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1. Introduction

The fast development of network (particularly wireless) technology have encouraged its use

in control and signal processing applications. Under the control systems’ perspective, this

new technology has imposed new challenges concerning how to deal with the effects of

quantisation, delays and loss of packets, leading to the development of a new networked

control theory Schenato et al. (2007). The study of state estimators, when measurements are

subject to random delays and losses, finds applications in both control and signal processing.

Most estimators are based on the well-known Kalman filter Anderson & Moore (1979). In

order to cope with network induced effects, the standard Kalman filter paradigm needs to

undergo certain modifications.

In the case of missing measurements, the update equation of the Kalman filter depends on

whether a measurement arrives or not. When a measurement is available, the filter performs

the standard update equation. On the other hand, if the measurement is missing, it must

produce open loop estimation, which as pointed out in Sinopoli et al. (2004), can be interpreted

as the standard update equation when the measurement noise is infinite. If the measurement

arrival event is modeled as a binary random variable, the estimator’s error covariance (EC)

becomes a random matrix. Studying the statistical properties of the EC is important to

assess the estimator’s performance. Additionally, a clear understanding of how the system’s

parameters and network delivery rates affect the EC, permits a better system design, where

the trade-off between conflicting interests must be evaluated.

Studies on how to compute the expected error covariance (EEC) can be dated back at least

to Faridani (1986), where upper and lower bounds for the EEC were obtained using a constant

gain on the estimator. In Sinopoli et al. (2004), the same upper bound was derived as the

limiting value of a recursive equation that computes a weighted average of the next possible

error covariances. A similar result which allows partial observation losses was presented

in Liu & Goldsmith (2004). In Dana et al. (2007); Schenato (2008), it is showed that a system in

which the sensor transmits state estimates instead of raw measurements will provide a better

error covariance. However, this scheme requires the use of more complex sensors. Most of

the available research work is concerned with the expected value of the EC, neglecting higher

order statistics. The problem of finding the complete distribution function of the EC has been

recently addressed in Shi et al. (2010).



This chapter investigates the behavior of the Kalman filter for discrete-time linear systems

whose output is intermittently sampled. To this end we model the measurement arrival event

as an independent identically distributed (i.i.d.) binary random variable. We introduce a

method to obtain lower and upper bounds for the cumulative distribution function (CDF) of

the EC. These bounds can be made arbitrarily tight, at the expense of increased computational

complexity. We then use these bounds to derive upper and lower bounds for the EEC.

2. Problem description

In this section we give an overview of the Kalman filtering problem in the presence of

randomly missing measurements. Consider the discrete-time linear system:

{

xt+1 = Axt + wt

yt = Cxt + vt
(1)

where the state vector xt ∈ R
n has initial condition x0 ∼ N(0, P0), y ∈ R

p is the measurement,

w ∼ N(0, Q) is the process noise and v ∼ N(0, R) is the measurement noise. The goal of the

Kalman filter is to obtain an estimate x̂t of the state xt , as well as providing an expression for

the covariance matrix Pt of the error x̃t = xt − x̂t.

We assume that the measurements yt are sent to the Kalman estimator through a network

subject to random packet losses. The scheme proposed in Schenato (2008) can be used to

deal with delayed measurements. Hence, without loss of generality, we assume that there is

no delay in the transmission. Let γt be a binary random variable describing the arrival of a

measurement at time t. We define that γt = 1 when yt was received at the estimator and γt = 0

otherwise. We also assume that γt is independent of γs whenever t 6= s. The probability to

receive a measurement is given by

λ = P(γt = 1). (2)

Let x̂t|s denote the estimate of xt considering the available measurements up to time s. Let

x̃t|s = xt − x̂t|s denote the estimation error and Σt|s = E{(x̃t|s − E{x̃t|s})(x̃t|s − E{x̃t|s})′}
denote its covariance matrix. If a measurement is received at time t (i.e., if γt = 1), the estimate

and its EC are recursively computed as follows:

x̂t|t = x̂t|t−1 + Kt(yt − Cxt) (3)

Σt|t = (I − KtC)Σt|t−1 (4)

x̂t+1|t = Ax̂t|t (5)

Σt+1|t = AΣt|tA′ + Q, (6)

with the Kalman gain Kt given by

Kt = Σt|t−1C′(CΣt|t−1C′ + Q)−1. (7)

On the other hand, if a measurement is not received at time t (i.e., if γt = 0), then (3) and (4)

are replaced by

x̂t|t = x̂t|t−1 (8)



Σt|t = Σt|t−1. (9)

We will study the statistical properties of the EC Σt|t−1. To simplify the notation, we define

Pt = Σt|t−1. Then, the update equation of Pt can be written as follows:

Pt+1 =

{

Φ1(Pt), γt = 1

Φ0(Pt), γt = 0
(10)

with

Φ1(Pt) = APt A′ + Q − APtC
′(CPtC

′ + R)−1CPtA′ (11)

Φ0(Pt) = APt A′ + Q. (12)

We point out that when all the measurements are available, and the Kalman filter reaches its

steady state, the EC is given by the solution of the following algebraic Riccati equation

P = APA′ + Q − APC′(CPC′ + R)−1CPA′. (13)

Throughout this chapter we use the following notation. For given T ∈ N and 0 ≤ m ≤ 2T − 1,

the symbol ST
m denotes the binary sequence of length T formed by the binary representation

of m. We also use ST
m(i), i = 1, · · · , T to denote the i-th entry of the sequence, i.e.,

