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SUMMARY

This paper studies the consensusability of a continuous-time linear time-invariant multi-agent system (MAS)
with time delay in an undirected network with N nodes. We show that the MAS can achieve consensus if
and only if N � 1 time-delay subsystems associated with the eigenvalues of the Laplacian matrix of the net-
work are simultaneously asymptotically stable. By employing a linear matrix inequality (LMI) method, we
present a controller design method for a MAS to reach consensus. We also obtain a bound on the maximum
time delay for consensusability for a MAS with first-order integrator dynamics by using frequency-domain
analysis. Copyright © 2015 John Wiley & Sons, Ltd.

Received 7 March 2015; Revised 24 June 2015; Accepted 28 August 2015

KEY WORDS: multi-agent systems; consensusability; time-delay systems; frequency domain; linear
matrix inequality

1. INTRODUCTION

In the last decade or so, the consensus control problem has been widely studied because of its
relevance in multi-agent coordinated control, distributed computation, biological group behaviors
such as swarms and flocks [1], and so on. An important problem of consensus control is to design
an appropriate consensus protocol by using locally exchanged information such that all the agents
in a network agree upon certain quantities of common interest.

The seminal work [2] solved the consensus problem and average-consensus problem of first-
order integrator networks with and without time delay by using algebraic graph theory and
frequency-domain analysis. In [3], consensus protocols were designed for both the first-order inte-
gral multi-agent systems (MASs) and discrete-time MASs. In [4] Ma et al. considered the conditions
for consensusability of linear MASs without delay and showed that the consensusability of MASs
depends on the dynamic structure of each agent and the communication topology among agents.
Reference [5] studied the consensus conditions of first-order integrator systems under both directed
and undirected communication network topologies. Reference [6] studied the consensusability prob-
lems of discrete-time MASs under the effect of network topology and communication data rate.
Consensus using quantized information has also been considered in [7]. Reference [8] has given
consensus convergence rate analysis of MASs by using stochastic approximation approach.

All of the existing works on the consensus problem focus on special first-order integrator sys-
tems or discrete-time systems [9–11] or systems without delay [12, 13]. However, time delay is
common in the process of information exchange between agents in practice. As we all know, the
frequency-domain tool is effective for stability analysis of linear time-invariant systems both with
and without time delay. But this method is only applicable to some special systems such as scalar
systems because the corresponding characteristic equation becomes a transcendental function that
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is difficult to deal with for high-order systems. The linear matrix inequality method has been used
for stability analysis of general linear systems with time delay [14, 15]. References [16] and [17]
have studied the consensus problems of double integrator systems and kth-order consensus in MASs
with time delays by using frequency-domain method, and they both obtained an implicit formula-
tion of the critical time delay. However, they both consider the case of integrator system for every
order dynamics.

In this paper, we consider the consensus control problem for general (high-order) continuous-
time linear MASs with time delay in an undirected network with N nodes. The time delay that we
consider arises from communication delays between agents, meaning that our consensus protocol
contains a delay in the relative state information. The generality of state and input matrix (arising
from high-order dynamics of each agent) and the existence of time delay bring difficulties to the
study of consensusability. By introducing some linear transformation, we prove that the consensus-
ability ofN agents is equivalent to thatN�1 time-delay subsystems associated with the eigenvalues
of Laplacian matrix of the network are simultaneously asymptotically stable. So the first contri-
bution of this paper is that we find the relationship between the consensusability problem and the
stability problem.

There is a common gain matrix K in all of the N � 1 time-delay subsystems. Hence, the key
to consensusability becomes the existence of the common K for the simultaneous stability. The
second contribution of this paper is that we turned the state time-delay stability problem into the
state feedback control problem with input time delay in designing the common gain matrix K. We
obtain a sufficient condition for the stability of the N � 1 time-delay subsystems by using linear
matrix inequality (LMI) method and Lyapunov stability theory. The third contribution of this paper
is that we reduce the number of the inequalities by considering of the linearity and symmetry of
these inequalities. When the corresponding LMI holds, the gain matrixK can be constructed for the
consensus protocol to guarantee the consensusability of the MASs.

