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The PARMSR algorithm updated everyL-customers period is
composed of (1), (28), and (29); see, e.g., [18]–[20].

Theorem 4.1: The assertions of Theorem 2.1–2.3 hold in the
present setting, if the conditions of the theorems are satisfied,
respectively.

Proof: The key step is to verify that�1
n=1 ab

1��
n "n converges,

a.s. The observation noise of the algorithm is (4), wherefn+1 is
defined by (28). Along the same lines as in [20], we first introduce
the following notations:

�(n) =
n

L
; �n = ��(n); ~an = a�(n) (30)

�(n�1)L+j =�n;j ; j = 0; 1; � � � ; L� 1 (31)

"n =Jt(Tn; �n�1)�n + J�(Tn; �n�1)� f(�n�1)

8n � 1: (32)

By (29) and (31) we have

�n+1 = �nI[Q �1] +
dxn+1(�n)

d�
; 8n � 0:

From (28) and (29) it is derived that

1

n=1

a
1��
n "n+1 =

1

n=1

a
1��
n (fn+1 � f(�n))

=
1

L

1

n=L

~a
1��
n "n+1

which implies that the almost sure convergence of�1n=1 a
1��
n "n+1

is equivalent to the almost sure convergence of�1n=1 ~a
1��
n "n+1:

The proof of the convergence of�1n=1 ~a
1��
n "n+1 works the same

way as in Lemma 3.1 and Lemmas 3.3–3.5 if, instead, we replace
�n; �n; "n; an by �n; sn; "n; ~an; respectively. Details are omitted,
for the brevity of the paper.

V. CONCLUDING REMARK

We have established the convergence rates of the PARMSR algo-
rithm with fixed-length observation period for theGI=G=1 queueing
systems. Along the same lines of the research, more precise conver-
gence results for the PARMSR algorithms, such as a central limit
theorem and a law of the iterated logarithm, could be derived.
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Improved Upper Bounds for the
Mixed Structured Singular Value

Minyue Fu and Nikita E. Barabanov

Abstract—In this paper, we take a new look at the mixed structured
singular value problem, a problem of finding important applications in
robust stability analysis. Several new upper bounds are proposed using a
very simple approach which we call the multiplier approach. These new
bounds are convex and computable by using linear matrix inequality
(LMI) techniques. We show, most importantly, that these upper bounds
are actually lower bounds of a well-known upper bound which involves
the so-calledD-scaling (for complex perturbations) andG-scaling (for
real perturbations).

Index Terms—Robust control, robust stability, robustness, structured
singular value, uncertain systems.

I. INTRODUCTION

This paper addresses the problem of the mixed structured singular
value. The notion of structured singular value, or� for short, was
initially proposed by Doyle [4] for studying the robust stability
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of linear systems which are subject to certain structured complex
perturbations. It has also been extended to the case where there
exist both real parameters and complex uncertainty, i.e., the so-called
mixed perturbations; see Fanet al. [5].

The computational issue of� has been studied in numerous papers;
see Younget al. [16] for a summary. There is also a Matlab Toolbox
available; see Balaset al. [1]. The best upper bound of� known so
far is given by Fanet al. [5] for a general� problem where both real
and complex perturbations are allowed. This bound is generalized
from an earlier result of Doyle [4].

In this paper, we propose several new upper bounds for the
structured singular value. The first new upper bound is derived by
using the following trivial fact.

Lemma I.1: A matrix family A is nonsingular if there exists
another matrixC (multiplier) such that the Hermitian part of the
productAC is negative-definite for allA 2 A:

An interesting point regarding this upper bound is that it is convex.
This upper bound holds an important conceptual value because it
is extremely easy to derive and serves as a lower bound for other
upper bounds. Because this upper bound is not easy to compute
when there exist complex perturbations, we apply the well-known
S-procedure on it and derive a second new upper bound which is
looser than the first one but convex and computable by using linear
matrix inequality (LMI) techniques. The computation of this bound
is numerically efficient when the number of real perturbation blocks
is not large. When the number of real perturbation blocks is large,
we derive another new upper bound which is even looser but more
efficient to compute. This upper bound is still convex and computable
by using the LMI method.But most surprisingly, we find that all these
new upper bounds are actually lower bounds of the upper bound of
[5] mentioned above.