ST
m = {ST

m(1), ST
m(2), . . . , ST

m(T)} (14)

and

m =
T

∑
k=1

2k−1ST
m(k). (15)

(Notice that ST
0 denotes a sequence of length T formed exclusively by zeroes.) We use |ST

m| to

denote the number of ones in the sequence ST
m, i.e.,

|ST
m| =

T

∑
k=1

ST
m(k) (16)

For a given sequence ST
m, and a matrix P ∈ R

n×n, we define the map

φ(P, ST
m) = ΦST

m(T) ◦ ΦST
m(T−1) ◦ . . . ΦST

m(1)
(P) (17)

where ◦ denotes the composition of functions (i.e. f ◦ g(x) = f (g(x))). Notice that if m is

chosen so that

ST
m = {γt−1, γt−2, . . . , γt−T}, (18)

then the map φ(·, ST
m) updates Pt−T according to the measurement arrivals in the last T

sampling times, i.e.,

Pt = φ(Pt−T, ST
m) = Φγt−1 ◦ Φγt−1 ◦ . . . Φγt−T(Pt−T). (19)



3. Bounds for the cumulative distribution function

In this section we present a method to compute lower and upper bounds for the limit CDF

F(x) of the trace of the EC, which is defined by

F(x) = lim
T→∞

FT(x) (20)

FT(x) = P (Tr{PT} < x) (21)

=
2T−1

∑
m=0

P
(

ST
m

)

H
(

x − Tr{φ(P0, ST
m)}

)

, (22)

where H(·) is the Heaviside step function, and the probability to observe the sequence ST
m is

given by

P
(

ST
m

)

= λ|ST
m|(1 − λ)T−|ST

m|. (23)

The basic idea is to start with either the lowest or the highest possible value of EC, and then

evaluate the CDF resulting from each starting value after a given time horizon T. Doing so,

for each T, we obtain a lower bound FT(x) and an upper bound F
T
(x) for F(x), i.e.,

FT(x) ≤ F(x) ≤ F
T
(x), for all T ∈ R. (24)

As we show in Section 3.3, both bounds monotonically approach F(x) as T increases.

To derive these results we make use of the following lemma stating properties of the maps

Φ0(·) and Φ1(·) defined in (11)-(12).

Lemma 3.1. Let X, Y ∈ R
n×n be two positive semi-definite matrices. Then,

Φ1(X) < Φ0(X). (25)

If Y ≥ X,

Φ0(Y) ≥ Φ0(X) (26)

Φ1(Y) ≥ Φ1(X). (27)

Proof: The proof of (25) is direct from (11)-(12). Equation (26) follows straightforwardly since

Φ0(X) is affine in X. Using the matrix inversion lemma, we have that

Φ1(X) = A(X−1 + C′R−1C)−1A′ + Q (28)

which shows that Φ1(X) is monotonically increasing with respect to X.

3.1 Upper bounds for the CDF
The smallest possible value of the EC is obtained when all the measurements are available,

and the Kalman filter reaches its steady state. In this case, the EC P is given by (13). Now,



fix T, and suppose that m is such that ST
m = {γT−1, γT−2, . . . , γ0} describes the measurement

arrival sequence. Then, assuming that1 P0 ≥ P , from (26)-(27), it follows that PT ≥ φ(P, ST
m).

Hence, from (22), an upper bound of F(x) is given by

F
T
(x) =

2T−1

∑
m=0

P
(

ST
m

)

H
(

x − Tr{φ(P, ST
m)}

)

. (29)

3.2 Lower bounds for the CDF
A lower bound for the CDF can be obtained using an argument similar to the one we used

above to derive an upper bound. To do this we need to replace in (22) Tr{φ(P0, ST
m)} by an

upper bound of Tr{PT} given the arrival sequence ST
m. To do this we use the following lemma.

Lemma 3.2. Let m be such that ST
m = {γT−1, γT−2, · · · , γ0} and 0 ≤ t1, t2, · · · , tI ≤ T − 1 denote

the indexes where γi = 1, i = 0, · · · , T − 1. Define

O =











CAt1

CAt2

...

CAtI











, ΣQ =



























t1−1

∑
j=0

CAjQA′T−t1+j

t2−1

∑
j=0

CAjQA′T−t2+j

...
tI−1

∑
j=0

CAjQA′T−tI+j



























′

, (30)

and the matrix ΣV ∈ R
nI×nI whose [ΣV ]i,j ∈ R

n×n submatrix is given by

[ΣV ]i,j =
min{ti ,tj}−1

∑
k=0

CAti−1−kQA′tj−1−kC′ + Rδ(i, j) (31)

where

δ(i, j) =

{

1, i = j

0, i 6= j.
(32)

If O has full column rank, then

PT ≤ P(ST
m), (33)

where the ST
m-dependant bound P(ST

m) is given by

P(ST
m) = AT

(

O′Σ−1
V O

)−1
A′T +

T−1

∑
j=0

AjQA′j − AT(Σ
− 1

2
V O)†Σ

− 1
2

V Σ′
Q + (34)

−ΣQΣ
− 1

2
V (Σ

− 1
2

V O)′† A′T − ΣQ

(

Σ−1
V − Σ−1

V O(O′Σ−1
V O)−1O′Σ−1

V

)

Σ′
Q,

with (Σ
− 1

2

V O)† denoting the Moore-Penrose pseudo-inverse of Σ
− 1

2

V O Ben-Israel & Greville (2003).

