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Abstract

In this paper, we take a new look at the mixed struc-

tured singular value problem. Several new upper bounds

are proposed using a very simple approach which we
call the multiplier approach. These new bounds are
convex, computable by using the linear matrix in-
equality (LMI) method, and numerically efficient in
many robust stability problems. We show, most im-
portantly, that these upper bounds are actually lower
bounds of a well-known upper bound which involves
the so-called D-scaling (for complex perturbations)
and G-scaling (for real perturbations).

1 Introduction

This paper addresses the problem of the mixed struc-
tured singular value. The notion of structured sin-
gular value, or u for short, was initially proposed by
Doyle [4] for studying the robust stability of linear
systems which are subject to certain structured com-
plex perturbations. It has also been extended to the
case where there exist both real parameters and com-
plex uncertainty, i.e., the so-called mixed perturba-
tions; see Fan, Tits and Doyle [5]. The exact defini-
tion of the mixed structured singular value is given
in section 2.

The computational issue of y has been studied in
numerous papers; see Young, Newlin and Doyle [13]
for a summary. There is also a Matlab Toolbox avail-
able; see Balas, et. al. [1]. The best upper bound of
# known so far is given by Fan, Tits and Doyle [5]
for a general p problem where both real and complex
perturbations are allowed. This bound is generalized
from an earlier result of Doyle [4]. A nice feature of
this upper bound is that it is convex.

In this paper, we propose several new upper bounds
for the structured singular value. The first new up-
per bound is derived by using the following simple
fact: A matriz family A s nonsingular if there exists
another matriz C (multiplier) such that the Hermi-
tian part of the product AC is negative-definite for
all A € A. An interesting point regarding this upper
bound is that it is convex. This upper bound holds
an important conceptual value because it is extremely
easy to derive and serves as a lower bound for other
upper bounds. Because this upper bound is not easy
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to compute when there exist complex perturbations,
we apply the well-known S-procedure on it and de-
rive a second new upper bound which is loser than
the first one but convex, computable by using the
linear matrix inequality method, and numerical effi-
cient in many robust stability problems. In fact, this
bound is numerically efficient for cases where there
are only a small or medium number of real pertur-
bation blocks. For cases where the number of real
perturbation blocks is large, we derive another new
upper bound which is even looser but more efficient
to compute. This upper bound is still convex and
computable by using the LMI method. But most sur-
prisingly, we find that all these new upper bounds are
actually lower bounds of the upper bound of [5] men-
tioned above.

The numerical efficiency of our new upper bounds
is interesting and deserves a bit explanation. People
who have worked with the p-theory may have the fol-
lowing experience: In order to fit a robust stability
problem into the standard form I — AM, a substan-
tial dimension lifting is often required. For example,
the robust stability of a 10th order linear system with
5 uncertain parameters results in a 50 X 50 matrix M
(see Section 5.1 for detailed description of the conver-
sion procedure). Consequently, a high dimensional
convex optimization task needs to be solved. For the
same example above, the optimization task is to solve
a 50 x 50 linear matrix inequality involving roughly
2500 complex parameters (counting both D- and G-
scalings)! However, dimension lifting is not needed
with our approach. The resulting convex optimiza-
tion is formulated using the original system, involving
32 number of 10 x 10 LMIs with only 100 complex pa-
rameters. Examples for which our new upper bound
is very easy to compute include the so-called rank-one
perturbations; robust nonsingularity and stability of
a polytope of matrices; and low-rank perturbations
in general.

The rest of this paper is organized as follows: Sec-
tion 2 reviews the mixed structured singular value
problem and the upper bound in [5]. Section 3 pro-
vides three new upper bounds. The relationships
among these upper bounds and the upper bound in [5]
are given in Section 4. The computational issue and
an important example are discussed in section 5. Fi-
nally, the conclusions are drawn in section 6.



2 Review of p

2.1 Notation and Definition

The notation needed for defining the mixed struc-
tured singular value is standard, and we simply du-
plicate it from [5].

Given M € C™**" and nonnegative integers m,., m,
and me, with

m=my,+me+mc<n

1)

a block structure X is defined to be an m-tuple of
positive integers:

K =[k,--- (2)

subject to Y. k; = n. Also define the family of
block-diagonal n x n matrices

X = {block diag (67Ix, "> 6 Tk s 65Tk is* s
82, I AL AL ) 6T ER S EC,
Af € C(kmr+mc+i)><(’cmr+mc+=')} (3)

In the above, I} denotes the & x k identity matrix.

s km]

mpbme?