For a MAS with first-order dynamics for each agent, we employ a more direct frequency-domain
analysis method to derive an explicit condition for consensusability. We find that a bound of time
delay proves that if the eigenvalues of the Laplacian matrix of the network satisfy certain simple
relationship, then the MAS can always achieve consensus regardless of the time delay.

We will use the following notations in this paper:

� Rm�n denotes the family of m � n dimensional real matrices.
� R denotes the real number field.
� Im denotes the m �m dimensional identity matrix.
� 1m denotes the m dimensional column vector with all components 1.
� 0m denotes the m dimensional column vector with all components 0.
� ˝ denotes the Kronecker product.
� For a vector or matrix X , XT denotes its transpose, and kXk denotes its Euclidean norm.
� For a square matrix X , X�1 denotes its inverse (if exists), and det.X/ denotes its determinant.
� X < 0 means that the matrix X is negative definite, and XT D X .
� �i .X/ denotes the i th eigenvalue of a matrix X .
� vi;k�l denotes a column vector composed of the kth to l th components of column vector vi .
� Œv1; v2; : : : ; vn� denotes a matrix composed of vector vi , i D 1; 2; : : : ; n of the

same dimension.
� � represents the elements below the main diagonal of a symmetric matrix.

2. PROBLEM FORMULATION

2.1. Algebraic graph theory

Let a simple graph (no self-loops or multiple edges) G D ¹V; E ;Aº denote the undirected commu-
nication topology between multi-agents with the set of vertices V D ¹1; 2; : : : ; N º and the set of
edges E � V � V . The i th vertex represents the i th agent, and the edge .i; j / denotes the communi-
cation channel between agent i and agent j . The set E � ¹.i; j / W i; j 2 Vº is the edge set. The set
of neighbors of the i th agent is denoted by Ni D ¹j 2 Vj.i; j / 2 Eº. A D Œaij � 2 RN�N is called
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the weighted adjacency matrix of G with nonnegative elements and aij D aj i > 0 if .i; j / 2 E and
i ¤ j ; aij D 0 otherwise. The degree of the i th vertex is denoted by di D

P
j2Ni aij D

PN
jD1 aij

and the degree matrix D D diag¹d1; d2; : : : ; dN º. The Laplacian matrix L of G is defined by
L D D � A. Obviously, for an undirected graph, L is a symmetric, positive semi-definite matrix,
and all its eigenvalues are nonnegative. Note that L1N D 0N . For an undirected connected graph,
the eigenvalues of L can be arranged as follows:

0 D �1.L/ < �2.L/ 6 : : : 6 �N .L/:

2.2. Consensus and consensusability

In this paper, we will consider a network consists of N agents, and the dynamics of the i th agent is
given by

Pxi .t/ D Axi .t/C Bui .t/; i D 1; 2; : : : ; N; (1)

where A 2 Rn�n and B 2 Rn�p are general constant matrices. xi 2 Rn and ui 2 Rp are the state
and the control input of the i th agent, respectively.

Definition 1 (Consensus)
The agents in the network achieve consensus if

lim
t!1
kxj .t/ � xi .t/k D 0; 8i; j 2 ¹1; 2; : : : ; N º

for any initial value xi .0/.
The consensus protocol of the i th agent is of the following form:

ui .t/ D K

NX
jD1

aij
�
xj .t � �/ � xi .t � �/

�
; i D 1; 2; : : : ; N; (2)

where � denotes the communication delay time in the network and K 2 Rp�n is a constant gain
matrix to be designed.

Remark 1
Although in practice, the communication time delay of distinct agents may be different, we can
adopt the maximum consensus algorithm of Reference [18] to obtain the maximum delay time, and
we can use this delay time in our consensus protocol (2).

