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for the brevity of the paper. Improved Upper Bounds for the
Mixed Structured Singular Value

V. CONCLUDING REMARK

We have established the convergence rates of the PARMSR algo-
rithm with fixed-length observation period for tlie/ /G'/1 queueing
systems. Along the same lines of the research, more precise convepbstract—n this paper, we take a new look at the mixed structured
gence results for the PARMSR algorithms, such as a central lir§ifigular value problem, a problem of finding important applications in

. - - robust stability analysis. Several new upper bounds are proposed using a
theorem and a law of the iterated logarithm, could be derived. very simple approach which we call the multiplier approach. These new

bounds are convex and computable by using linear matrix inequality
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of linear systems which are subject to certain structured complexThe exact computation ofix (M) is very difficult. In fact, its
perturbations. It has also been extended to the case where themamputational complexity is known to be NP-hard; see, e.g., Poljak
exist both real parameters and complex uncertainty, i.e., the so-caked Rohn [12]. In practice, an upper bound and a lower bound
mixed perturbations; see Fat al. [5]. are computed to approximate the exact value. The upper bound is
The computational issue @fhas been studied in numerous papersjery important because it serves as a guaranteed margin for robust
see Younget al. [16] for a summary. There is also a Matlab Toolboxhonsingularity. In contrast, the lower bound is often used for checking
available; see Balast al. [1]. The best upper bound @f known so the tightness of the upper bound. A popularly used upper bound for
far is given by Faret al. [5] for a general: problem where both real the structured singular value is given by Fetnal. [5]. To describe
and complex perturbations are allowed. This bound is generalizébis upper bound, we introduce more notation:
from an earlier result of Doyle [4].
In this paper, we propose several new upper bounds for the D ={block diag(D1.---. D s dilb,, 1>

structured singular value. The first new upper bound is derived by dmosme I, ): 0< Dy = DIt e ¢*%% d; >0} (5)
using the following trivial fact. G = Iblock dine(Gy. - G 0 e 0 ):

Lemma I.1: A matrix family A is nonsingular if there exists g = {bloc :b( ;Xk gy Ok 5ot Ok, )2
another matrixC' (multiplier) such that the Hermitian part of the Gi=G7 eC™} (6)

product AC' is negative-definite for ald € A.

An interesting point regarding this upper bound is that it is conve
This upper bound holds an important conceptual value because it
is extremely easy to derive and serves as a lower bound for other
upper bounds. Because this upper bound is not easy to computeemma [1:2 [5]: Given M and K, we haveux (M) < v (M),
when there exist complex perturbations, we apply the well-knowphere
S-procedure on it and derive a second new upper bound which is
looser than the first one but convex and computable by using linear
matrix inequality (LMI) techniques. The computation of this bound
is numerically efficient when the number of real perturbation blocks Remark 11.3: It is known that the gap betweenx (M) and
is not large. When the number of real perturbation blocks is largg, (M) can be very large when there are real perturbation
we derive another new upper bound which is even looser but masecks [16]. It is recently proved by Meinsmet al. [14] that
efficient to compute. This upper bound is still convex and computahl«,%(M) = px(M) if 2(m, + m.) + me < 3. For each case
by using the LMI methodBut most surprisingly, we find that all thesewhere2(m,. +m..) + mc > 3, examples exist to give a gap between
new upper bounds are actually lower bounds of the upper bound,gg(M) and vk (M).

[5] mentioned above

The rest of this paper is organized as follows: Section Il reviews
the mixed structured singular value problem and the upper bound in
[5]. Section Il provides three new upper bounds. The relationships!n this section, the three new upper bounds/fe( 1) as discussed
among these bounds and the upper bound of [5] are analyzediNnSection I are provided.

