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ABSTRACT
In this paper, we consider the consensus conditions for discrete-timemulti-agent systems with com-
munication delay between agents, subject to that each agent’s state is constrained to lie in a given
convex set. And we will present some consensus conditions for unconstrained multi-agent systems
with time delay.

1. Introduction

Recently, there has been considerable interest in dis-
tributed control problems for multi-agent systems, in
which several autonomous agents collectively try to
achieve a global objective by using local measurements
and local communications. One fundamental problem
for distributed control is the well-studied consensus con-
trol problem (Cao, Morse, & Anderson, 2008; Hendrickx
&Tsitsiklis, 2011;Hua, You,&Guan, 2016; Jadbabaie, Lin,
& Morse, 2003; Kashyap, Başar, & Srikant, 2007; Moreau,
2005; Nedic & Liu, 2014; Olfati-Saber &Murry, 2004; Ren
& Beard, 2005; Shi, Johansson, & Hong, 2013; Shi, Xia, &
Johansson, 2015; Touri & Nedić, 2014), where the agents
in a network all aim to agree on a common quantity via
local information exchange only with their neighbouring
agents. The consensus convergence property depends on
the network topology, the formof consensus protocol and
the dynamics of agents.

A special important consensus problem is called con-
strained consensus problem (Lee & Mesbahi, 2011; Lin
& Ren, 2012; Liu & Chen, 2012; Nedić, Ozdaglar, &
Parrilo, 2010; Qiu, Liu, & Xie, 2016; Sun, Ong, & White,
2013), where each agent’s value (or state) is constrained
to a given set. Such constraints are significant in a num-
ber of applications including motion planning and align-
ment problems (where each agent’s position is limited to
a certain region or range) and distributed constrained
multi-agent optimisation problems. Nedic et al. (2010)
presented a constrained consensus problem for a discrete-
time system with the state of the ith agent restricted to lie
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in a closed convex sets Xi only known to the ith agent.
Lee and Mesbahi (2011) proposed a constrained consen-
sus algorithm for continuous-time system by using loga-
rithmic barrier functions.

In real applications, communications among agents
are typically subject to time delays, due to, for example,
limited communication bandwidth. The presence of time
delaysmay cause degraded performance, poor robustness
or even instability of a multi-agent system. Xie (2016),
Hou, Fu, Zhang, and Wu (2017) and Jiang, Xie, and Cao
(2017) only consider the consensus problem with time
delay. It is thus important to consider the constrained
consensus problem with time delay.

This paper considers a constrained consensus prob-
lem with time delay for discrete-time multi-agent sys-
tems. First, we gave some convergence conditions for a
general consensus algorithm by using the a special prop-
erty of stochastic matrices. Then, we connect the original
system with the consensus algorithm and we can present
some consensus conditions for the original system with
time delay.

2. Algebraic graph theory basics

The communication topology between multi-agents will
be denoted by a graph G = {V, E,A}. V = {1, 2, . . . ,N}
is the set of vertices, and vertex i denotes the ith agent.
E ⊂ {(i, j) : i, j ∈ V} is edges set. A = [ai j] ∈ RN×N is
the weighted adjacency matrix. The edge (i, j) = (j, i)
denotes that the communication channel between agent
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i and agent j is bi-directional. The neighbours Ni of ver-
tex i is the set of the vertices that can communicate with
the ith agent. For any i, j ∈ V , and aij > 0 if and only if
j ∈ Ni. di = ∑N

j=1 ai j is called the degree of the ith ver-
tex. A spanning tree of a digraph is a directed tree formed
by graph edges that connect all the nodes of the graph.
Wedefine the Laplacianmatrix of graphG asL = D − A,
whereD = diag(d1, d2, . . . , dN ). All the eigenvalues ofL
are λi, i = 1, 2,… , N.