Define

U ,
°
u.t/ W Œ0;1/! RpN j u.t/ D

�
uT1 .t/; u

T
2 .t/; : : : ; u

T
N .t/

�T
; ui .t/ is defined by (2)

±
: (3)

Definition 2 (Consensusable)
If there exists a u.t/ 2 U such that system (1) reaches consensus, then we say that system (1) is
consensusable w.r.t. U (so simply, consensusable).

Remark 2
It is obvious that if A is stable, then system (1) is consensusable by taking u.t/ D 0, because all
the systems of (1) are asymptotically stable. So for the sake of making this problem meaningful,
without loss of generality, we assume that A is unstable (including the case whereA has eigenvalues
with zero real part).

In this paper, we focus on the consensusability condition for system (1) under the admissible
consensus protocol (3). Note from [4] that, when � D 0, the corresponding delay-free system can
reach consensus under the following assumptions, which we will adopt for the delay case as well.

Assumption 1
The network topology G is an undirected connected graph.
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Assumption 2
.A;B/ is stabilizable.

We list some lemmas that will be used in the proof of our main results.

Lemma 1 (Schur complement)

For a given symmetric matrix S with the form S D

�
S11 S12
� S22

�
, S11 2 Rr�r , S12 2 Rr�.n�r/,

S22 2 R
.n�r/�.n�r/, then S < 0 if and only if

(i) S11 < 0, S22 � ST12S
�1
11 S12 < 0; or equivalently,

(ii) S22 < 0, S11 � S12S�122 S
T
12 < 0.

Lemma 2
For any constant matrix M 2 Rm�m, M D M T > 0, scalar � > 0, vector function w W Œ0; �� !
Rm, such that the integrations in the following are well defined, then

�

Z t

t��

wT .s/Mw.s/ ds >
�Z t

t��

w.s/ ds

	T
M

�Z t

t��

w.s/ ds

	
:

3. TIME-DOMAIN METHOD FOR CONSENSUS

In this section, we will prove that system (1) is consensusable if and only if N � 1 time-delay sub-
systems associated with the eigenvalues of the Laplacian matrix of the network are simultaneously
asymptotically stable.

Let ıi .t/ , x1.t/ � xi .t/; i D 2; 3; : : : ; N . Then,

lim
t!1
kxj .t/ � xi .t/k D 0; 8i; j 2 ¹1; 2; : : : ; N º

is equivalent to

lim
t!1
kıi .t/k D 0; i D 2; 3; : : : ; N:

Moreover, we have the dynamics of ıi .t/ as follows:

Pıi .t/D Aıi .t/C BK

2
4 NX
jD2

.aij � a1j /ıj .t � �/ � diıi .t � �/

3
5 :

Define ı.t/, ŒıT2 .t/; ıT3 .t/; : : : ; ıTN .t/�T . Then the dynamics of the whole network has the form of

Pı.t/ D .IN�1 ˝ A/ı.t/ �
��
L22 C 1N�1˛T

�
˝ BK

�
ı.t � �/ (4)

where

L22 D

2
6664

d2 �a23 � � � �a2N
�a32 d3 � � � �a3N
:::

:::
: : :

:::

�aN2 �aN3 � � � dN

3
7775 ; ˛ D

2
6664
a12
a13
:::

a1N

3
7775 :

It is obvious that system (1) that is consensusable is equivalent to limt!1 kı.t/k D 0. So next,
we will focus on the asymptotically stable condition for system (4).

Note that

L D
�
d1 �˛

T

�˛ L22

�
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is the Laplacian matrix of the network and it is a symmetric matrix. Taking the transformation matrix

S D

�
1 0TN�1

1N�1 IN�1

�
, then we have

S�1LS D
�

0 �˛T

0N�1 L22 C 1N�1˛T

�
: (5)

From (5), we can see that the eigenvalues of L22 C 1N�1˛T are the nonzero eigenvalues of L,
that is, �2.L/; �3.L/; � � � ; �N .L/. Based on this analysis, we can obtain the following result on the
relationship between the eigenvectors of L and L22 C 1N�1˛T .