Definition 1 [/, 5] Given a complez n X n matric
M and a block-structure K, the associated structured
singular value px (M) of is defined to be 0 of I, — AM
is nonsingular for all A € X, and

-1

(1) = (smig 02 s den(z, - a01) = 0})
@)

otherwise, where &() denotes the largest singular value.

2.2 A Known Upper Bound

The exact computation of px (M) is very difficult. In
fact, its computational complexity is known to be NP-
hard; see Poljak and Rohn [11] and Braatz, et. al. [3].
In practice, an upper bound and a lower bound are
computed to approximate the exact value. The up-
per bound is very important because it serves as an
guaranteed margin for robust nonsingularity. In con-
trast, the lower bound is used mainly for checking the
tightness of the upper bound.

Many papers have been devoted to finding a good
upper bound for the structured singular value. Here
we quote a result from Fan, Tits and Doyle [5], the
best one known so far which is computable by a con-
vex program. To this end, we introduce some more
notation:

D = {block diag (D1, -, D tmosdidi,, 4o srs e+ s
dinotmelr,) 10 < Dy = DI e ckFi g4, > 0)s5)
G = {block diag (G4, -+, Grm,, 0% Ok, :
Gi=GF e choki}

met12 "7

(6)
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where O denotes a k X k zero matrix. For any a € R,
define

®,(D,G) = MEDM + j(GM — M7 G) - a*D (7)
Lemma 1 /5] Given M € C™*" and an associated
block structure K, the following holds:

1 (M) < vie(M) (8)

where

vc(M) = ig%{a:BDED,GEQ’:@a(D,G)<O}

(9)

Although the upper bound above is very popularly
used and its computational issues have been exten-
sively studied, it is known that its gap to the exact
value of pux(M) can be very large, especially when
there are real perturbation blocks; see Young, Newlin
and Doyle [13], for example.

3 New Upper Bounds

We present three new upper bounds for the mixed
structured singular value. The first one is derived by
using an extremely simple approach which we call the
multiplier approach. This upper bound is convex but
is numerically computable only for cases without real
perturbation blocks. However, it holds an important
conceptual value due to its simplicity. Subsequently,
a loser upper bound is derived from the first one by
applying the well-known S-procedure of Yakubovich
[12]. The resulting upper bound is convex and nu-
merical efficient for many robust stability problems
where the number of real perturbation blocks is small
or medium. For treating the cases where the number
of real perturbation blocks is large, we provide a third
yet looser new upper bound.

3.1 The First New Upper Bound

The first new upper bound is proposed by using the
following trivial fact: A matriz family A C C**" is
nonsingular +f there exists another matriz C € C**"
(multiplier) such that the Hermitian part of the prod-
uct AC (or CA) is negative-definite for all A € A.

When applied to the u problem, the result above
says that ux (M) < a (a > 0) if there exists a multi-
plier C' € C™*™ such that

C(I-AM)+(I-AMPCH <o,

VA € X with 5(A) < a! (10)
When M has the following special structure:
M = AB¥ (11)



where A,B € C"*? g < n, the following equation
becomes useful:

det(I, — AM) = det(I, — MA) = det(I, - BYAA)
(12)
An important special case of the above is A = M and
BY =1,
With the rewriting of M in (11), the sufficient con-
dition for p above reduces to finding the multiplier
C € €97 and checking

(I, - BEAATC + (1, - BEAA) <0,

VA € X with 5(A) < a~! (13)

Re-denoting A¥ by A, the above is equivalent to
cH(1, - ATAB)® + (I, - AFAB)C <0,
VA € X with 7(A) < a™? (14)

Remark 1 The condition (13) or (14) has an obuvi-
ous advantage over (10) because the size of the mul-
tiplier @n (13) or (14)is only q x q rather than n x n.

Based on the analysis above, we propose a sim-
ple new upper bound as follows: Given a matrix
M € C™*™ of the form (11) and an associated block-
structure K, define

(M) = ;r;t(']{a :3C € €71 E(C,A) > 0,
VA € X,6(A) <a”l} (15)
where
E(C,A)=CH(I-~A"AB)Y + (I - AYAB)C (16)
Obviously, we have

pe(M) < (M)

Further, we observe that jix (M) is convex. By this
we mean that the inequality £(C,A) < 0 is a convex
property in terms of C. This property follows trivially
from the fact that E(C, A) is a linear function of C.