We say that a vector is stochastic if its entries are non-
negative and sum to 1. A square matrix is said to be
stochastic if its entries are nonnegative and its row sums all
equal 1 (see Richard, Seymour, & Hans, 1966). A matrix
A = [aij] � Rn×n is nonnegative, if all its entries are non-
negative. 1m denotes the m-dimensional column vector
with all components 1. Xi�R be a nonempty closed con-
vex set, i= 1, 2,… ,N.We use ‖·‖ for the Euclidean norm.
The Euclidean projection (or projection, for short) of a
point x on a convex closed set X is denoted by PX[x], i.e.
PX [x] = argminy∈X ‖y − x‖.
Definition 2.1 (Consensus):Amulti-agent system is said
to achieve consensus if, for any initial conditions and i �
j, i, j = 1, 2,… , N, limk → +�‖xi(k) − xj(k)‖ = 0, where
xi(k) is the state of ith agent.

We will use the following important non-
expansiveness property of projection.

Lemma 2.1 (Liu, Nedić, & Başar, 2014): Let Y�Rn be a
nonempty closed convex set. Then, for any x � Rn and z �
Y, there holds

‖PY [x] − z‖2 ≤ ‖x − z‖2 − ‖PY [x] − x‖2.

Next, we present a property of stochastic matrices.

Lemma 2.2 (Fang & Antsaklis, 2005): Let F � Rn×n be a
stochasticmatrix. Then, F has a unique eigenvalue at 1with
maximummodulus if and only if the graph associated with
F has a spanning tree. In this case, limm→∞ Fm = 1μT ,
where m � N+, and μ = [μ1, μ2,… , μn]T � 0 satisfies
μTF = μT and 1Tμ = 1.

3. Constrained consensus with time delay

Here, we consider the constrained consensus problem
with constant communication time delay τ and the state
of the ith agent is constrained to lie in a nonempty closed
convex set Xi known only to agent i. The objective is
to cooperatively reach a consensus on a common vector
through a sequence of local estimate updates and local

information exchanges. We employ the following pro-
jected consensus algorithm:

xi(k + 1)

= PXi

[
xi(k − τ ) + α

N∑
j=1

ai j[x j(k − τ ) − xi(k − τ )]

]
,

(1)

where xi(k) � R is the state of the ith agent at time k.
Remark 3.1: We note in the consensus protocol above
that the same delay τ also applies to node i. This is to
ensure that correct error signals are used in the feedback
to guarantee the consensus. In applications where xi(t)
is instantaneously known to node i, this signal needs to
be delayed before being applied in controller. In applica-
tions where only relative information can be measured
(e.g. xi(t) is not directly measured but only xi(t) − xj(t)
is measured) and time delay is involved in the measure-
ment, taking the same time delay for node i and node
j is natural. Note that relativemeasurements are common,
including relative distance, relative velocity, etc.

First, we consider the following projected consensus
algorithm:

xi(k + 1) = PXi

⎡
⎣ m∑

j=1

bi jx j(k − τ )

⎤
⎦ , k ≥ 0. (2)

In order to analyse the consensus conditions of (2), we
introduce a technical lemma based on the next assump-
tion.
Assumption 3.1: B= [bij]� Rm×m is a stochastic matrix.
T is the graph associated with adjacent matrix B, and T has
a spanning tree.

Set

vi(k) =
m∑
j=1

bi jx j(k − τ ), ei(k) = PXi [vi(k)] − vi(k).

Then, (2) is equivalent to

xi(k + 1) = PXi [vi(k)] = vi(k) + ei(k).

We have the following result for the algorithm (2).
Lemma 3.1: Suppose Assumption 3.1 holds and that the
intersection X = ⋂m

i=1 Xi is nonempty. Then, for algorithm
(2), there hold

(a) limk → +�ei(k) = 0, i = 1, 2,… , m;
(b) limk → +�‖xi(k) − xj(k)‖ = 0;
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(c) there exists a unique x* � X such that
limk → +�xi(k) = x*, i = 1, 2,… , m.

Proof:

(a) SinceX is nonempty, we can take z�X. Obviously,
z � Xi, i = 1, 2,… , m, then from Lemma 2.1 we
have

‖PXi[vi(k)] − z‖2
≤ ‖vi(k) − z‖2 − ‖PXi[vi(k)] − vi(k)‖2.

i.e.