1 If this assumption does not hold, one can substitute P by P0 without loss of generality.



Proof: Let YT be the vector formed by the available measurements

YT =
[

y′t1
y′t2

· · · y′tI

]′
(35)

= Ox0 + VT , (36)

where

VT =















∑
t1−1
j=0 CAt1−1−jwj + vt1

∑
t2−1
j=0 CAt2−1−jwj + vt2

...

∑
tI−1
j=0 CAtI−1−jwj + vtI















. (37)

From the model (1), it follows that

[

xT

YT

]

∼ N

([

0

0

]

,

[

Σx ΣxY

Σ′
xY ΣY

])

(38)

where

Σx = ATP0 A′T +
T−1

∑
j=0

AjQA′j (39)

ΣxY = ATP0O′ + ΣQ (40)

ΣY = OP0O′ + ΣV . (41)

Since the Kalman estimate x̂T at time T is given by,

x̂T = E {xT |YT} , (42)

it follows from (Anderson & Moore, 1979, pp. 39) that the estimation error covariance is given

by

PT = Σx − ΣxYΣ−1
Y Σ′

xY. (43)

Substituting (39)-(41) in (43), we have

PT = ATP0 A′T +
T−1

∑
j=0

AjQA′j + (44)

−
(

ATP0O′ + ΣQ

)

(

OP0O′ + ΣV

)−1
(

ATP0O′ + ΣQ

)′

= AT
(

P0 − P0O′ (OP0O′ + ΣV

)−1
O′P0

)

AT +
T−1

∑
j=0

AjQA′j + (45)

−ATP0O′ (OP0O′ + ΣV

)−1
Σ′

Q − ΣQ

(

OP0O′ + ΣV

)−1
O′P0 AT +

−ΣQ

(

OP0O′ + ΣV

)−1
Σ′

Q.

Now, from (19),

PT = φ(P0, ST
m). (46)



Since for any P0 we can always find a k such that kI ≥ P0, from the monotonicity of φ(·, ST
m)

(Lemma 3.1), it follows that

PT ≤ lim
k→∞

φ(kI, ST
m). (47)

We then have that

PT ≤ PT,1 + PT,2 + PT,3 + P′
T,3 + PT,4, (48)

with

PT,1 = lim
k→∞

AT
(

kI − k2O
(

kOO′ + ΣV

)−1
O′

)

A′T (49)

PT,2 =
T−1

∑
j=0

AjQA′j

PT,3 = − lim
k→∞

kATO
(

kOO′ + ΣV

)−1
Σ′

Q

PT,4 = − lim
k→∞

ΣQ

(

kOO′ + ΣV

)−1
Σ′

Q.

Using the matrix inversion lemma, we have that

PT,1 = AT lim
k→∞

(

k−1 I + O′Σ−1
V O

)−1
A′T (50)

= AT
(

O′Σ−1
V O

)−1
A′T. (51)

It is straightforward to see that PT,3 can be written as

PT,3 = − lim
k→0

ATO′ (OO′ + ΣVk
)−1

Σ′
Q (52)

= −AT lim
k→0

Σ
− 1

2
V O′

(

Σ
− 1

2
V OO′Σ

− 1
2

V + kI

)−1

Σ
− 1

2
V Σ′

Q. (53)

From (Ben-Israel & Greville, 2003, pp. 115), we know that limk→0 ξ ′ (ξξ ′ + kI) = ξ†. By

making ξ = Σ
− 1

2
V O, we have that

PT,3 = −AT

(

Σ
− 1

2

V O

)†

Σ
− 1

2

V Σ′
Q. (54)

Using the matrix inversion lemma, we have

PT,4 = − lim
k→∞

ΣQ

(

Σ−1
V − Σ−1

V O
(

O′Σ−1
V O + k−1 I

)−1
O′Σ−1

V

)

Σ′
Q (55)

= ΣQ

(

Σ−1
V − Σ−1

V O
(

O′Σ−1
V O

)−1
O′Σ−1

V

)

Σ′
Q

and the result follows by substituting (51), (54) and (55) in (48).



In order to keep the notation consistent with that of Section 3.1, with some abuse of notation

we introduce the following definition

φ(∞, ST
m) ,

{

P(ST
m), if O has full column rank

∞In, otherwise
(56)

where ∞In is an n × n diagonal matrix with ∞ on every entry of the main diagonal. Then, we

obtain a lower bound for F(x) as follows

FT(x) =
2T−1

∑
m=0

P
(

ST
m

)

H
(

x − Tr{φ(∞, ST
m)}

)

. (57)

3.3 Monotonic approximation of the bounds to F(x)

In this section we show that the bounds FT(x) and F
T
(x) in (24) approach monotonically F(x),

as T tends to infinity. This is stated in the following theorem.

Theorem 3.1. We have that

FT+1(x) ≥ FT(x) (58)

F
T+1

(x) ≤ F
T
(x). (59)

Moreover, the bounds FT(x) and F
T
(x) approach monotonically the true CDF F(x) as T tends to ∞.