(17)

3.2 The Second New Upper Bound

The computation of the first new upper bound is in-
convenient in cases where there are complex pertur-
bation blocks. To simplify the computation, we ob-
tain a looser upper bound by applying the well-known
S-procedure [12] on the complex blocks (i.e., replac-
ing them with D-scaling). To this end, we denote by
Agr and A¢ the real and complex sub-blocks of A,
respectively. That is,

Ap = block diag (5ffk,, e ,5:n,Ikmr) (18)
A¢ = block diag (5flkm+1 0 ey
A?"'WAgzc) (19)
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’CR, K:C, XR, X(;, DR,Dc, DR, Dc, GR are similarly de-
fined (note that G¢ = 0). We also rewrite (11) as
follows:

A

M = AB¥ = [ o ] [BF B&) (20)

Then, E(C,A) can be rewritten as

BE(C,A)= E(C,Ar) ~ CHBEAE Ac — AEACB:C
(21)
where

E(C, AR) = CH(I—AgAHBR)H + (I—AgARBH)C

(22)
Applying the S-procedure on the complex blocks in
(21), we obtain the following result:

Theorem 1 Let E(C,A) be given in (21) and a > 0.
Then, E(C,A) < 0 for all A € X with 5(A) < a™!
iof there exists scalars d;,i = 1,---,m. + m¢ to form
D¢ € D, such that the following 2™" inequalities
hold:

F(C,D¢,AR) = E(C,AR) +a~2CHBEDZ! B..C
+ AEDcAc <0

V6l =4a ! 1<i<m, (23)

Furthermore, F(C,D¢,ARr) < 0 is equivalent to the
following LMI:

F(C,Dc, AR)
_[ E(C,Ar)+ AEDcAc: CPBE
= BoC “ap. | < 0(24)

implying that F(C, D¢, AR) is jointly conver in C
and DCA

Proof: Let us suppose (23) holds for some D:. Then,
F(C,Dc,AR) < 0 for all AR € Xg with 3(Ag) <
a”! because F(C,Dc,AR) is linear in Agp. Thus,
Sfor any A € X with 5(A) < a™1, we have

B(C,A) < B(C,AR) + AED{* DY Ac
+ CHBEDZY?AEACDY*BoC

< F(C, Do, Ap) < 0 (25)

The equivalence between (23) and (24) is obvious.
Consequgntly, F(C,Dc,AR) is convez in C and D¢
because F'(C,De, Ag) is linear in them.

Based on Theorem 1, we define our second new
upper bound as follows:

(M) = cilr;%{a :3C €C?, D¢ € D
F(C,D¢,AR) < 0,V6] = £a™ 1,1 < i < m,.}(26)

where F(C, D¢, AR) is given in (23).



The equivalence between (23) and (24) suggests
that the new upper bound can be computed using
the LMI method. More precisely, we can diagonally
stack up all the 2™ LMIs in (24) to form a single
LMI which is linear in C and D¢. However, the use of
(24) will lead to a large dimensional LMI problem be-
cause the dimension of F'(C, D¢, Ag) is substantially
larger than that of F(C, D¢, Ag). Alternatively, we
can significantly reduce the dimensions by introduc-
ing an additional variable matrix. This point is made
precise in the following result.

Theorem 2 The set of inequalities (23) hold if and
only if there emists K = K € C9*9 such that the
following 2™ + 1 LMIs hold:

F(C,K,AR) = B(C,AR)+ K <0,
V6l =4a ', 1<i<m, (27)
~K +AEBDcAc CHBE ]
Bc:C -a’D¢
(28)

Fy(C,K,Dc) =
<0

Consequently, jix(M) can be alternatively expressed
by

fic(M) = inf {a: 3C, K = K" €99, Dc € De
F(C,K,Dc) <0, A(C,K,AR) <0,
V6T = a1 <i < my} (29)
Proof: We first note that the inequality in (28) can be
alternatively expressed by
K- AEDcAc —a2CHBEDZ'BcC >0 (30)
Suppose the inequalities in (23) hold for some Dc.
Then, we simply take
K =AEDcAc +a 2CPBEDZ'BcC (31)
Obviously, both (27) and (30) hold.