Lemma 3
Let vi denote the right eigenvector corresponding to the eigenvalue �i .L/, i D 2; 3; : : : ; N . Then
vTi;2�N is the left eigenvector of L22 C 1N�1˛T corresponding to the same eigenvalue �i .L/, i D
2; 3; : : : ; N .

Proof
In fact, we have

Lvi D
�
d1vi;1 � ˛

T vi;2�N
�˛vi;1 C L22vi;2�N

�
D

�
�i .L/vi;1
�i .L/vi;2�N

�
;

so

� ˛vi;1 D �i .L/vi;2�N � L22vi;2�N : (6)

It is obvious that 1TN vi D 0, i D 2; 3; : : : ; N ; thus, we have

� ˛vi;1 D ˛1TN�1vi;2�N : (7)

From (6) and (7), we have

vTi;2�N
�
L22 C 1N�1˛T

�
D �i .L/vTi;2�N :

That is to say, the component of the right eigenvector of L is the left eigenvector of L22C 1N�1˛T

corresponding to the same eigenvalue �i .L/, i D 2; 3; : : : ; N .
Because L is a symmetric matrix, it can be diagonalized by using its eigenvector matrix; in

other words, there exists a matrix U D Œu1; u2; : : : ; uN � composed of the mutually orthogonal
eigenvectors of L such that

U�1LU D diag¹0; �2.L/; � � � ; �N .L/º:

�

We take V D Œu2;2�N ; u3;2�N ; : : : ; uN;2�N �
T ; then U D

�
1 ˇT

1N�1 V T

�
with ˇ D

Œu2;1; u3;1; : : : ; uN;1�
T ; thus, V is an invertible matrix (because if V is singular, then there exist lin-

early dependent columns in V T ; without loss of generality, we can assume that u2;2�N D ku3;2�N ,
k 2 R; then u2;1 D �1TN�1u2;2�N D �k1TN�1u3;2�N D ku3;1; thus, we can obtain that
u2 D ku3, but this contradicts with the invertibility of U ), and we have

V
�
L22 C 1N�1˛T

�
V �1 D diag¹�2.L/; �3.L/; : : : ; �N .L/º:

Let Qı.t/ , .V ˝ In/ı.t/; then we can obtain its dynamics as follows:

PQı.t/ D .IN�1 ˝ A/ Qı.t/ � Œdiag¹�2.L/; �3.L/; � � � ; �N .L/º ˝ BK� Qı.t � �/:

Take Qı.t/ D
�
QıT2 .t/;

QıT3 .t/; � � � ;
QıTN .t/

�T
; then we can obtain the following theorem:

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:2529–2541
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Theorem 1
Systems (1) and (2) achieve consensus if and only if the following N �1 time-delay subsystems are
simultaneously asymptotically stable:

PQıi .t/ D A Qıi .t/ � �i .L/BK Qıi .t � �/; i D 2; 3; : : : ; N: (8)

In order to find a gain matrix K such that every time-delay subsystem of (8) is asymptotically
stable, we first consider the stability of the following time-delay system:

P�.t/ D A�.t/ � aBF�.t � �/; a 2 Œ�2.L/; �N .L/�; (9)

It is obvious that system (9) is equivalent to

P�.t/ D A�.t/ � aBu.t � �/; a 2 Œ�2.L/; �N .L/� ; (10)

with a state feedback control law of form

u.t/ D F�.t/: (11)

And for this problem of (10) and (11), we have the following result.

Lemma 4
For the given constant N� > 0, if there exist symmetric positive definite matricesW , X , Z, and Y of
appropriate dimension such that the following linear matrix inequalities hold,

2
4XA

T C AX �XWX �aBY CXWX XATW

� �XWX �a N�Y TBTW
� � �W

3
5 < 0; (12)

and

XATZX CXZAX � aXZBY � aY TBTZX < 0; (13)

then systems (10) and (11) are asymptotically stable for any � 2 Œ0; N��, and the gain matrix can be
taken as F D YX�1.