The rest of this paper is organized as follows: Section II reviews
the mixed structured singular value problem and the upper bound in
[5]. Section III provides three new upper bounds. The relationships
among these bounds and the upper bound of [5] are analyzed in
Section IV. Section V compares the multiplier approach with an
alternative approach for� analysis. Some concluding remarks are
given in Section VI.

II. REVIEW OF THE STRUCTURED SINGULAR VALUE

The notation needed for defining the mixed structured singular
value is standard, and we simply duplicate it from [5].

GivenM 2 Cn�n and nonnegative integersmr;mc; andmC ; with

m = mr +mc +mC � n (1)

a block structureK is defined to be anm-tuple of positive integers

K = [k1; � � � ; km ; km +1; � � � ; km +m ; km +m +1; � � � ; km] (2)

subject to�mi=1 ki = n: Also define the family of block-diagonal
n � n matrices

X = fblock diag(�
r

1Ik ; � � � ; �
r

m Ik ; �
c

1Ik ; � � � ;

�
c

m Ik ;�
C

1 ; � � � ;�
C

m ): �
r

i 2 R; �
c

i 2 C;

�
C

i 2 C
(k )�(k )

g: (3)

In the above,Ik denotes thek � k identity matrix.
Definition II.1 [4], [5]: The structured singular value�K(M) of

a complexn� n matrix M with respect to the block-structureK is
defined to be zero ifIn ��M is nonsingular for all� 2 X ; and

�K(M) = (min
�2X

f�(�): det(In ��M) = 0g)
�1 (4)

otherwise, where�( ) denotes the largest singular value.

The exact computation of�K(M) is very difficult. In fact, its
computational complexity is known to be NP-hard; see, e.g., Poljak
and Rohn [12]. In practice, an upper bound and a lower bound
are computed to approximate the exact value. The upper bound is
very important because it serves as a guaranteed margin for robust
nonsingularity. In contrast, the lower bound is often used for checking
the tightness of the upper bound. A popularly used upper bound for
the structured singular value is given by Fanet al. [5]. To describe
this upper bound, we introduce more notation:

D = fblock diag(D1; � � � ; Dm +m ; d1Ik ; � � � ;

dm +m Ik ): 0<Di = D
H

i 2 C
k �k

; di> 0g (5)

G = fblock diag(G1; � � � ; Gm ; 0k ; � � � ; 0k ):

Gi = G
H

i 2 C
k �k

g (6)

where0k denotes ak � k zero matrix. For anya 2 R; define

�a(D;G) =M
H
DM + j(GM �M

H
G)� a

2
D: (7)

Lemma II:2 [5]: Given M andK; we have�K(M) � �K(M);

where

�K(M) = inf
a>0

fa: 9D 2 D; G 2 G: �a(D;G)< 0g: (8)

Remark II.3: It is known that the gap between�K(M) and
�K(M) can be very large when there are real perturbation
blocks [16]. It is recently proved by Meinsmaet al. [14] that
�K(M) = �K(M) if 2(mr + mc) + mC � 3: For each case
where2(mr+mc)+mC > 3; examples exist to give a gap between
�K(M) and �K(M):

III. N EW UPPER BOUNDS

In this section, the three new upper bounds for�K(M) as discussed
in Section I are provided.

A. The First New Upper Bound

The first new upper bound is proposed by using the trivial fact in
Lemma I.1. When applied to the� problem, Lemma I.1 says that
�K(M) � a (a> 0) if there exists a multiplierC 2 Cn�n such that

C(I ��M) + (I ��M)
H
C
H
< 0 (9)

for all � 2 X with �(�) � a�1:

WhenM has the following special structure:

M = AB
H (10)

whereA;B 2 Cn�q and q � n; the following equation becomes
useful:

det(In ��M) = det(In �M�) = det(Iq �B
H
�A): (11)

An important special case of the above isA = M andBH = In:

With the rewriting ofM in (10), the sufficient condition for�
above reduces to finding the multiplierC 2 Cq�q and checking