‖xi(k + 1) − z‖2 ≤ ‖vi(k) − z‖2 − ‖ei(k)‖2.
(3)

So, we have

‖vi(k) − z‖2 =
∥∥∥∥∥∥

m∑
j=1

bi jx j(k − τ ) − z

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥

m∑
j=1

bi j
[
x j(k − τ ) − z

]∥∥∥∥∥∥
2

≤
m∑
j=1

bi j
∥∥x j(k − τ ) − z

∥∥2
. (4)

From Lemma 2.2 we know that limk→∞ Bk =
1μT , where k � N+, and μ = [μ1, μ2,… , μm]T �
0 satisfiesμTB= μT and 1Tμ = 1. By setting μ̂i =
μi, ifμi > 0, and μ̂i = 1

m , ifμi = 0. Then based on
(4), we get

m∑
i=1

μ̂i‖vi(k) − z‖2

≤
m∑
i=1

μ̂i

m∑
j=1

bi j
∥∥x j(k − τ ) − z

∥∥2

=
m∑
i=1

μ̂i ‖xi(k − τ ) − z‖2 , (5)

so from (3) and (5)

m∑
i=1

μ̂i‖xi(k + 1) − z‖2

≤
m∑
i=1

μ̂i‖vi(k) − z‖2 −
m∑
i=1

μ̂i‖ei(k)‖2

≤
m∑
i=1

μ̂i ‖xi(k − τ ) − z‖2 −
m∑
i=1

μ̂i‖ei(k)‖2.

(6)

Thus,

m∑
i=1

μ̂i‖ei(k)‖2 ≤
m∑
i=1

μ̂i ‖xi(k − τ ) − z‖2

−
m∑
i=1

μ̂i‖xi(k + 1) − z‖2.

So,

∞∑
k=τ

m∑
i=1

μ̂i‖ei(k)‖2 ≤
∞∑
k=τ

[ m∑
i=1

μ̂i ‖xi(k − τ ) − z‖2

−
m∑
i=1

μ̂i‖xi(k + 1) − z‖2
]

=
τ∑

l=0

m∑
i=1

μ̂i ‖xi(l) − z‖2 < ∞.

Since

∞∑
k=τ

m∑
i=1

μ̂i‖ei(k)‖2

≥ μ̂i

∞∑
k=τ

‖ei(k)‖2, i = 1, 2, . . . ,m,

then we have

∞∑
k=τ

‖ei(k)‖2 < ∞, i = 1, 2, . . . ,m,

so we have limk → +�ei(k) = 0, i = 1, 2,… ,m.
(b) Since limk→+∞ Bk = 1μT , so limk → +�|[Bk]il −

[Bk]jl| = 0, �i, j, l = 1, 2,… , m. Then for �ε >

0, there exists some K1 > 0 such that |[Bk]il −
[Bk]jl| � ε if k � K1. Also from (a) we know that
there exists some K2 > 0 such that ‖ei(k)‖ � ε
when k � K2. Thus for q � K1(τ + 1) + K2, we
have

q−1∑
r=1

( m∑
l=1

∣∣[Br]il − [Br] jl
∣∣ ‖el (k − r(τ + 1))‖

)

=
m∑
l=1

K1∑
r=1

∣∣[Br]il − [Br] jl
∣∣ ‖el (k − r(τ + 1))‖

+
m∑
l=1

q−1∑
r=K1+1

∣∣[Br]il − [Br] jl
∣∣ ‖el (k − r(τ + 1))‖
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≤ ε

m∑
l=1

K1∑
r=1

∣∣[Br]il − [Br] jl
∣∣

+ ε

m∑
l=1

q−1∑
r=K1+1

‖el (k − r(τ + 1))‖.

Besides,

xi(k + 1) =
m∑
l=1

bilxl (k − τ ) + ei(k)

=
m∑
l=1

[Bq]ilxl (k + 1 − q(τ + 1))

+
q−1∑
r=1

( m∑
l=1

[Br]il el (k − r(τ + 1))

)

+ ei(k).