Section IV. Section V compares the multiplier approach with an
alternative approach for analysis. Some concluding remarks ar@\. The First New Upper Bound
given in Section VI.

where0,, denotes & x k zero matrix. For any: € R, define

®.(D,G)=M"DM + j(GM - M"G) - a’D. @)

v(M) = ir;fo {a: 3D € D,G € G: .(D,G) < 0}. 8)

Ill. NEw UPPER BOUNDS

The first new upper bound is proposed by using the trivial fact in
Lemma I.1. When applied to the problem, Lemma I.1 says that
px (M) < a (a>0) if there exists a multiplie € C"*™ such that

The notation needed for defining the mixed structured singular
value is standard, and we simply duplicate it from [5].

GivenM € C™*" and nonnegative integens.., m.., andmc, with

Il. REVIEW OF THE STRUCTURED SINGULAR VALUE
C(I=AM)+ (I-AM)"Cc" <0 9

for all A € X with 7(A) < o™t

m=my+me+me<n (1) When M has the following special structure:

a block structureC is defined to be am:-tuple of positive integers M = AB"
IC:[k]?...7k7777‘7k7n7‘+1’...‘/ km] (2)

subject toXi2, k; = n. Also define the family of block-diagonal useful:
n X n matrices

(10

Fimptmes Ronpmetts o where A, B € C"*? andq < n, the following equation becomes

det(I, — AM) = det(L, — MA) = det(I, - B*AA).  (11)
X = {block diag(8]Tuy,- -, 8% Tn 85T .oee
{ . elb ktl, T * . Amjl i An important special case of the aboveds= M and BY = 1I,,.
Ome by ymes A1 vf"ﬂAmc~): b € R,6 €C, With the rewriting of M in (10), the sufficient condition fog
AL g Fmrtmetid X Fmrpme i)}, (3) above reduces to finding the multipliéf € C**? and checking

In the above], denotes the: x k identity matrix. (I, - B"AA)"C+ "1, - B"A4) <0

Definition 11.1 [4], [5]: The structured singular valyex (M) of

(12)

a complexn x n matrix M with respect to the block-structuvé is
defined to be zero if,, — AM is nonsingular for alA € X, and

px (M) = (glei%{ﬁ(A): det(I, — AM) =0})"" 4)

otherwise, where( ) denotes the largest singular value.

for all A € X with 3(A) < «™'. RedenotingA™ by A, the above
is equivalent to
1, — A"AB)" + (1, - A"AB)C <0 (13)

for all A € X with 7(A) < o™



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 10, OCTOBER 1997 1449

Remark I1l.1: Condition (12) or (13) has an obvious advantage Based on Theorem Ill.2, we define our second new upper bound
over (9) because the size of the multiplier in (12) or (13) is onlgs follows:
q % ¢ rather thann x n. o o axaq

Based on the analysis above, we propose a simple new upper bodhe( M) = ;‘;fo{”‘ 3C e Do € Der
as fol!ows: given a matri?cM e ¢ of the form (10) and an F(C,De,ARr) <08 =+a~"i=1,---,m,}.
associated block-structur€, define

(23)
fuc (M) = inf{a: 3C € C*™*% E(C,A) >0, ) )
a>0 This new upper bound can be computed using LMI methods. But
VA EX,T(A)<a '} (14) the direct use of (22) will resulti2™ LMI’s of size much larger than
¢ % g. Alternatively, we can significantly reduce the dimensions by
where introducing an additional variable matrix. This point is made precise

in the following result.
Theorem 111.3: The set of inequalities (22) holds if and only if
there existsk = K € %7 such that the following2™" + 1

E(C,A)=C"(I-A"AB)" +(I - A"AB)C. (15)

Obviously, we have

LMI's hold:
(M) < fxc(M). 16
(M) < fic (M) (16) Fi(C, K, AR) = E(C,AR) + K <0,
Also note that the constraints @ in (14) can be simply replaced Vol =xa ti=1,---,m, (24)
with 6; = Fa™ . K+ AH H pH
t Vol 7d I +.z‘1(j .DG‘AG C BC
F(C,K,De) = BeC —W%De
B. The Second New Upper Bound <0. (25)