(Iq �B
H
�A)

H
C + C

H
(Iq �B

H
�A)< 0 (12)

for all � 2 X with �(�) � a�1: Redenoting�H by �; the above
is equivalent to

C
H
(Iq �A

H
�B)

H
+ (Iq � A

H
�B)C< 0 (13)

for all � 2 X with �(�) � a�1:
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Remark III.1: Condition (12) or (13) has an obvious advantage
over (9) because the size of the multiplier in (12) or (13) is only
q � q rather thann � n:

Based on the analysis above, we propose a simple new upper bound
as follows: given a matrixM 2 Cn�n of the form (10) and an
associated block-structureK; define

�̂
K
(M) = inf

a>0

fa: 9 C 2 C
q�q

: E(C;�)> 0;

8� 2 X ; �(�) � a
�1
g (14)

where

E(C;�) = C
H
(I �A

H
�B)

H
+ (I � A

H
�B)C: (15)

Obviously, we have

�
K
(M) � �̂

K
(M): (16)

Also note that the constraints on�i in (14) can be simply replaced
with �i = �a�1:

B. The Second New Upper Bound

The computation of the first new upper bound is inconvenient in
cases where there are complex perturbation blocks. To simplify the
computation, we obtain a looser upper bound by applying the well-
knownS-procedure [15] on the complex blocks (i.e., replacing them
with D-scaling). To this end, we denote by�R and�C the real and
complex sub-blocks of�; respectively

�R =block diag(�
r
1Ik ; � � � ; �

r
m Ik ) (17)

�C =block diag(�
c
1Ik ; � � � ; �

c
m Ik ;

�
C
1 ; � � � ;�

C
m ) (18)

KR;KC ;XR;XC ;DR;DC ; DR; DC; GR are similarly defined (note
thatGC = 0). We also rewrite (10) as follows:

M = AB
H

=
AR
AC

[B
H
R B

H
C ]: (19)

Then,E(C;�) can be rewritten as

E(C;�) = E(C;�R)� C
H
B
H
C�

H
CAC � A

H
C�CBCC (20)

where

E(C;�R) = C
H
(I � A

H
R�RBR)

H
+ (I � A

H
R�RBR)C: (21)

Applying theS-procedure on the complex blocks in (20), we obtain
the following result.

Theorem III.2: Let E(C;�) be given in (20) anda> 0: Then,
E(C;�)< 0 for all � 2 X with �(�) � a�1 if there exists scalars
di; i = 1; � � � ;mc+mC to formDC 2 D

K
such that the following

2
m inequalities hold:

F (C;DC ;�R) =
E(C;�R) + AHCDCAC CHBH

C

BCC �a2DC

< 0

8�
r
i = �a

�1
; i = 1; � � � ;mr: (22)

Proof: Suppose (22) holds for someDC : Then,
F (C;DC ;�R)< 0 for all �R 2 XR with �(�R) � a�1

becauseF (C;DC ;�R) is linear in �R: Thus, for any� 2 X

with �(�) � a�1

E(C;�) �E(C;�R) + C
H
B
H
CD

�1=2

C �
H
C�CD

�1=2

C BCC < 0:

The last step above follows from the Schur complement of (22).

Based on Theorem III.2, we define our second new upper bound
as follows:

�
K
(M) = inf

a>0

fa: 9 C 2 C
q�q

;DC 2 DC :

F (C;DC;�R)< 0;8�
r
i = �a

�1
; i = 1; � � � ;mrg:

(23)

This new upper bound can be computed using LMI methods. But
the direct use of (22) will result in2m LMI’s of size much larger than
q � q: Alternatively, we can significantly reduce the dimensions by
introducing an additional variable matrix. This point is made precise
in the following result.