Conversely, suppose (27) and (30) hold for some
K. Then, (23) follows trivially too:

Remark 2 Obviously, Fi(-) and F5(-) are jointly lin-
ear in C, K and D¢. The collective dimension of the
LMTIs in (27)-(28) is substantially less than what ob-
tained by using (24). The tradeoff is the additional
variable matriz. Fortunately, this tradeoff is not very
costly for many robust stability problems because the
matriz 18 ¢ X q only and it is Hermatian.

3.3 The Third New Upper Bound

‘We now derive another new upper bound which is
even looser than fx(M). However, as we will see
later, this new upper bounds serves two purposes:
1) It bridges the gap between nx (M) and vk (M),
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i.e. it is in between the two; and 2) It is numericalty
more efficient than fix (M) when the number of real
perturbation blocks becomes large.

Our first step is to partition Ag into two parts:

AR = diag{Agr,, AR, } (32)

where A, consists of the first m, repeated real blocks
while Ag,, the remaining m,.~m; ones. Also, Ag, Bg,
Dgr,Kgr and Xp are partitioned similarly. In partic-
ular, we can rewrite E(C, A) as follows:

E(C,A) = E(C,AR,) — CPBE AR Ap,
~ A% AR, Br,C - CPBEAEAc

— AEA¢cBcC (33)
where
E(C,Ag,) = cH(I - AﬁlA&BRI)H
+ (I — AR AR, Bg,)C (34)

The motivation for the partition above stems from
the fact that the number of LMIs involved in com-
puting fic (M) is 2™ which is an exponential num-
ber. With this partition, we will reduce this number
to 2™t by converting the Ag, block into additional
scaling variables Dp, and Gg, (which are a part of
Dpg and G for vic(M)). The tradeoff between the
number of LMIs and the additional variables will be
discussed in Section 5.

‘With the partition above, we obtain the following
result:

Theorem 3 Let F(C, D¢, Ag) be given in (23) and
a > 0. Then, F(C,D¢c,Ag) < 0 for all Ag € Xp
with 3(A) < a”! if there exist D, € Dg, and Gp, €
Gr, such that the following LMIs hold:

L(C,Dc,Ag,,Dr,,Gr,)

Ly, CHBE Ly
= | BcC —ad’D¢ 0
L{g 0 —(L2D1;{2

<0, V6 =xa "l i=1,---,m;  (35)

where »
Ly = E(C,AR,) + A8DcAc + AE Dg,Ar, (36)

L3 =CYBE +jAIé?GRz (37)

Further, the conditions in (35) are equivalent to the
following: there ewist D, € Dgr,, Gr, € Gg, and
K = KT € 099 such that the following LMIs hold:

Li(C,K,AR,) = B(C,Ag,)) + K <0,
V6T =+a ' i=1,---,m(38)



Ly,(C,K,D¢,Dp,,Gn,)
—-K CPBE Ly
= | BoC -a?D¢ 0
LY 0 —a*Dpg,
<0 (39)
where
K=K~ AfDcAc + A} Dp,Ar,  (40)

Proof: Suppose L(C,D¢,Ag,,Dg,,Gg,) <0 for all
AR, € Xp, with 3(Apg,) < a~1. Define

I, 0
Y= 0o I (41)
—Ap,Ar, 0

It follows that

YHL(C,Dc,Ar,,Dr,,Gr,)Y

= F(C, D¢, Ar)

+ diag{ A% DY/*(I - oA, Ap,)D* Ap,,0(42)
Therefore, F(C,D¢,ARr) < 0 for all Ap € Kp with
5’(AR) < a"l,

The proof for the equivalence between (35) and (38)-
(39) is similar to the proof of Theorem 2.

Using the result in Theorem 3, we can define the
third new upper bound as follows:

jic (M) = inf {a: 3C € C"9, Dp, € Dr,, G, € Ir
Dec € D¢ L(C, DC’,AR1 ’DRz’Gﬂz) <0,

V8T =4a"Vi=1,--,m} (43)
Alternatively,
(M) = inf{a:3C, K = KY €¢9%9, Dp, € Dpg,,

Gr, € Gr,,Dc € Dc : Ly(C, K, D¢, Dg,,Gr,) < 0;
Li(C,K,AR,) <0, V6 =xa ™ i=1,---,m} (44)

4 Relationships of Upper Bounds

The relationships among the structured singular value
i (M) and their upper bounds jix (M), fix (M), jix (M)
and vk (M) are simply expressed in the following:

Theorem 4 Given a matric M € C**" of the form
(20) and an associated block-structure K, we have