Proof
The stability of systems (10) and (11) is equivalent to that of the closed-loop system (9). Set X D
S�1. Then we can define a Lyapunov functional for (9) as follows:

V.�.t// , �T .t/S�.t/C N�
Z 0

��

Z t

tC�

P�T .s/W P�.s/ ds d�:

Thus, we can obtain the derivative of V.�.t// about t as follows:

PV .�.t// D �T .t/
�
ATS C SA

�
�.t/ � a�T .t � �/F TBTS�.t/ � a�T .t/SBF�.t � �/

C N�� P�T .t/W P�.t/ � N�

Z t

t��

P�T .s/W P�.s/ ds:

Then from Lemma 2, we have

�N�

Z t

t��

P�T .s/W P�.s/ ds 6 � N�
�

�Z t

t��

P�T .s/ ds

	
W

�Z t

t��

P�.s/ ds

	
:

Because W > 0 and � 6 N� , then we have

N�� P�T .t/W P�.t/ 6 N�2 P�T .t/W P�.t/:
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Thus,

PV .�.t// 6 �T .t/
�
ATS C SAC N�2ATWA

�
�.t/ � a�T .t/

�
SBF C N�2ATWBF

�
�.t � �/

� a�T .t � �/
�
F TBTS C N�2F TBTWA

�
�.t/

�
�
�T .t/ � �T .t � �/

�
W .�.t/ � �.t � �//

D �T .t/˚�.t/;

where �.t/ D Œ�T .t/; �T .t � �/�T and

˚ D

�
ATS C SAC N�2ATWA �W �aSBF � a N�2ATWBF CW

� a2 N�2F TBTWBF �W

�
:

Using the (ii) of Schur complement, we see that ˚ < 0 is equivalent to

2
64
ATS C SA �W �aSBF CW AT

� �W �aF TBT

� � �
1

N�2
W �1

3
75 < 0:

Note that the last matrix is nonlinear. By premultiplying and postmultiplying diag¹S�1; S�1; N�W º,
we can obtain the following equivalent linear matrix inequality:

2
4S
�1AT C AS�1 � S�1WS�1 �aBFS�1 C S�1WS�1 N�S�1ATW

� �S�1WS�1 �a N�S�1F TBTW
� � �W

3
5 < 0:

Because X D S�1 and we define Y D FX , so we have

2
4XA

T C AX �XWX �aBY CXWX N�XATW

� �XWX �a N�Y TBTW
� � �W

3
5 < 0:

That is to say, PV .�.t// < 0 if the linear matrix inequality (12) holds; then from Lyapunov stability
theorem, we know that systems (9)–(11) are asymptotically stable. In addition, if the linear matrix
inequality (13) holds, then we have ATZ CZA� aZBYX�1 � aX�1Y TBTZ < 0, so the matrix
A� aBYX�1 is a stable matrix. That is to say, when � D 0, the corresponding delay-free system is
asymptotically stable.

In summary, if the linear matrix inequalities (12) and (13) hold, then system (9) (or systems (10)
and (11)) is asymptotically stable for any � 2 Œ0; N�� by taking the gain matrix to be F D YX�1. �

Remark 3
Note the linearity and symmetry of inequalities (12) and (13). So if they hold for boundary values
�2.L/ and �N .L/, then they hold in Œ�2.L/; �N .L/�. Thus, we can obtain the following result.