Theorem III.3: The set of inequalities (22) holds if and only if
there existsK = KH 2 Cq�q such that the following2m + 1

LMI’s hold:

F1(C;K;�R) =E(C;�R) +K< 0;

8�
r
i = �a

�1
; i = 1; � � � ; mr (24)

F2(C;K;DC) =
�K +AHCDCAC CHBH

C

BCC �a2DC

� 0: (25)

Consequently,�
K
(M) can be alternatively expressed by

�
K
(M) = inf

a>0

fa: 9C;K = K
H
2 C

q�q
;DC 2 DC :

F2(C;K;DC) � 0; F1(C;K;�R)< 0

8�
r
i = �a

�1
; i = 1; � � � ;mrg: (26)

Proof: We first note that the inequality in (25) can be alterna-
tively expressed by

K �A
H
CDCAC � a

�2
C
H
B
H
CD

�1

C BCC � 0: (27)

Suppose the inequalities in (22) hold for someDC : Then, we
simply take

K = A
H
CDCAC + a

�2
C
H
B
H
CD

�1

C BCC: (28)

Obviously, both (24) and (27) hold.
Conversely, suppose (24) and (27) hold for someK: Then, (22)

follows trivially too.
Remark III.4: Obviously,F1(C;K;�R) and F2(C;K;DC) are

jointly linear in C; K; and DC : The collective dimension of the
LMI’s in (24) and (25) is substantially less than that obtained by using
(22). The tradeoff is the additional variable matrix. Fortunately, this
tradeoff is not very costly for many robust stability problems because
the matrix isq � q only and it is Hermitian.

C. The Third New Upper Bound

We now derive another new upper bound which is even looser than
�
K
(M): However, this new upper bounds serves two purposes: 1) it

bridges the gap between�
K
(M) and �

K
(M), i.e., it is in between

the two, and 2) it is numerically more efficient than�
K
(M) when

the number of real perturbation blocks becomes large.
Our first step is to partition�R into two parts:

�R = diagf�R ;�R g (29)

where�R consists of the firstm1 repeated real blocks, while�R

are the remainingmr �m1 ones. Also,AR; BR; DR;KR; andXR
are partitioned similarly. In particular

E(C;�) =E(C;�R )� C
H
B
H
R �

H
R AR � A

H
R �R BR C

� C
H
B
H
C�

H
CAC �A

H
C�CBCC (30)



1450 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 10, OCTOBER 1997

where

E(C;�R ) =C
H
(I � A

H

R �R BR )
H

+ (I � A
H

R �R BR )C: (31)

The motivation for the partition above stems from the fact that the
number of LMI’s involved in computing�

K
(M) is 2m , which is an

exponential number. With this partition, we will reduce this number
to 2m by converting the�R block into additional scaling variables
DR andGR [which are a part ofDR andG for �K(M)].

With the partition above, we obtain the following result.
Theorem III.5: Let F (C;DC ;�R) be given in (22) anda> 0:

Then,F (C;DC ;�R)< 0 for all �R 2 XR with �(�) � a�1 if
there existDR 2 DR andGR 2 GR such that the following
LMI’s hold:

L(C;DC ;�R ; DR ; GR )

=

L11 CHBH

C CHBH

R + jAHR GR
BCC �a2DC 0

BR C � jGR AR 0 �a2DR

< 0;8�
r

i = �a
�1
; i = 1; � � � ;m1 (32)

where

L11 = E(C;�R ) +A
H

CDCAC + A
H

R DR AR :

Proof: SupposeL(C;DC ;�R ; DR ; GR )< 0 for all �R 2

XR with �(�R ) � a�1: Define

Y =

Iq 0

0 Iq
��R AR 0

: (33)

It follows that

Y
H
L(C;DC ;�R ; DR ; GR )Y

= F (C;DC ;�R)

+ diagfA
H

R D
1=2

R
(I � a

2
�
H

R �R )D
1=2

R
AR ; 0g: (34)

Therefore,F (C;DC ;�R)< 0 for all �R 2 KR with �(�R) � a�1:

Using Theorem III.5, we can define the third new upper bound
as follows:

~�K(M) = inf
a>0

fa: 9C 2 C
q�q

;DR 2 DR ; GR 2 GR ;

DC 2 DC : L(C;DC ;�R ; DR ; GR )< 0;

8�
r

i = �a
�1
; i = 1; � � � ;m1g (35)

IV. RELATIONSHIPS AMONG THE UPPER BOUNDS

The sole purpose of this section is to prove the following result.
Theorem IV.1: GivenM andK; we have

�K(M) � �̂K(M) � �
K
(M) � ~�K(M) � �K(M): (36)

The proof is based on the following result (see, e.g., Gahinet and
Apkarian [8]).