Proof: Let ST
m be a sequence of length T. From (17) and Lemma 3.1 and for any P0 > 0, we

have

φ(P0, {ST
m, 0}) = φ(Φ0(P0), ST

m) ≤ φ(∞, ST
m). (60)

From the monotonicity of φ(·, ST
m) and Φ0(·), stated in Lemma 3.1 we have

φ(P0, {ST
m, 0}) = φ(Φ0(P0), ST

m) ≥ φ(P0, ST
m) (61)

which implies that

φ(∞, {ST
m, 0}) ≥ φ(∞, ST

m). (62)

From (60) and (62), we have

φ(∞, {ST
m, 0}) = φ(∞, ST

m). (63)

Also, if the matrix O (defined in Lemma 3.2) resulting from the sequence ST
m has full column

rank, then so has the same matrix resulting from the sequence {ST
m, 1}. This implies that

φ(∞, {ST
m, 1}) ≤ φ(∞, ST

m). (64)

Now, from Lemma 3.1, Φ0(P) ≥ P, and therefore,

φ(P, {ST
m, 0}) = φ(Φ0(P), ST

m) (65)

≥ φ(P, ST
m). (66)
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Fig. 1. Upper and lower bounds for the Error Covariance.

Also, since Φ1(P) = P, we have that

φ(P, {ST
m, 1}) = φ(φ1(P), ST

m) (67)

= φ(P, ST
m). (68)

Hence, for any binary variable γ, we have that

φ(∞, {ST
m, γ}) ≤ φ(∞, ST

m) (69)

φ(P, {ST
m, γ}) ≥ φ(P, ST

m). (70)

Now notice that the bounds (29) and (57) only differ in the position of the step functions H(·).
Hence, the result follows from (69) and (70).

3.4 Example
Consider the system below, which is taken from Sinopoli et al. (2004),

A =

[

1.25 0

1 1.1

]

C =

[

1

1

]′

Q =

[

20 0

0 20

]

R = 2.5,

(71)

with λ = 0.5. In Figure 1 we show the upper bound F
T
(x) and the lower bound FT(x), for

T = 3, T = 5 and T = 8. We also show an estimate of the true CDF F(x) obtained from a

Monte Carlo simulation using 10, 000 runs. Notice that, as T increases, the bounds become

tighter, and for T = 8, it is hard to distinguish between the lower and the upper bounds.



4. Bounds for the expected error covariance

In this section we derive upper and lower bounds for the trace G of the asymptotic EEC, i.e.,

G = lim
t→∞

Tr{E{Pt}}. (72)

Since Pt is positive-semidefinite, we have that,

Tr{E{Pt}} =
∫ ∞

0
(1 − Ft(x))dx. (73)

Hence, 2

G =
∫ ∞

0
(1 − lim

t→∞
Ft(x))dx (75)

=
∫ ∞

0
(1 − F(x))dx (76)

4.1 Lower bounds for the EEC
In view of (76), a lower bound for G, can be obtained from an upper bound of F(x). One

such bound is F
T
(x), derived in Section 3.1. A limitation of F

T
(x) is that F

T
(x) = 1, for all

x > φ(P, ST
0 ), hence it is too conservative for large values of x. To go around this, we introduce

an alternative upper bound for F(x), denoted by F⋆(x).
Our strategy for doing so is to group the sequences ST

m, m = 0, 1, · · · , 2T − 1, according to the

number of consecutive lost measurements at its end. Then, from each group, we only consider

the worst sequence, i.e., the one producing the smallest EEC trace.

Notice that the sequences ST
m with m < 2T−z, 0 ≤ z ≤ T, are those having the last z elements

equal to zero. Then, from (25) and (26), it follows that

arg min
0≤m<2T−z

Tr{φ(X, ST
m)} = 2T−z − 1, (77)

i.e., from all sequences with z zeroes at its end, the one that produces the smallest EEC trace

has its first T − z elements equal to one. Using this, an upper bound for F(x) is given by

F(x) ≤ F⋆(x) , 1 − (1 − λ)k(x) (78)

where

k(x) =







0, x ≤ P

min
{

j : Tr
(

φ(P, S
j
0)
)

> x
}

, x > P.
(79)

2 Following the argument in Theorem 3.1, it can be verified that (1 − Ft(x)) ≤ F(x) with

F(x) =

{

1 x ≤ Tr{P0}
F(x) x > Tr{P0}.

(74)

Hence, using Lebesgue’s dominated convergence theorem, the limit can be exchanged with the integral
whenever

∫ ∞

0 (1 − F(x))dx < ∞, i.e., whenever the asymptotic EEC is finite.



We can now use both F
T
(x) and F⋆(x) to obtain a lower bound GT for G as follows

GT =
∫ ∞

0
1 − min{F

T
(x), F⋆(x)}dx. (80)

The next lemma states the regions in which each bound is less conservative.

Lemma 4.1. The following properties hold true:

F
T
(x) ≤ F⋆(x), ∀x ≤ Tr

(

φ(P, ST
0 )

)

(81)

F
T
(x) > F⋆(x), ∀x > Tr

(

φ(P, ST
0 )

)

. (82)

Proof: Define

Z(i, j) , Tr
(

φ(P, S
j
i)
)

. (83)

To prove (81), notice that F
T
(x) can be written as

F
T
(x) =

2T−1

∑
j=0

j:Z(j,T)≤x

P(ST
j ). (84)

Substituting x = Z(0, K) we have for all 1 < K ≤ T

F
T
(Z(0, K)) =

2T−1

∑
j=0

j:Z(j,T)≤Z(0,K)

P(ST
j ) (85)

= 1 −
2T−1

∑
j=0

j:Z(j,T)>Z(0,K)

P(ST
j ) (86)

Now, notice that the summation in (86) includes, but is not limited to, all the sequences

finishing with K zeroes. Hence

2T−1

∑
j=0

j:Z(j,T)>Z(0,K)

P(ST
j ) ≥ (1 − λ)K (87)

and we have

F
T
(Z(0, K)) ≤ 1 − (1 − λ)K (88)

= F⋆(Z(0, K)). (89)

Proving (82) is trivial, since F
T
(x) = 1, x > Z(0, T).

