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Akarae t - -The  notion of interactor matrix or equivalently 
the Hermite normal form, is a generalization of relative 
degree to multivariable systems, and is crucial in problems 
such as decoupling, inverse dynamics, and adaptive control. 
In order for a system to be input-output decoupled using 
static state feedback, the existence of a diagonal interactor 
matrix must first be established. For a multivariable linear 
system which does not have a diagonal interactor matrix, 
dynamic precompensation or dynamic state feedback is 
required for achieving a diagonal interactor matrix for the 
compensated system. Such precompensation often depends 
on the parameters of system, and is thus difficult to 
implement with accuracy when the system is subject to 
parameter uncertainty. In this paper we characterize a class 
of linear systems which can be precompensated to achieve a 
diagonal interactor matrix without the exact knowledge of 
the system parameters. More precisely, we present necessary 
and sufficient conditions on the transfer matrix of the system 
under which there exists a diagonal dynamic precompensator 
such that the compensated system has a diagonal interactor 
matrix. These conditions are associated with the so-called 
(non)generic singularity of certain matrix related to the 
system structure but independent of the system parameters. 
The result of this paper is expected to be useful in robust and 
adaptive designs. 

1. Introduction 
THE NOTION of interactor matrix is a generalization of 
relative degree to multivariable systems. It is defined for 
every system with a nonsingular square transfer matrix T(s). 
More precisely, an interactor matrix ~r(s) is a unique lower 
triangular polynomial matrix of certain structure which 
makes the product ~r(s)T(s) bicausal; see Wolovich and 
Falb (1976). The importance of the interactor matrix lies in 
its necessity for many problems such as decoupling, inverse 
dynamics, and adaptive control; see Wolovich and Falb 
(1976), Morse and Wonham (1971), Descusse and Dion 
(1982), Hautus and Heymann (1983), Morse (1976), and 
Singh and Narendra (1984). Diagonal interactor matrices are 
of significant interest because they provide a solution to the 
static state feedback decoupling problem, among others. It is 
unfortunate that many systems do not have a diagonal 
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interactor matrix. For this class of systems, a dynamic 
precompensator can be applied such that the resulting system 
has a diagonal interactor matrix. However, the design of 
such a precompensator usually requires the exact knowledge 
of the system parameters. Therefore, the robustness issue 
arises for this type of precompensator. 

In this paper we are concerned with the task of achieving a 
diagonal interactor matrix by dynamic compensation for 
multivariable linear systems with uncertain parameters. We 
specifically consider the class of diagonal dynamics 
compensators comprised of integrators or linear filters of 
suitably selected order. We seek diagonal precomposition for 
the simplicity of its implementation, and provide a necessary 
and sufficient condition for the existence of such diagonal 
dynamic precompensation which achieves a diagonal 
interactor matrix. As we will see, one advantage of such a 
diagonal dynamic compensator is that it is related only to the 
structure of the system and is independent of the specific 
values of uncertain parameters. Hence, the compensated 
system and the resulting diagonal interactor matrix possess a 
certain degree of robustness against parameter variations in 
the system. This robustness property is important in 
problems such as adaptive control, as explained in Singh and 
Narendra (1984). In addition to characterizing its existence, 
we devise an algorithm to construct a diagonal dynamic 
precompensator which provides a diagonal interactor. A 
result of this analysis is that the question of diagonal 
interactor matrix, after possible diagonal precompensation, is 
essentially associated with the nonsingularity or (non)generic 
singularity of a certain matrix related to the system. The 
condition for achieving a diagonal interactor matrix given 
here is similar to a condition in Singh and Narendra (1984), 
but we provide a clear derivation and an algorithm for 
computing the precompensator. 

2. Preliminaries 
We begin by giving some preliminary definitions for a 

linear multivariable system modeled by an m x m rational 
transfer matrix T(s). 

Definition 2.1. A square transfer matrix T(s) is called 
nonsingular if the determinant of the matrix exists and is 
nonzero for almost all finite complex numbers s. T(s) is 
called bicausal if it is nonsingular and all entries of both T(s) 
and T-~(s), the inverse of T(s), are proper. A nonsingular 
system y = T(s)u is called decoupled if and only if T(s) is a 
diagonal matrix or is diagonalizable by an elementary 
row/column interchange operation. 