Lemma IV.2: Given U; V 2 C
q�n andQ = QH

2 C
n�n; there

existsC 2 C
q�q such that

Q+ U
H
CV + V

H
C
H
U < 0 (37)

if and only if both of the following conditions are satisfied:

U
H

?QU?< 0; V
H

? QV?< 0 (38)

whereU? and V? are any “null matrices” ofU and V (i.e., they
form the bases of the null spaces ofU andV ), respectively.

Proof of Theorem IV.1:The first inequality in (36) has been
explained before [see (16)]. The second and third inequalities follow
trivially from Theorems III.2 and III.5. To show the fourth inequality,
we letM be in the form of (19) and need to prove the following:
suppose there existsD 2 D andG 2 G such that�a(D;G)< 0

[recall the definition of�a(D;G) in (7)]. Then, there existC 2

C
q�q such thatL(C;DC ;�R ; DR ; GR )< 0 for all �R with
�(�R ) � a�1; or equivalently, with�ri = �a�1; i = 1; � � � ;m1:

Two steps will be involved to achieve this purpose.
Step 1) We apply Lemma IV.2 to show that�a(D;G)< 0 is

equivalent to the following condition: there exists someC 2 C
q�q

such that

W (C;D;G) =
C + CH + AHDA CHBH + jAHG

BC � jGA �a2D
< 0:

(39)

To see this, we rewrite (39) as follows:

W (C;D;G) =
AHDA �jAHG

jGA �a2D
+

I

B
C[I 0]

+
I

0
C
H
[I B

H
]< 0 (40)

and observe that the “null matrices” of[I 0] and[I BH ] are given
by

0

I
and

�BH

I
(41)

respectively. From Lemma IV.2, (26) holds if and only if�a2D< 0

and

BA
H
DAB

H
+ j(BA

H
G�GAB

H
)� a

2
D< 0: (42)

Note that the first condition is redundant and (42) is the same as
�a(D;G)< 0:

Step 2) PartitionW (C;D;G) as follows:

W (C;D;G) =

W11 W12 W13 CHBH

C

WH

12 �a2DR 0 0

WH

13 0 �a2DR 0

BCC 0 0 �a2DC

where

W11 =C + C
H
+ A

H

R DR AR

+A
H

R DR AR + A
H

CDCAC

W12 =C
H
B
H

R + jA
H

R GR

W13 =C
H
B
H

R + jA
H

R GR :

By rearranging its second, third, and fourth row and column blocks,
W (C;D;G) above becomes

Ŵ (C;D;G) =

W11 CHBH

C W12 W13

BCC �a2DC 0 0

WH

12 0 �a2DR 0

WH

13 0 0 �a2DR

:

Obviously

W (C;D;G)< 0, Ŵ (C;D;G)< 0: (43)

Define

Z =

Iq 0 0

0 Iq 0

0 0 Iq
��R AR 0 0

: (44)
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It is a bit tedious but straightforward to verify the following equality:

Z
H
Ŵ (C;D;G)Z

= L(C;DC ;�R ; DR ; GR )

+ diagfAHR D
1=2

R
(I � a

2
�
H

R �R )D
1=2

R
AR ; 0; 0g: (45)

Hence

�a(D;G)< 0, Ŵ (C;D;G)< 0

implies that

L(C;DC ;�R ; DR ; GR )< 0

for all �R 2 XR with �(�R ) � a
�1
:

Remark IV.3: A simple example is given in [13] to show that
the new upper bounds are indeed strictly less than�K(M): For this
example

X =
R

R
; M =

0 1

j 0
:

It is shown [13] that0 = �K(M)< �̂K(M) = 0:707<�K(M) = 1:

V. COMPARISON WITH AN ALTERNATIVE APPROACH

During the revision of this paper (see [7] for previous version),
Iwasaki, Hara, and an anonymous reviewer brought to our attention
an alternative approach for computing an upper bound for�: This
approach is based on the following result.