Here, q is chosen to be satisfying k + 1 −
q(τ + 1) � [0, 10), and k → +� is equivalent to
q → +�.
So, we have

‖xi(k + 1) − x j(k + 1)‖

=
∥∥∥∥∥

m∑
l=1

(
[Bq]il − [Bq] jl

)
xl (k + 1 − q(τ + 1))

+
q−1∑
r=1

( m∑
l=1

(
[Br]il − [Br] jl

)
el (k − r(τ + 1))

)

+ ei(k) − e j(k)

∥∥∥∥∥
≤

m∑
l=1

∣∣[Bq]il − [Bq] jl
∣∣ ‖xl (k + 1 − q(τ + 1))‖

+
q−1∑
r=1

( m∑
l=1

∣∣[Br]il − [Br] jl
∣∣ ‖el (k − r(τ + 1))‖

)

+ ‖ei(k)‖ + ‖e j(k)‖

≤ ε

m∑
l=1

‖xl (k + 1 − q(τ + 1))‖

+ ε

m∑
l=1

K1∑
r=1

∣∣[Br]il − [Br] jl
∣∣

+ ε

m∑
l=1

q−1∑
r=K1+1

‖el (k − r(τ + 1))‖ + 2ε.

Thus, limk → +�‖xi(k) − xj(k)‖ = 0.
(c) First, we prove the existence of common accumu-

lation point in X. From (6) we know that for any
z � X, {∑m

i=1 μ̂i
∥∥xi(k(τ + 1) + l) − z

∥∥2}, l = 0,

1,… , τ are non-increasing in k, and also bounded.
Then each {μ̂i ‖xi(k(τ + 1) + l) − z‖2}, l = 0,
1,… , τ , is bounded, so {xi(k)}, i = 1, 2,… , m
are also bounded and have an accumulation point.
And from limk → +�‖xi(k) − xj(k)‖ = 0 we can
see that, the accumulation points of {xi(k)}, i =
1, 2,… , m are the same. Since {xi(k)}�Xi, i =
1, 2,… , m, so the accumulation points belong to
Xi, i = 1, 2,… , m, thus the accumulation points
belong to X.
Then, we employ reduction to absurdity to deduce
the uniqueness of the accumulation point. Since
if there exist two accumulation points a1 and a2,
and without loss of generality, we can assume that
{xi(ks(τ + 1) + l)} and {xi(k̄s(τ + 1) + l))}, ks <

k̄s, convergence to a1 � X, a2 � X, respectively.
Then from (6), we have

m∑
i=1

μ̂i

∥∥∥xi(k̄s(τ + 1) + l)) − a1
∥∥∥2

≤
m∑
i=1

μ̂i ‖xi(ks(τ + 1) + l)) − a1‖2 .

Since 1 ≥ μ̂i ≥ β =: min
j=1,2,...,m

{μ̂ j} > 0, i = 1,

2,… ,m, so

β

m∑
i=1

∥∥∥xi(k̄s(τ + 1) + l)) − a1
∥∥∥2

≤
m∑
i=1

μ̂i

∥∥∥xi(k̄s(τ + 1) + l)) − a1
∥∥∥2

≤
m∑
i=1

μ̂i ‖xi(ks(τ + 1) + l)) − a1‖2

≤
m∑
i=1

‖xi(ks(τ + 1) + l)) − a1‖2 .

Let s → �, then β
∑m

i=1 ‖a2 − a1‖2 ≤ 0, thus
a1 = a2. So {xi(t)}, i = 1, 2,… , m, have a unique
accumulation point x* � X. �

Remark 3.2: Note that if we regard τ + 1 as a period, then
(2) is equivalent to

xi(k + 1) = PXi

⎡
⎣ m∑

j=1

bi jx j(k − τ )

⎤
⎦ ,

xi(k − l) = xi(k − τ )

= PXi [xi(k − τ )] , l = 0, 1, . . . , τ − 1.

That is to say, each agent i only updates its state every
τ + 1 time slots, thus the convergence rate is slowed down.
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For (1), if we set

ṽi(k) := xi(k − τ ) + α

N∑
j=1

ai j[x j(k − τ ) − xi(k − τ )]

=
N∑
j=1

ãi jx j(k − τ ),

with ãii = 1 − αdi, and ãi j = αai j, j � i.