The computation of the first new upper bound is inconvenient in

cases where there are complex perturbation blocks. To simplify th@nseauentlyjix (M) can be alternatively expressed by

computation, we obtain a looser upper bound by applying the well- (M) = inf {a: 3C, K = KH €01 Do € De
known S-procedure [15] on the complex blocks (i.e., replacing them r a>0 '
with D-scaling). To this end, we denote byr andA¢ the real and B (C, K, D) 0,1 (C, K, Ar) <0
complex sub-blocks ofz, respectively Vol =da ' i=1,---,m, ). (26)
Ap =block diag(d1Lry .-+ O, Tir,) 17) Proof: We first note that the inequality in (25) can be alterna-
Ac =block diag(87Tk,, ,1s s 6 Thpy s tively expressed by
AC AC ; . _
Ar o A) (18) K—-AZDoAc —a?C”BED:*B.C > 0. (27)
Kr,Kc, Xr, Xo, Dr, De, Dr, Do, Gr are similarly defined (note  syppose the inequalities in (22) hold for somie:. Then, we
that G = 0). We also rewrite (10) as follows: simply take
M= AB" = BH } (B B (19) K = A¢DcAc +a *C"BE D BoC. (28)
C

) Obviously, both (24) and (27) hold.
Then, E(C,A) can be rewritten as Conversely, suppose (24) and (27) hold for sokieThen, (22)
E(C,A) = E(C,Ar) — C"BUAT Ac — AUAcBeC (20) follows trivially too. _ ) )
Remark 111.4: Obviously, F1(C, K, Ar) and F,(C, K, D) are
where jointly linear in C, K, and Do. The collective dimension of the
LMI's in (24) and (25) is substantially less than that obtained by using
E(C.Ap)=C"(I - ARArBr)" + (I - AR ArBr)C. (21) (22). The tradeoff is the additional variable matrix. Fortunately, this

. ) _tradeoff is not very costly for many robust stability problems because
Applying the S-procedure on the complex blocks in (20), we obtaitha matrix isq x ¢ only and it is Hermitian.

the following result.
Theorem II.2: Let E(C,A) be given in (20) and: > 0. Then,

E(C,A) <0 forall A € X with 7(A) < a™! if there exists scalars C. The Third New Upper Bound

diyi=1,---,m.+me to form D¢ € Dx. such that the following ~ We now derive another new upper bound which is even looser than
2™ inequalities hold: 7ix (M). However, this new upper bounds serves two purposes: 1) it
’ P ’ o bridges the gap betweegn, (M) andvx (M), i.e., it is in between
F(C,De, Ar) = E(C.,Ar)+A¢DcAc C R the two, and 2) it is numerically more efficient tham. (M) when
BcC —a"De the number of real perturbation blocks becomes large.
V& =4a ti=1,---,m,. (22) Ouir first step is to partitior\ ; into two parts:
Proof: Suppose (22) holds for someDc. Then, A = diag{Apr,, Ap, } (29)

F(C,Dc,Ap)<0 for all A € g with 7(Ar) < ot
becauseF (C, D¢, AR) is linear in Ag. Thus, for anyA € X
with 7(A) < a™*

whereAr, consists of the firstn: repeated real blocks, whil& ,
are the remainingn, — m ones. Also,Ap, Br, D, Kr, and X
are partitioned similarly. In particular