Lemma V.1 [11]: Given M and K; �K(M)< 1 if and only if
there exist matricesR = R

H
; Q = Q

H
; and F with appropriate

dimensions such that

R+M
H
F + F

H
M +M

H
QM < 0 (46)

�
H
R�+ F�+�

H
F
H
+Q> 0 (47)

for all � 2 K with �(�) � 1:

The conditions in Lemma V.1 are not suitable for computing�
in general because (47) is not convex in�: However, the convexity
is guaranteed under the relaxation thatR � 0: In this case, the real
parameters�i in (47) can be replaced with�1. In particular, it is
easily shown in [11] that theD � G scaling technique of [5] gives
a special choice ofR � 0; F; andQ:

An interesting point by the aforementioned anonymous reviewer,
which we appreciate, is that if a multiplierC exists for (9) (taking
a = 1), thenR � 0; F; andQ also exist for (46) and (47). Hence, it
seems that the multiplier approach can be improved further. However,
the result below shows that this is not the case.

Theorem V.2: There existR = R
H � 0; Q = Q

H
; andF such

that (46) and (47) hold if and only if there existsC such that (9) holds.
Proof: To see the “if” part, we note a result in [13] which states

that a multiplierC exists for (9) to hold (witha = 1) if and only if
there exists a differentC such that

C(I �M�) + (I �M�)
H
C
H
< 0;8� 2 X ; �(�) � 1:

(48)

Now, takeQ = �C �C
H
; F = CM; and sufficiently smallR< 0;

and we obtain (46) and (47).
To see the “only if” part, we pre- and post-multiply (47) byMH

andM; respectively, to obtain

M
H
QM +M

H
F�M +M

H
�
H
F
H
M +M

H
�
H
R�M � 0:

Canceling theQ term above using (46), we obtain

M
H
F (I ��M) + (I �M

H
�
H
)F

H
M

+R�M
H
�
H
R�M < 0:

Reorganizing the terms above yields

(M
H
F +R)(I ��M) + (I �M

H
�
H
)(
H
M +R)

� (I ��M)
H
R(I ��M)< 0:

SinceR � 0; we obtain (9) withC = (M
H
F + R):

Remark V.3: The implication of the result above is that the
multiplier approach is advantageous because it involves a much
smaller number of variables(C versusQ;R; F ):

VI. CONCLUDING REMARKS

In this paper, we have provided several new upper bounds for the
mixed structured singular value. Despite of the fact that these upper
bounds are derived based on a very simple multiplier approach, we
have shown that they are indeed lower bounds of an upper bound
given in [5]. The first upper bound serves a conceptual value as it is
very easy to derive. The second upper bound is computable via LMI
techniques and is suitable when the number of real perturbationsmr

is not large. Whenmr is large, the third upper bound needs to be used
to avoid exponential growth in computation. The relaxation technique
S-procedure is the key in obtaining the second and third upper
bounds. When theS-procedure is applied to all real and complex
perturbations, the upper bound in [5] follows.

We must stress that these new upper bounds still appear to be
very coarse. In other words, the news of this paper is somewhat
disappointing as it points out that our knowledge about� is still
very primitive despite of years of research. It is a challenging task
to find better upper bounds which are also convex and efficiently
computable. The computational issue of� remains wide open. On
the other hand, a recent negative result [6] shows that it is unlikely
to have a polynomial algorithm which gives an upper bound for�

with relative error grows at a rate at most exponential (in fact it
is impossible to have such a guarantee unless all NP problems are
solvable in polynomial times).

The type of uncertainty analyzed by the� framework is somewhat
restrictive, i.e., it must be of the structure (3) and`1 norm-bounded.
It is not difficult to see that the multiplier approach can deal with
a much larger class of uncertainty, namely, it allows any convex
or even nonconvex set of uncertainty. This observation provides a
simple connection between the� theory and the absolute stability
theory, where the sector-bounded uncertainty is typically used. The
connection lies in the use of a multiplier. The idea of using multipliers
for robustness analysis has been used by a number of authors; see,
e.g., How and Hall [9] and Sparks and Beinstein [10] where some
generalized Popov multipliers are used. We note, however, that a
multiplier of this kind is a special type ofD � G scaling when the
uncertainty is norm-bounded.