We can now present a sequence of lower bounds GT, T ∈ N, for the EEC G. We do so in the

next theorem.



Theorem 4.1. Let Ej, 0 < j ≤ 2T denote the set of numbers Tr
(

φ(P, ST
m)

)

, 0 ≤ m < 2T , arranged

in ascending order, (i.e., Ej = Tr
(

φ(P, ST
mj
)
)

, for some mj, and E1 ≤ E1 ≤ · · · < E2T ). For each

0 < j ≤ 2T, let πj = ∑
mj

k=0 P(ST
k ). Also define E0 = π0 = 0. Then, GT defined in (80) is given by

GT = GT
1 + GT

2 (90)

where

GT
1 =

2T−1

∑
j=0

(1 − πj)(Ej+1 − Ej) (91)

GT
2 =

∞

∑
j=T

(1 − λ)jTr
{

Aj (APA′ + Q − P
)

A′j
}

(92)

Moreover, if the following condition holds

max |eig(A)|2(1 − λ) < 1, (93)

and A is diagonalizable, i.e., it can be written as

A = VDV−1, (94)

with D diagonal, then,

GT
2 = Tr{Γ} −

T−1

∑
j=0

(1 − λ)jTr
{

Aj
(

APA′ + Q − P
)

A′j
}

(95)

where

Γ ,
(

X1/2V ′−1 ⊗ V
)

∆
(

X1/2V ′−1 ⊗ V
)′

(96)

X , APA′ + Q − P. (97)

Also, the n2 × n2 matrix ∆ is such that its i, j-th entry [∆]i,j is given by

[∆]i,j ,
1

1 − (1 − λ)[
−→
D ]i[

−→
D ]j

, (98)

where
−→
D denotes a column vector formed by stacking the columns of D, i.e.,

−→
D ,

[

[D]1,1 · · · [D]n,1 [D]1,2 · · · [D]n,n

]′
(99)

Proof: In view of lemma 4.1, (90) can be written as

GT =
∫ Z(0,T)

0
(1 − F

T
(x))dx +

∫ ∞

Z(0,T)
(1 − F⋆(x))dx (100)



Now, F
T
(x) can be written as

F
T
(x) = πi(x), i(x) = max{i : Ei < x}. (101)

In view of (101), it is easy to verify that

∫ Z(0,T)

0
1 − F

T
(x)dx =

2T

∑
j=1

(1 − πj)(Ej − Ej−1) = GT
1 . (102)

The second term of (90) can be written using the definition of F⋆(x) as

∫ ∞

Z(0,T)
1 − F̃(x)dx =

∞

∑
j=T

(1 − λ)j (Z(0, j + 1)− Z(0, j)) (103)

=
∞

∑
j=T

(1 − λ)jTr
{

Aj (APA′ + Q − P
)

A′j
}

(104)

= GT
2 . (105)

and (90) follows from (100), (102) and (105).

To show (95), we use Lemma 7.1 (in the Appendix), with b = (1 − λ) and X = APA′ + Q − P,

to obtain
∞

∑
j=0

(1 − λ)jTr
{

Aj
(

APA′ + Q − P
)

A′j
}

= Tr{Γ}. (106)

The result then follows immediately.

4.2 Upper bounds for the EEC
Using an argument similar to the one in the previous section, we will use lower bounds of the

CDF to derive a family of upper bounds G
T,N

, T ≤ N ∈ N, of G. Notice that, in general, there

exists δ > 0 such that 1 − FT(x) > δ, for all x. Hence, using FT(x) in (76) will result in G being

infinite valued. To avoid this, we will present two alternative lower bounds for F(x), which

we denote by FT,N
⋆ (x) and FN

⋄ (x).
Recall that A ∈ R

n×n, and define

N0 , min































k : rank

































C

CA

CA2

...

CAk−1

































= n































. (107)

The lower bounds FT,N
⋆ (x) and FN

⋄ (x) are stated in the following two lemmas.

Lemma 4.2. Let T ≤ N ∈ N, with N0 ≤ T and N satisfying

|SN
m | ≥ N0 ⇒ Tr{φ(∞, SN

m )} < ∞. (108)



For each T ≤ n ≤ N, let

P
∗
(n) , max

m:|Sn
m|=N0

φ(∞, Sn
m) (109)

p∗(n) , Tr(P
∗
(n)). (110)

Then, for all p∗(T) ≤ x ≤ p∗(N),
F(x) ≥ FT,N

⋆
(x), (111)

where, for each T ≤ n < N and all p∗(n) ≤ x ≤ p∗(n + 1),

FT,N
⋆

(x) = 1 −
N0−1

∑
l=0

λl(1 − λ)n−l n!

l!(n − l)!
. (112)

Remark 4.1. Lemma 4.2 above requires the existence of an integer constant N satisfying (108). Notice

that such constant always exists since (108) is trivially satisfied by N0.