) y HpHpy—1/2 A\ H —1/2 : ;
E(C,A) < E(C,Ar) + C*BED;?AEACDS ? BeC <0. B(C.A) = B(C. A ) — CH B AE A, — A% A, B, C

The last step above follows from the Schur complement of (28). —C"BEAE AL — ABACBAC (30)
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where Proof of Theorem IV.1:The first inequality in (36) has been
o " " explained before [see (16)]. The second and third inequalities follow
E(C,Ary) =C7 (I = AR AR, Bry) trivially from Theorems 111.2 and 111.5. To show the fourth inequality,
+ (I — AglARlBRl)C. (31) we let M be in the form of (19) and need to prove the following:
o » suppose there exist® € D andG € G such that®.(D,G) <0
The motivation for the partition above stems from the fact that thescal the definition of®.(D.G) in (7)]. Then, there exisC' €
number of LMI's involved in computingi, (M) is 2™, which is an  -axa gych thatL(C, D, Ag,, Dr,.Gr,) <0 for all Az, with
exponential number. With this partition, we will reduce this numbef Ap,) < a~%, or equivalently, withs” _ da =1, m.
to 21 by converting theA g, block into additional scaling variables 1,4 step_s will be involved to achieve this purpose.

Dr, andG'r, [which are a part oD and G for vx (M)]. Step 1) We apply Lemma IV.2 to show thab,(D,G)<0 is

With the partition above, we obtain the following result. equivalent to the following condition: there exists soffiec C?*¢
Theorem II1.5: Let F(C, De, Ar) be given in (22) andt>0. g ch that

Then, F(C, De, Ar) <0 for all Ap € Xg with 7(A) < a b if

H AH A HnH s AH A
there existDr, € Dr, and Gr, € Gr, such that the following W (C,D.G) = {C+C +A"DA CUBT +jA G} <0.

. y 2
LMI's hold: BC - jGA —a*D
(39)
L(CaDoﬂARleDRzeGRz) . i
Lo cHBH OHBII%IZ _H-Agz Gr, To see this, we rewrite (39) as follows:
= BeC —a’De 0 APDA —jAfl@ I
Br,C — jGr,Ar, 0 —a®Dp, w(C.D,G) = |: jGA —a’D :| + |:B:|O[I 0]
0,6/ =xa 'i=1,---, 32
<0, V6! a i , LT (32) +|:£:|C‘H[[ BH]<[) (40)
where

and observe that the “null matrices” 0] and[I B*"] are given
L1 :E(C,AHI)—FAI(?D(;A(;+Ag2DRZ.41{2. hf ] [ ] 9

by
Proof: SupposeL(C, D¢, Ar,,Dr,,Gr,) <0 forall Agr, € 0 —_B"
Xp, with 7(Ag,) < a~'. Define L—} and { T } (41)
_ I 0 respectively. From Lemma IV.2, (26) holds if and only-if:>D < 0
Y = 0 I, |. (33)  and
—Ar,Ar, 0

BAYDABY + j(BA"G — GABY) - a*D<0.  (42)
It follows that

Note that the first condition is redundant and (42) is the same as
}fHL(CapC:ARUDﬁzaGﬁz))/ ( )

®,(D,G)<0.
=F(C,Dc, Ar) Step 2) Partition W(C, D, G) as follows:
+ diag{ARH? Dfl’i/; (- a‘zAgZ Any )Dii/;AHZ'/ 0r (34) Wi Wi Wis c’"Bl
7 H _ .2 )

Therefore F(C, Do, Ag) <0forall Ap € Kpwitha(Ag) <a™'. W(C,D,G) = gg a ()DHl ~ ZOD 8
Using Theorem III.5, we can define the third new upper bound B % 0 a ; Ry 2
as follows: ob a”De

