E

0
@Hk rk ŠX

iD1

�
.i/

k
v.i/

1
A
 
rk�1X
iD0

Aivk�i�mkC1

!T
C

rk�1X
iD0

AiQk�i�mkC1.A
i /T

� E
 
rk�1X
iD0

Aivk�i�mkC1

!0@Hk rk ŠX
iD1

�
.i/

k
v.i/

1
A
T

C E

0
@Hk rk ŠX

iD1

�
.i/

k
v.i/

1
A
0
@Hk rk ŠX

iD1

�
.i/

k
v.i/

1
A
T

C E

0
@Hk rk ŠX

iD1

�
.i/

k
w.i/

1
A
0
@Hk rk ŠX

iD1

�
.i/

k
w.i/

1
A
T
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By defining H�
k
D �

�
ArkPk�mk jk

�Prk Š
iD1 p

.i/

k
�.i/

�T
C˝T

1

	
M�1
k

with Mk given in (39),

the previous equation can be rewritten as

PkC1�mkC1jk D .Hk CH
�
k /Mk.Hk CH

�
k /
T �HkMkH

�T
k �H

�
kMkH

T
k �H

�
kMkH

�T
k

CArkPk�mk jk.A
rk /TC

rk�1X
iD0

AiQk�i�mkC1.A
i /T�

rk ŠX
iD1

p
.i/

k
Hk�

.i/Pk�mk jk.A
rk /T

�ArkPk�mk jk

0
@ rk ŠX
iD1

p
.i/

k
Hk�

.i/

1
A
T

�Hk˝1 � .Hk˝1/
TCHk˝2H

T
kCHk˝3H

T
k

Therefore, the estimator gain Hk is obtained to minimizing the estimate error covariance

Hk D�H
�
k D

0
B@ArkPk�mk jk

0
@ rk ŠX
iD1

p
.i/

k
�.i/

1
A
T

C˝T
1

1
CAM�1k (50)

�

7. SIMULATION EXAMPLE

In this section, we present a numerical example to illustrate the previous theoretical results
with N D 1.

Consider a system described in (1) with the following specifications:

AD

�
1.1 �0.1
0.5 0.9

�
,C D Œ12�

and RD 0.1,QD 0.25I2,P0 D 0.25I2, where I2 is the identity matrix.
We know that rk is obtained according to the transition diagram in Figure 1, and suppose the

transition probabilities are as follows:

p00 D P.m.kC 1/D 0jm.k/D 0/D 0.75I

p01 D P.m.kC 1/D 1jm.k/D 0/D 0.25I

p10 D P.m.kC 1/D 0jm.k/D 1/D 0.65I

p11 D P.m.kC 1/D 1jm.k/D 1/D 0.35

0 10 20 30 40 50
0.5

0.7

0.9

1.1

1.3

time k

tr(P)

method 1 

method 2 

method 3 

Figure 3. Comparison of the trace of error covariance.
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Figure 3 shows the comparison of the trace of the error covariance for three scenarios:

Method 1 : The proposed method in this paper;
Method 2 : The standard Kalman filtering, assuming that there is no time delay; and
Method 3 : When receiving two measurements, the estimator just uses the newest measurement.

It can be seen from the simulation results that the proposed estimator in the paper has a better
performance over Method 3.

8. CONCLUSION

We have studied an optimal state estimation problem for unstable systems under the assumption that
output measurements are subject to random time delays caused by network transmissions without
time stamping. We have proposed a random time delay model that resembles many practical digital
network systems. In particular, this model ensures that no packet loss is caused purely by inherent
random transmission delays (contrary to the model (2)). Using the proposed model, we have given
solutions to the optimal unbiased linear state estimators with uniformly bounded state estimation
error covariance. Different maximum time delays have been considered. For unstable systems, a
key observation we have made is that the uniform boundedness condition for the estimation error
covariance implies that only limited information in the received measurements can be exploited
when the time stamp of the measurements cannot be precisely inferred. In the case when multiple
measurements are received and their set location can be determined except their order, only the aver-
aged measurement can be used for state estimation. In the case when the set location is uncertain,
the measurements cannot be used directly (although they may be used at a later time). That is, the
statistics of random time delays cannot be used to tune the estimation gains. This is because, for
unstable systems, the covariance of the system state is excessively large, and thus must be elim-
inated from the estimation error covariance by choosing appropriate estimation gains. For stable
systems, the covariance of the system state may not be excessively large, thus the statistics of the
random time delays may be used in optimizing the estimation gains.
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