Proof: We first show that, for all T ≤ n < N,

p∗(n) < p∗(n + 1). (113)

To see this, suppose we add a zero at the end of the sequence used to generate p∗(n). Doing

so we have

P
∗
(n) < Φ0

(

P
∗
(n)

)

≤ P
∗
(n + 1). (114)

Now, for a given n, we can obtain a lower bound for Fn(x) by considering in (57) that

Tr(φ(∞, Sn
m)) = ∞, whenever |Sn

m| < N0. Also, from (25) we have that if |Sn
m| ≥ N0,

then Tr(φ(∞, Sn
m)) < p∗(n). Hence, a lower bound for F(x) is given by P(|Sn

m| < N0), for

x ≥ p∗(n).
Finally, the result follows by noting that the probability to observe sequences Sn

m with m such

that |Sn
m| < N0 is given by

P(|Sn
m| < N0) = 1 −

N0−1

∑
l=0

λl(1 − λ)n−l n!

l!(n − l)!
, (115)

since λl(1 − λ)n−l is the probability to receive a given sequence Sn
m with |Sn

m| = l, and the

number of sequences of length n with l ones is given by the binomial coefficient

(

n

l

)

=
n!

l!(n − l)!
. (116)

Lemma 4.3. Let N, P
∗
(N) and p∗(N) be as defined in Lemma 4.2, and let L =

N0−1

∑
n=0

(

N

n

)

. Then,

for all x ≥ p∗(N),
F(x) ≥ FN

⋄ (x), (117)



where, for each n ∈ N and all φ(P
∗
(N), Sn−1

0 ) ≤ x < φ(P
∗
(N), Sn

0 ),

FN
⋄ (x) = 1 − u′Mnz (118)

with the vectors u, z ∈ R
L defined by

u =
[

1 1 · · · 1
]′

(119)

z =
[

1 0 · · · 0
]′

. (120)

The i, j-th entry of the matrix M ∈ R
L×L is given by

[M]i,j =















λ, ZN
i = U+(Z

N
j , 1)

1 − λ, ZN
i = U+(ZN

j , 0)

0, otherwise.

(121)

where ZN
m , m = 0, · · · , L − 1 denotes the set of sequences of length N with less than N0 ones, with

ZN
0 = SN

0 , but otherwise arranged in any arbitrary order (i.e.,

|ZN
m | < N0 for all m = 0, · · · , L − 1. (122)

and ZN
m = SN

nm
, for some nm ∈ {0, · · · , 2N − 1}). Also, for γ ∈ {0, 1}, the operation U+(ZT

m, γ) is

defined by

U+(Z
T
m, γ) = {ZT

m(2), ZT
m(3), · · · , ZT

m(T), γ}. (123)

Proof: The proof follows an argument similar to the one used in the proof of Lemma 4.2.

In this case, for each n, we obtain a lower bound for Fn(x) by considering in (57) that

Tr(φ(∞, Sn
m)) = ∞, whenever Sn

m does not contain a subsequence of length N with at least

N0 ones. Also, if Sn
m contains such a subsequence, the resulting EC is smaller that or equal to

φ(∞, {SN
m∗ , Sn

0}) = φ(φ(∞, SN
m∗ ), Sn

0 ) (124)

= φ(P
∗
(N), Sn

0 ), (125)

where SN
m∗ denotes the sequence required to obtain P

∗
(N).

To conclude the proof we need to compute the probability pN,n of receiving a sequence of

length N + n that does not contain a subsequence of length N with at least N0 ones. This is

done in Lemma 7.2 (in the Appendix), where it is shown that

pN,n = u′Mnz. (126)

Now, for a given T and N, we can obtain an upper bound G
T,N

for G using the lower bounds

FT(x), FT,N
⋆ (x) and FN

⋄ (x), as follows

G
T,N

=
∫ ∞

0
1 − max{FT(x), FT,N

⋆
(x), FN

⋄ (x)}dx. (127)



We do so in the next theorem.

Theorem 4.2. Let T and N be two given positive integers with N0 ≤ T ≤ N and such that for all

0 ≤ m < 2N , |SN
m | ≥ N0 ⇒ φ(∞, SN

m ) < ∞. Let J be the number of sequences such that O(ST
m) has

full column rank. Let E0 , 0 and Ej, 0 < j ≤ J denote the set of numbers Tr
(

φ(∞, ST
m)

)

, 0 < m ≤ J,

arranged in ascending order, (i.e., Ej = Tr
(

φ(∞, ST
mj
)
)

, for some mj, and E0 ≤ E1 ≤ · · · ≤ E f ). For

each 0 ≤ j < J, let πj = ∑
mj

k=0 P(ST
k ), and let M, u and v be as defined as in Lemma 4.3. Then, an

upper bound for the EEC is given by

G ≤ G
T,N

, (128)

where

G
T,N

= Tr(G
T
1 + G

T,N
2 + G

N
3 ), (129)

and

G
T
1 =

J

∑
j=0

(1 − πj)(Ej+1 − Ej) (130)

G
T,N
2 =

N−1

∑
j=T

N0−1

∑
l=0

λl(1 − λ)j−l j!

l!(j − l)!

(

P
∗
(j + 1)− P

∗
(j)

)

(131)

G
N
3 =

∞

∑
j=0

u′MN+jz{Aj(AP
∗
(N)A′ + Q − P

∗
(N))A′j}. (132)

Moreover, if A is diagonalizable, i.e.