where

fuc(M) = ;I;fo{a C € quq,DR2 € Dr,,GRry € GR,.,

Wi IC—I—CH —{—AngRlARl
DC S DC7: L(CaDC7AR1:\DR2:\GR2)<Os

+ .4%2 Dy, Ag, + AgDcAc

V8l =da ' i=1,--,my)} (35) o "
VI/']2 =C BRl +jA4R1GR1
IV. RELATIONSHIPS AMONG THE UPPER BOUNDS Wis =C"BR, + jAR,Gr,.
The sole purpose of this section is to prove the following result. By rearranging its second, third, and fourth row and column blocks,
Theorem IV.1: Given M and K, we have W(C.D,G) above becomes
(M) < fuc(M) < i (M) < fuc(M) < wx(M). (36) Wi O”Bé’ Wia Wis
s . BeC —d*De 0 0
The proof is based on the following result (see, e.g., Gahinet and W (C,D,G) = Mf'g 0 ‘ —a®Dp 0
. Y 2
Apkarian [8]). wil 0 0 —a’Dp,
Lemma IV.2: Given U,V € C7*" andQ = Q € C"*", there _
existsC' € C?*? such that Obviously
Q+UMCV+VHECHT <0 37) W(C.D.G)<0 & W(C.D.G) <0, (43)
if and only if both of the following conditions are satisfied: Define
HoU, <0, VHQVL <0 (38) IO”' 1? 8
Z= a (44)
whereU, and V. are any “null matrices” ofU and V" (i.e., they ’ 0 0 I
form the bases of the null spacesfand V), respectively. —ApAr, 0 0
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It is a bit tedious but straightforward to verify the following equality:Reorganizing the terms above yields

Z"W(c,p,a)z (MPF 4+ R)(I — AM) + (I — MEATY(7 M + R)
= L(C, D¢, Ar,, Dr,,Gr,) — (I =AM R(I-AM)<0.
+ diag{‘Ang;ﬁ?u - a2A§1AR1)D}%/12ARI’O’O}' (45)  since R < 0, we obtain (9) withC' = (M'"F + R).
Hence Remark V.3: The implication of the result above is that the
multiplier approach is advantageous because it involves a much
®.(D,G) <0 W(C,D,G)<0 smaller number of variable&” versus@, R, F).
implies that

L(C. Do An,. Dr,. Gry) <0 VI. CONCLUDING REMARKS
(C, Doy, ARy, 0. G Ry ) < . .
T O S My Tl In this paper, we have provided several new upper bounds for the

for all Ar, € Xp, with 7(Ag,) < a™". mixed structured singular value. Despite of the fact that these upper
Remark IV.3: A simple example is given in [13] to show thatbounds are derived based on a very simple multiplier approach, we
the new upper bounds are indeed strictly less that\/). For this have shown that they are indeed lower bounds of an upper bound

example given in [5]. The first upper bound serves a conceptual value as it is
R 0 1 very easy to derive. The second upper bound is computable via LMI
X = < R ) M = <j 0) techniques and is suitable when the number of real perturbations

is not large. Whemn., is large, the third upper bound needs to be used
It is shown [13] thaD = pux (M) < fix (M) = 0.707 <vx (M) = 1.  to avoid exponential growth in computation. The relaxation technique
S-procedure is the key in obtaining the second and third upper

V. COMPARISON WITH AN ALTERNATIVE APPROACH bounds. When thé?-procedure is applled to all real and complex

. - . . . _perturbations, the upper bound in [5] follows.
During the revision of this paper (see [7] for previous version), .
g paper [7] P 5) We must stress that these new upper bounds still appear to be

Iwasaki, Hara, and an anonymous reviewer brought to our attention

an alternative approach for computing an upper boundufofhis Very coarse. In o.ther .words, the news of this paper is somewhat
approach is based on the following result disappointing as it points out that our knowledge abpuis still

Lemma V.1 [11]: Given M and K., ux (M) <1 if and only if very primitive despite of years qf research. It is a challengir!g_ task
there exist matrice® = R, Q = Q" and F with appropriate to find better upper bound; whlfzh are also convex and efficiently
dimensions such that ’ computable. The computational issue ;ofremains wide open. On

the other hand, a recent negative result [6] shows that it is unlikely

R+MPF+FIM+MEIQM <0 (46) to have a polynomial algorithm which gives an upper boundfor
APRA+ FA+A"FE 4+ Q>0 (47) With relative error grows at a rate at most exponential (in fact it
is impossible to have such a guarantee unless all NP problems are
forall A € K with 7(A) < 1. solvable in polynomial times).