From Theorem 1, Lemma 4, and Remark 3, we can obtain the following result:

Theorem 2
For a given constant N� > 0, if there exist symmetric positive definite matrices W , X , Z, and Y of
appropriate dimension such that the following linear matrix inequalities hold,

2
4XA

T C AX �XWX ��2.L/BY CXWX XATW

� �XWX ��2.L/ N�Y TBTW
� � �W

3
5 < 0; (14)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:2529–2541
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2
4XA

T C AX �XWX ��N .L/BY CXWX XATW

� �XWX ��N .L/ N�Y TBTW
� � �W

3
5 < 0; (15)

XATZX CXZAX � �2.L/XZBY � �2.L/Y TBTZX < 0; (16)

and

XATZX CXZAX � �N .L/XZBY � �N .L/Y TBTZX < 0; (17)

then system (1) is consensusable for � 2 Œ0; N�� with the common gain matrix taken as K D YX�1.

Remark 4
Our results in Theorem 2 has a close relationship with the second smallest eigenvalue of Laplacian
matrix, that is, �2.L/, and the largest eigenvalue of Laplacian matrix, that is, �N .L/. From
Remark 3, we know that, as long as we know that the linear matrix inequalities (14)–(17) hold for
the lower bound of �2.L/ and the upper bound of �N .L/, then system (1) is consensusable. We
have estimates for them as follows.

Lemma 5 ([19])
Let G be a simple graph on N vertices. Then

�N .L/ 6 max¹du C dvj.u; v/ 2 Eº;

where du is the degree of vertex u. And if N > 3, then

�2.L/ > d�;

with equality if G is a complete bipartite graph, where d� denotes the second largest degree of G.

4. FREQUENCY-DOMAIN CRITERIA FOR CONSENSUS

Because we know that the system is asymptotically stable if and only if all the eigenvalues of its
characteristic equation have the negative real part, so from Theorem 1, we have the following result.

Lemma 6
System (1) is consensusable if and only if there exists a matrix K such that all the roots s of the
following characteristic equations

det ŒsI � AC �i .L/BKe��s� D 0; i D 2; 3; : : : ; N (18)

have the negative real parts.

Remark 5
Apparently, the analysis of the distribution of the roots of (18) is not easy, but for some special
systems (such as first-order integrator systems), it is possible to have some more explicit results.

For first-order integrator systems,

Pxi .t/ D ui .t/; i D 1; 2; : : : ; N; (19)

the consensus protocol of the i th agent is given by

ui .t/ D k

nX
jD1

aij .xj .t � �/ � xi .t � �//; i D 1; 2; : : : ; N (20)

where k 2 R is the common gain and � > 0 is the delay time. We have the following results.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:2529–2541
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Lemma 7
System (19) is consensusable if and only if all the roots s of the following equations

s C �i .L/ke��s D 0; i D 2; 3; : : : ; N (21)

have the negative real parts.
The proof of this lemma directly follows from Theorem 1 and is thus omitted.

Theorem 3
System (19) is consensusable if and only if k > 0 and � < �max, where

�max D
	

2k�N .L/
:

Proof
We should note that k should stabilize the delay-free system of (19) and (20); that is to say, when
� D 0, the following equations

s C �i .L/k D 0; i D 2; 3; : : : ; N

have the negative real parts; thus, there must be k > 0.
By the continuous dependence of the roots on parameter � , we only need to consider that there

is no imaginary axis root and zero root of (19) when � < �max, where �max is a parameter to
be determined.

Note that the complex roots of (19) are distributed symmetrically on the complex plane with
respect to the real axis; thus, we only need to consider the case of s D 
wi (
2 D �1), wi > 0,
i D 2; 3; : : : ; N for (19). That is to say, we only need to guarantee that the following equations


wi C �i .L/ke��wi � D 0; i D 2; 3; � � � ; N (22)

do not have solutions wi > 0, i D 2; 3; � � � ; N .
If there is a i� 2 ¹2; � � � ; N º such that


wi� C �i�.L/ke��wi�� D 0; (23)

where wi� > 0, then by separating the real part and imaginary part of (23), we obtain that

�i�.L/k cos.wi��/ D 0; (24)

wi� � �i�.L/k sin.wi��/ D 0: (25)