A = VDV−1, (133)

with D diagonal, and

max |eig(A)|2ρ < 1, (134)

where

ρ = (max |svM|), (135)

then the EEC is finite and

G
N
3 ≤ u′MNzTr(Γ⋆), (136)

where

Γ⋆ ,
(

X1/2V ′−1 ⊗ V
)

∆
(

X1/2V ′−1 ⊗ V
)′

(137)

X , APA′ + Q − P. (138)

Also, the i, j-th entry [∆]i,j of the n2 × n2 matrix ∆ is given by

[∆]i,j ,

√
2N0 − 1

1 − ρ[
−→
D ]i[

−→
D ]j

. (139)

Proof: First, notice that FT(x) is defined for all x > 0, whereas FT
⋆
(x) is defined on the range

P
⋆

(T) < x ≤ P
⋆

(N) and FT
⋄ (x) on P

⋆

(N) < x. Now, for all x ≥ p∗(T), we have



FT(x) = ∑
j:|ST

j |≥N0

P(ST
j ) = 1 −

N0−1

∑
l=0

λl(1 − λ)T−l T!

l!(T − l)!
, (140)

which equals the probability of receiving a sequence of length T with N0 or more ones. Now,

for each integer 1 < n < N − T, and for p∗(T + n) ≤ x < p∗(T + n + 1), FT,N
⋆ (x) represents

the probability of receiving a sequence of length T + n with more than or exactly N0 ones.

Hence, FT,N
⋆ (x) is greater than FT(x) on the range P

⋆

(T) < x ≤ P
⋆

(N). Also, FN
⋄ (x) measures

the probability of receiving a sequence of length N with a subsequence of length T with N0 or

more ones. Hence, it is greater than FT(x) on P
⋆

(N) < x. Therefore, we have that

max{FT(x), FT,N
⋆

(x), FN
⋄ (x)} =











FT(x), x ≤ p∗(T)

FT,N
⋆ (x), p∗(T) < x ≤ p∗(N)

FN
⋄ (x), p∗(N) < x.

(141)

We will use each of these three bounds to compute each term in (129). To obtain (130), notice

that FT(x) can be written as

FT(x) = πi(x), i(x) = max{i : Ei < x}. (142)

In view of the above, we have that

∫ p∗(T)

0
(1 − FT(x))dx =

J

∑
j=0

(1 − πj)(Ej+1 − Ej) = G
T
1 . (143)

Using the definition of FT,N
⋆ (x) in (112) we obtain

∫ p∗(N)

p∗(T)
(1 − FT,N

⋆
(x))dx =

N−1

∑
j=T

N0−1

∑
l=0

λl(1 − λ)j−l j!

l!(j − l)!

(

P
∗
(j + 1)− P

∗
(j)

)

(144)

= G
T,N
2 . (145)

Similarly, the definition of FN
⋄ (x) in (118) can be used to obtain

∫ ∞

p∗(N)
(1 − FN

⋄ (x))dx =
∞

∑
j=0

u′MjzTr{Aj(AP
∗
(N)A′ + Q − P

∗
(N))A′j} = G

T,N
3 . (146)

To conclude the proof, notice that

uMjz = < u, Mjz > (147)

≤ ‖u‖2‖Mjz‖2 (148)

≤ ‖u‖2‖Mj‖‖z‖2 (149)

≤ ‖u‖2‖M‖j‖z‖2 (150)

= ‖u‖2(max svM)j‖z‖2 (151)

=
√

2N0 − 1(max svM)j. (152)
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where max svM denotes the maximum singular value of M. Then, to obtain (136), we use the

result in Lemma 7.1 (in the Appendix) with b = max svM and X = AP
∗
(N)A′+ Q− P

∗
(N).

5. Examples

In this section we present a numerical comparison of our results with those available in the

literature.

5.1 Bounds on the CDF
In Shi et al. (2010), the bounds of the CDF are given in terms of the probability to observe

missing measurements in a row. Consider the scalar system below, taken from Shi et al. (2010).

A = 1.4, C = 1, Q = 0.2, R = 0.5 (153)

We consider two different measurement arrival probabilities (i.e., λ = 0.5 and λ = 0.8) and

compute the upper and lower bounds for the CDF. We do so using the expressions derived

in Section 3, as well as those given in Shi et al. (2010). We see in Figure 2 how our proposed

bounds are significantly tighter.

5.2 Bounds on the EEC
In this section we compare our proposed EEC bounds with those in Sinopoli et al. (2004)

and Rohr et al. (2010).



Bound Lower Upper
From Sinopoli et al. (2004) 4.57 11.96

From Rohr et al. (2010) - 10.53

Proposed 10.53 11.14

Table 1. Comparison of EEC bounds using a scalar system.

Bound Lower Upper

From Sinopoli et al. (2004) 2.15 × 104 2.53 × 105

From Rohr et al. (2010) - 1.5 × 105

Proposed 9.54 × 104 3.73 × 105

Table 2. Comparison of EEC bounds using a system with a single unstable eigenvalue.

5.2.1 Scalar example
Consider the scalar system (153) with λ = 0.5. For the lower bound (90) we use T = 14, and

for the upper bound (129) we use T = N = 14. Notice that in the scalar case N0 = 1, that is,

whenever a measurement is received, an upper bound for the EC is promptly available and

using N > T will not give any advantage. Also, for the upper bound in Rohr et al. (2010),

we use a window length of 14 sampling times (notice that no lower bound for the EEC is

proposed in Rohr et al. (2010)).