(M) < i (M) < jix (M) < jic (M) < ve(M)
(45)

The proof of Theorem 4 is given in the full version
of the paper [7]. Further, in a follow-up paper [9], we
provide an example to demonstrate a gap between
our upper bounds and v (M).
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5 Computational Issue and Example

Now let us address the computational issue of jix (M)
and fix (M). For each given a > 0, the computation of
the jix (M) boils down to the following: Find C, K
K" € €79 and D € X such that the LMIs (27)-
(28) hold. Note that K is void if the complex or
real perturbation blocks do not exist. Similarly, the
computation of jix (M) involves finding C, K = K¥ ¢
quq, D¢ € De, D37 € DRz and Gn,z € an such
that the LMIs (38)-(39) are satisfied. See [2, 8] for
solutions to LMIs.

The computational complexity of the upper bounds
above depends critically on the number of real per-
turbation blocks, i.e., m,. An obvious numerical ad-
vantage of jix(M) over vx(M) comes from the di-
mension reduction when ¢ is substantially lower than
n. Fortunately, this is often the case in robust stabil-
ity and control problems. However, when there are
many real parameters, the upper bound jix (M) can
be used. By choosing an appropriate partition of Ap,
we can control the number of LMIs while keeping the
size of additional variables Dg, and G g, reasonably
small.

When comparing the computational complexities
of the different upper bounds, we should not forget
that the tightness of them is perhaps more impor-
tant. Although the upper bound v (M) may be nu-
merically more efficient than fix (M) when the num-
ber of real perturbation blocks becomes very large,
additional computation, such as branch and bound
technique, is needed to refine v (M) so that it will
reach the same tightness of jix(M).

In the rest of this section, we demonstrate an im-
portant robust stability example where jix (M) is nu-
merically efficient. More examples are given in [7].

5.1 Robust Stability of A Polytope of
Matrices

Given a polytope of matrices A of the following form:

A={Ao+> 6A;i:|6]<1i=1,--,m} (46)

i=1

where A; € C?*9,7 = 0,1,---,m. It is well-known
that 4 is robustly Hurwitz stable if and only if A 1s
Hurwitz stable and in addition, the following holds

det(I =) 8;A;(jwl, — Ao) ™) # 0, V|&i| <1 (47)

i=1

is nonsingular for all w € R. Obviously, this problem
is a special case of (11) with Bff = (jwI, — A¢)7},
K= (q"“,(I), my,=m, m,=mc = 0.

Note that the associated matrix M is qm X qm, a
much larger one compared to A;. The upper bounds




juc(M) and fix (M) are the same, and they are equiv-
alent to the following: A is robustly Hurwitz stable
if Aq is Hurwitz stable and in addition, there exists
some multiplier C,, € C9*7 for every w € R such that

m
cl =) B4
i=1
+(I =Y 6BFAYTIC, >0, V|61 (48)
i=1
Equivalently, A is robustly Hurwitz stable if for every

w € R, there exists some (different) C,, € C9*? such
that

(Ag + Z 52'445)}105 + Cw(AO + Z 6:A;:)
i=1

+jw(CH - C,) <0, V6; = =£1

i=1

(49)

6 Conclusions

In this paper, we have provided several new upper
bounds for the mixed structured singular value. De-
spite of the fact that these upper bounds are derived
based on a very simple multiplier approach, we have
shown that they are indeed lower bounds of an upper
bound given in [5]. We must stress that these new
upper bounds still appear to be very coarse. In other
words, the news of this paper is somewhat disappoint-
ing as it points out that our knowledge about y is
still very primitive despite of years of research. It is
a challenging task to find better upper bounds which
are also convex and efficiently computable. The com-
putational issue of y remains wide open.

The type of uncertainty analyzed by the y frame-
work is somewhat restrictive, i.e, it must be of the
structure (3) and fo norm-bounded. As we have
shown that the multiplier approach can deal with a
much larger class of uncertainty, namely, it allows any
convex or even nonconvex set of uncertainty. This ob-
servation provides a simple connection between the
absolute stability theory and p theory. The connec-
tion lies in the use of a multiplier.

Finally, we point out that many more nice prop-
erties of the multiplier approach are reported in a
follow-up paper [9]. In particular, a simple explicit
relationship between our first new upper bound and
(D, G)-scaling is provided; and the continuity issue of
the upper bounds is addressed.
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