The conditions in Lemma V.1 are not suitable for computing  The type of uncertainty analyzed by theramework is somewhat
in general because (47) is not convexin However, the convexity restrictive, i.e., it must be of the structure (3) afad norm-bounded.
is guaranteed under the relaxation tffat< 0. In this case, the real |t js not difficult to see that the multiplier approach can deal with
parameters; in (47) can be replaced witk:1. In particular, it is a much larger class of uncertainty, namely, it allows any convex
easily shown in [11] that thé) — G scaling technique of [5] gives or even nonconvex set of uncertainty. This observation provides a
a special choice of? < 0. F, and Q. simple connection between the theory and the absolute stability
An interesting point by the aforementioned anonymous revieweheory, where the sector-bounded uncertainty is typically used. The
which we appreciate, is that if a multipli€r exists for (9) (taking connection lies in the use of a multiplier. The idea of using multipliers
a=1),thenk <0, F, andQ also exist for (46) and (47). Hence, itfor robustness analysis has been used by a number of authors; see,
seems that the multiplier approach can be improved further. Howevely., How and Hall [9] and Sparks and Beinstein [10] where some
the result below shows that this is not the case. generalized Popov multipliers are used. We note, however, that a
Theorem V.2: There existk = R" < 0, Q = Q", and F such muitiplier of this kind is a special type ab — G scaling when the
that (46) and (47) hold if and only if there exigtssuch that (9) holds. uncertainty is norm-bounded.

Proof: To see the “if” part, we note a result in [13] which states \we also point out that when the multiplier approach is used to
that a multiplierC' exists for (9) to hold (withz = 1) if and only if  study the robust stability of a family of matrices, it has a simple
there exists a different’ such that link to quadratic stability. Namely, if the multiplier is restricted

(I — MA) + (I — MAYICH < 0.VA € X,5(A) < 1. to a constant, posit_ive-def_ir_lite and Herm?tian mgtrix, we faf:e the

problem of quadratic stability. More precisely, given a family of
(48) connected matricest C C?*%, necessary and sufficient conditions
Now, takeQ) = —C — C'", F = C'M, and sufficiently smallz < 0, for robust Hurwitz stability are: 1) there exists some € A which

and we obtain (46) and (47). is Hurwitz stable, and 2) for everw € R, the matrix family
To see the “only if’ part, we pre- and post-multiply (47) By A. = {A — jwl: A € A} is robustly nonsingular.
and M, respectively, to obtain Using the multiplier approach, a sufficient condition fdr, to be

robustly nonsingular is the existence of a multipligr € C2*? such
MYQM + M7 FAM + MYA"FPYM + MPAYRAM > 0.t Y ’ P

Canceling the term above using (46), we obtain (A—juh"C!l + CL(A - jwl) <0, VA € A. (49)
M"F(I - AM) + (I - M"A")FP M Taking C., = C = C*' >0, the above reduces to quadratic stability
+ R - M"ATRAM <0. APCHCA<0, VA€ A (50)
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An example of using the multiplier approach to quadratic stabilityA Numerical Method in Optimal Production and Setup

analysis can be found in Boyd and Yang [3] and B@&tdl. [2]. Scheduling of Stochastic Manufacturing Systems
A follow-up paper [13] offers several other interesting properties
of the multiplier approach. Namely, an equivalence among several H. Yan and Q. Zhang

multiplier schemes is established. The computation of the new upper
bounds is formally formulated as an generalized eigenvalue problem _ _ _ '
which can be solved using LMI techniques. The continuity issue ofAbstract—In this paper, we consider optimal production and setup

the upper bounds is also studied.

(1]

scheduling in a failure-prone manufacturing system consisting of a single
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for solving the underlying problem. In thi r, W nsider
2190-2194. or solving the underlying proble this paper, we consider a

manufacturing system consisting of a single failure-prone machine
capable of producing a number of different products. A setup (with
setup time or cost or both) is required if production is to be switched
from one type of product to another. The problem is to find a
sequence of setups and a production plan to minimize the total cost
of setups, production, and surplus. Since a closed form solution to the
problem is not available, one has to resort to a numerical approach
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