In Table 1 we compare the bounds resulting from the three works. We see that although the

three upper bounds are roughly similar, our proposed lower bound is significantly tighter

than that resulting from Sinopoli et al. (2004).

5.2.2 Example with single unstable eigenvalue
Consider the following system, taken from Sinopoli et al. (2004), where λ = 0.5 and

A =





1.25 1 0

0 0.9 7

0 0 0.6



 C′ =
[

1 0 2
]

R = 2.5 Q = 20I.

(154)

Table 2 compares the same bounds described above, with T = 10 and N = 40. The same

conclusion applies.

6. Conclusion

We considered a Kalman filter for a discrete-time linear system, whose output is intermittently

sampled according to an independent sequence of binary random variables. We derived

lower and upper bounds for the CDF of the EC, as well as for the EEC. These bounds can be

made arbitrarily tight, at the expense of increased computational complexity. We presented

numerical examples demonstrating that the proposed bounds are tighter than those derived

using other available methods.



7. Appendix

Lemma 7.1. Let 0 ≤ b ≤ 1 be a scalar, X ∈ R
n×n be a positive-semidefinite matrix and A ∈ R

n×n

be diagonalizable, i.e., it can be written as

A = VDV−1, (155)

with D diagonal. If

max eig(A)2b < 1, (156)

then,

Tr





∞

∑
j=0

bj AjXA′j



 = Tr(Γ) (157)

where

Γ ,
(

X1/2V ′−1 ⊗ V
)

∆
(

X1/2V ′−1 ⊗ V
)′

(158)

with ⊗ denoting the Kronecker product. The n2 × n2 matrix ∆ is such that its i, j-th entry [∆]i,j is

given by

[∆]i,j ,
1

1 − b[
−→
D ]i[

−→
D ]j

, (159)

where
−→
D denotes a column vector formed by stacking the columns of D, i.e.,

−→
D ,

[

[D]1,1 · · · [D]n,1 [D]1,2 · · · [D]n,n

]′
. (160)

Proof: For any matrix

B =











B1,1 B1,2 . . . B1,n

B2,1 B2,2 . . . B2,n

...
...

. . .
...

Bn,1 Bn,2 . . . Bn,n











(161)

with Bi,j ∈ R
n×n, we define the following linear transformation

Dn(B) =
n

∑
j=1

Bj,j. (162)

Now, substituting (155) in (157), and using the vectorization operation −→· defined above we

have

∞

∑
j=0

bj AjXA′j =
∞

∑
j=0

bjVD jV−1X1/2
(

VD jV−1X1/2
)′

(163)

=
∞

∑
j=0

Dn

[

bj
−−−−−−−−→
VD jV−1X1/2

(−−−−−−−−→
VD jV−1X1/2

)′]

(164)

= Dn





(

X1/2V ′−1 ⊗ V
) ∞

∑
j=0

bj
−→
D j

−→
D j ′

(

X1/2V ′−1 ⊗ V
)′


 , (165)



where the last equality follows from the property

−−→
ABC = (C′ ⊗ A)

−→
B . (166)

Let δi,j denote the i, j-th entry of b
−→
D
−→
D ′, and pow(Y, j) denote the matrix obtained after

elevating each entry of Y to the j-th power. Then, if every entry of b
−→
D
−→
D ′ has magnitude

smaller than one, we have that





∞

∑
j=0

bj
−−→
(D)j

−−→
(D)j ′





i,j

=





∞

∑
j=0

pow(b
−→
D
−→
D ′, j)





i,j

(167)

=
1

1 − δi,j
. (168)

where [Y]i,j denotes the i, j-th entry of Y. Notice that
−→
D
−→
D ′ if formed by the products of the

eigenvalues of A, so the series will converge if and only if

max eig(A)2b < 1. (169)

Putting (168) into (165), we have that

∞

∑
j=0

bj AjXA′j = Dn

[

(

X1/2V ′−1 ⊗ V
)

∆
(

X1/2V ′−1 ⊗ V
)′]

(170)

= Dn (Γ) (171)

and the result follows since Tr{Dn{Y}} = Tr{Y}.

Lemma 7.2. Let u, z, N0, L and M be as defined in Lemma 4.3. The probability pN,n of receiving

a sequence of length N + n that does not contain a subsequence of length N with at least N0 ones is

given by

pN,n = uMN+nz. (172)

Proof:

Let ZN
m , m = 0, · · · , L − 1, and U+(Z

T
m, γ) be as defined in Lemma (4.3). Also, for each N, t ∈

N, define the random sequence VN
t = {γt, γt−1, · · · , γt−N+1}. Let Wt be the probability

distribution of the sequences ZN
m , i.e.

Wt =









P(VN
t = ZN

0 )
P(VN

t = ZN
1 )

· · ·
P(VN

t = ZN
L−1)









. (173)

One can write a recursive equation for Wt+1 as

Wt+1 = MWt. (174)



Hence, for a given n, the distribution Wn of VN
n is given by

Wn = MnW0. (175)

To obtain the initial distribution W0, we make VN
−N = ZN

0 , which gives

W−N = z. (176)

Then, applying (175), we obtain

W0 = MNz. (177)

Finally, to obtain the probability pN,n, we add all the entries of the vector Wn by

pre-multiplying Wn by u. Doing so, and substituting (177) in (175), we obtain

pN,n = uMN+nz. (178)
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