From (24), we have cos.wi��/ D 0, so wi� ¤ 0, and there must be wi�� D l	 C �
2

, l D 0; 1; : : :.
From (25), we have wi�

sin.wi��/
D �i�.L/k > 0, so sin.wi��/ > 0; thus, wi�� D 2l	 C �

2
, l D

0; 1; : : :. That is to say, k�i�.L/ D wi� D
2l�C�2
�

, l D 0; 1; : : :. So we have � D
2l�C�2
k�i� .L/

; thus, we
can see that (22) has no solution of s D 
wi , wi > 0, i D 2; 3; � � � ; N if and only if � < �

2k�N .L/ . �

Remark 6
From Theorem 3, we know that by choosing a relatively small (or large) gain k > 0, we can
guarantee that system (19) is consensusable when the time delay is large (or small).

5. SIMULATION

We consider a network of three agents (Figure 1) with first-order integrator dynamics

Pxi .t/ D ui .t/; i D 1; 2; 3: (26)
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Figure 1. Network topology 1.
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Figure 2. � < �max.

The consensus protocol of the i th agent is given by

ui .t/ D 2

3X
jD1

aij .xj .t � �/ � xi .t � �//: (27)

From Theorem 3, we know that this network can reach consensus if and only if � < �max D
�

2.3C
p
3/
	 0:33. Figure 2 displays the simulation result of � D 0:3 < �max, and the system reached

consensus. Figure 3 is the simulation result of � D 0:335 > �max, and in this case, the states are
divergent. So the simulation results are consistent with our conclusion in Theorem 3.

Also, we can consider a network of seven agents with first-order integrator dynamics like (26),
and the corresponding adjacency matrix is given by

A D

2
66666664

0 1 2 0 0 0 0

1 0 0 0 0 3 4

2 0 0 5 6 0 0

0 0 5 0 0 0 0

0 0 6 0 0 0 0

0 3 0 0 0 0 0

0 4 0 0 0 0 0

3
77777775
:

The consensus protocol is the same as (27) in form with k D 0:5. Similarly, we know that this net-
work can reach consensus if and only if � < �max 	 0:1732. Figures 4 and 5 display the simulation
results of � D 0:17 < �max and � D 0:18 > �max, respectively. Apparently, the simulation results
are also consistent with our conclusion in Theorem 3.
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Figure 6. Network topology 2.
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Figure 7. The first component of system (28).
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Figure 8. The second component of system (28).

Now, consider a network of four agents (Figure 6) with i th dynamics described by

Pxi D

�
0 0

0 �5

�
xi C

�
1

2

�
ui ; i D 1; 2; 3; 4: (28)

Apparently, .A;B/ is stabilizable. Here, we assume that N� D 0:5. By calculating, we know that
�2.L/ D 1:1716, �4.L/ D 6:8284. From Theorem 2, by using the LMI Toolbox of the MATLAB
(MathWorks, Inc., Natick, MA, USA), we can obtain the results ofK D YX�1 D

�
0:0148 0:0463

�
.
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Based on this result, we can obtain the simulation result of system (28) as Figures 7 and 8. They
illustrate the first and second components of xi D Œxi1; xi2�T , i D 2; 3; 4, and both of them take on
the tendency of being asymptotically stable. Thus, xi , i D 1; 2; 3; 4 reach consensus.

6. CONCLUSION

This paper studied the consensusability of high-order linear MASs with uniform constant communi-
cation delay in an undirected network. The consensusability problem ofN agents can be turned into
simultaneous stability ofN �1 time-delay subsystems associated with the eigenvalues of Laplacian
matrix by employing an appropriate linear transformation. We presented a sufficient condition for
the MAS to reach consensus in the form of some linear matrix inequalities associated with the eigen-
values of Laplacian matrix of the network. We also considered the consensusability condition for
first-order integrators by using frequency-domain analysis and showed that by choosing a relatively
small (or large) gain, we can guarantee that the agents achieve consensus when the time delay is
large (or small).
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