ẽi(k) := PXi [ṽi(k)] − ṽi(k).

Then,

xi(k + 1) = PXi [ṽi(k)] = ṽi(k) + ẽi(k).

By taking Ã = [ãi j], we have Ã1 = 1. Note that the span-
ning tree inG associated withA is also a spanning tree for
the graph associated with Ã, and they only have different
weights for the same edge. So, Ã satisfies the Assumption
3.1 if and only if α ≤ mini=1,2,...,N{ 1

di
} and G has a span-

ning tree. Then from the above analysis, we have the fol-
lowing result.

Theorem 3.1: Suppose that G has a spanning tree and
α ≤ mini=1,2,...,N{ 1

di
}. Then, for the projected consensus

algorithm (1), there hold

(a) limk→+∞ ẽi(k) = 0, i = 1, 2,… , N,
(b) limk → +�‖xi(k) − xj(k)‖ = 0,
(c) there exists a unique x* � X such that

limk → +�xi(k) = x*, i = 1, 2,… , N.

4. Simulation

Without loss of generality, we assumed that there are four
agents associated with

A =

⎡
⎢⎢⎣
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

⎤
⎥⎥⎦ , L =

⎡
⎢⎢⎣

2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

⎤
⎥⎥⎦ .

Obviously, G is undirected connected graph. We know
that λ2(L) = 2, λ3(L) = λ4(L) = 4.

We assumed that X1 = {(x, y)|(x− 2)2 + (y− 2)2 � 4},
X2 = {(x, y)|(x − 3)2 + (y − 2)2 � 1}, X3 = {(x, y)|(x −
4)2 + (y − 3)2 � 4}, X4 = {(x, y)|(x − 3)2 + (y − 3)2 �
1}. And x1(0) = [1, 2]T, x2(0) = [3, 4]T, x3(0) = [5, 6]T,
x4(0) = [7, 8]T. From Theorem 3.1 we know that if α ≤
1
3 , then projected consensus algorithm (1) can guarantee
consensus. So we take α = 0.3, and we obtain Figure 1 for
the case of constrained consensus.

Figure . Constrained consensus-.

Figure . Constrained consensus-.

Figure 2 displayed the result for constrained consensus
with six agents according to Theorem 3.1.

5. Conclusion

We have studied the constrained and unconstrained con-
sensus problems for discrete-time multi-agent systems
with time delay. Based on a special property of stochas-
tic matrices, we gave some consensus conditions. Then,
we obtained some consensus conditions for the original
system with time delay.
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Nedić, A., Ozdaglar, A., & Parrilo, P. A. (2010). Constrained
consensus and optimization in multi-agent networks. IEEE
Transaction on Automatic Control, 55(4), 922–937.

Olfati-Saber, R., & Murray, R. M. (2004). Consensus seek-
ing in networks of agents with switching topology and
time-delays. IEEE Transaction on Automatic Control, 49(9),
1520–1533.

Qiu, Z., Liu, S., & Xie, L. (2016). Distributed constrained
optimal consensus of multi-agent systems. Automatica, 68,
209–215.

Ren, W., & Beard, R. W. (2005). Consensus seeking in mul-
tiagent systems under dynamically changing interaction
topologies. IEEE Transaction on Automatic Control, 50(5),
655–661.

Richard, A., Seymour, V., & Hans, S. (1966). The diagonal
equivalence of a nonnegative matrix to a stochastic matrix.
Journal of Mathematical Analysis and Applications, 16,
31–50.

Shi, G., Johansson, K. H., & Hong, Y. (2013). Reaching an
optimal consensus: Dynamical systems that compute inter-
sections of convex sets. IEEE Transactions on Automatic
Control, 58(3), 610–622.

Shi, G., Xia, W., & Johansson, K. H. (2015). Conver-
gence of max-min consensus algorithms. Automatica, 62,
11–17.

Sun, C., Ong, C. J., & White, J. K. (2013). Consensus control of
multi-agent system with constraint-the scalar case. In Pro-
ceedings of the 52nd IEEE conference on decision and control
(pp. 7345–7350).
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