We also point out that when the multiplier approach is used to
study the robust stability of a family of matrices, it has a simple
link to quadratic stability. Namely, if the multiplier is restricted
to a constant, positive-definite and Hermitian matrix, we face the
problem of quadratic stability. More precisely, given a family of
connected matricesA � Cq�q; necessary and sufficient conditions
for robust Hurwitz stability are: 1) there exists someA0 2 A which
is Hurwitz stable, and 2) for every! 2 R; the matrix family
A! = fA � j!I: A 2 Ag is robustly nonsingular.

Using the multiplier approach, a sufficient condition forA! to be
robustly nonsingular is the existence of a multiplierC! 2 C

q�q such
that

(A� j!I)
H
C
H

! + C!(A� j!I)< 0; 8A 2 A: (49)

TakingC! = C = C
H
> 0; the above reduces to quadratic stability

A
H
C + CA< 0; 8A 2 A: (50)
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An example of using the multiplier approach to quadratic stability
analysis can be found in Boyd and Yang [3] and Boydet al. [2].

A follow-up paper [13] offers several other interesting properties
of the multiplier approach. Namely, an equivalence among several
multiplier schemes is established. The computation of the new upper
bounds is formally formulated as an generalized eigenvalue problem
which can be solved using LMI techniques. The continuity issue of
the upper bounds is also studied.
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A Numerical Method in Optimal Production and Setup
Scheduling of Stochastic Manufacturing Systems

H. Yan and Q. Zhang

Abstract—In this paper, we consider optimal production and setup
scheduling in a failure-prone manufacturing system consisting of a single
machine. The system can produce several types of products, but at any
given time it can only produce one type of product. A setup is required
if production is to be switched from one type of product to another. The
decision variables are a sequence of setups and a production plan. The
objective of the problem is to minimize the costs of setup, production,
and surplus. An approximate optimality condition is given together with
a computational algorithm for solving the optimal control problem.

Index Terms—HJB equation, machine setup, numerical method, pro-
duction planning, scheduling.

I. INTRODUCTION

There is substantial literature on continuous-time Markov pro-
duction planning. Such models are considered by Kimemia and
Gershwin [10], Akella and Kumar [1], Boukas and Haurie [3], Haurie
and Van Delft [8], and Sharifnia [16], among others. A crucial
assumption that has been in these papers is that the machines are
completely flexible and thus do not require any setup for switching
the production from one product to another. Ideally, the assumption
amounts to the possibility of simultaneous production of different
products. An important class of manufacturing systems consists,
however, of systems that have machines which involve setup costs
and/or setup times, when switching from production of one product
to that of another. Such systems have been considered by Gershwin
[7], Sharifniaet al. [17], Connolly et al. [4], Hu and Caramanis [9],
Bai and Elhafsi [2], and Srivatsan and Gershwin [19]. They have
examined various possible heuristic policies and have carried out
numerical computations and simulations. However, they have not
studied the policies from the viewpoint of optimality or asymptotic
optimality. Sethi and Zhang [15] formulated a continuous-time pro-
duction and setup scheduling model. Using the theory of viscosity
solutions of Hamilton–Jacobi–Bellman (HJB) equations, they were
able to establish the optimality conditions. However, a closed form
optimal solution in these cases is an impossible task to accomplish. In
order to be able to use the optimality theory on real time production
control, numerical methods for the model developed in [15] seem to
be the only feasible approach.

It is the purpose of this paper to study numerical algorithms
for solving the underlying problem. In this paper, we consider a
manufacturing system consisting of a single failure-prone machine
capable of producing a number of different products. A setup (with
setup time or cost or both) is required if production is to be switched
from one type of product to another. The problem is to find a
sequence of setups and a production plan to minimize the total cost
of setups, production, and surplus. Since a closed form solution to the
problem is not available, one has to resort to a numerical approach
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