Definition 2.2 (Wolovich and Falb, 1976). Given an m x m 
nonsingular system y = T(s)u, its diagonal interactor matrix 
is defined (when it exists), to be a diagonal polynomial 
matrix/5(s) of the form 

/5(s)=diag(s'~i}, di>-O, l<-i<-m (1) 

such that the product f)(s)T(s) is bicausal. 
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Remark 2.1. The indices a i are referred to as decoupling 
indices (Falb_ and Wolovich, 1967) and the set 
{dl,t71 . . . . .  d,,,} is also called vector relative degree 
(Isidori, 1989). It should be noted that many multivariable 
linear systems do not have a diagonal interactor matrix. 
However, every system with a nonsingular transfer matrix 
T(s) can be precompensated to achieve a diagonal interactor 
matrix. A simply constructed precompensator is T-~(s)s -~ 
for any integer 6 sufficiently large to make the precompen- 
sator proper,  assuming that we do not worry about possible 
unstable zero/pole cancellation between the system and the 
precompensator. 

But such a precompensator requires the exact knowledge 
of T(s), or the system parameters,  and is therefore difficult 
to apply to systems with uncertain parameters. In particular, 
a small change in the coefficients of T(s) may result in a 
precompensator of different structure. 

The following definitions describe the concepts of generic 
and nongeneric singularity of transfer matrices. These 
concepts are also mentioned, but not precisely defined in 
(Singh and Narendra, 1984). 

Definition 2.3. Linearly dependent  row/column vectors 
vl, v 2 . . . . .  o,, of the same dimension are called generically 
linearly dependent  if for any other vectors 0~, fi2 . . . . .  fin of 
the same dimension such that vi and f~ have the same zero 
elements (i.e. f~ is obtained by varying the nonzero elements 
of vi), i= 1,2 . . . . .  n, the linear dependence property 
remains. Otherwise, the vectors are called nongenerically 
linearly dependent.  

Remark 2.2. In other words, generic linear dependence 
occurs irrespective of specific values of the nonzero elements 
in a set of linearly dependent  vectors. Definition 2.3 also 
implies that the linear dependence of a set of nongenerically 
linearly dependent vectors can be lost by arbitrarily small 
perturbations on the values of the nonzero elements of the 
vectors. In particular, the number of vectors must exceed 
one in order to have nongeneric linear dependence.  
Furthermore, a set of row (resp. column) vectors are 
generically linearly dependent  if and only if either of the 
following cases happens: 
(i) there is a zero row (resp. column); or 

(ii) there exists a subset of {v I, v 2 . . . . .  on} such that by 
forming them as a matrix, the number of nonzero 
columns (resp. rows) in the matrix is strictly less than the 
number of rows (resp. columns) in the matrix, i.e. the 
nonzero columns (resp. rows) form a 'tall' (resp. 'wide') 
submatrix. 

Definition 2.4. A singular constant matrix is called 
nongenerically (resp. generically) singular if the singularity 
depends on (resp. is independent of) the particular values of 
the nonzero elements, i.e. all (resp. some of) its 
rows/columns are nongenerically (resp. generically) linearly 
dependent.  

As an illustration of these ideas, consider the following 
two singular constant matrices. 

0 , 1 . (2) 
1 1 

The first matrix is generically singular because the first two 
rows are generically linearly dependent.  The second matrix is 
nongenerically singular because the second and third rows 
are nongenerically linearly dependent.  

3. Main results 
In this section, we consider the problem of finding a 

diagonal precompensator for a given system to achieve a 
diagonal interactor matrix. We seek diagonal precompensa- 
tion for the simplicity of its implementation as well as 
robustness. Given an m × m nonsingular transfer matrix 
T(s), we wish to define conditions under which there exists a 
diagonal dynamic precompensator DO/s ) of the form 

D(1/s)=diag{s di}, di>O, l<_i<_m (3) 

so that T(s)D(1/s) has a diagonal interactor matrix, i.e. the 
rational matrix 

K(s) := D(s) T(s)D( l/s) (4) 

is a bicausal matrix for some polynomial matrix / )(s)  of the 
form (1). 

It is possible however that for some transfer matrices, the 
aforementioned problem is not solvable. For example, for 
the following transfer matrix 

is T ( s ) =  ! +  1 --1 1 ' (5) 

ks s ~ ~-+s" 
it can be shown that no diagonal precompensator can achieve 
a diagonal interactor for T(s) (see Example 3.2). 

The main results of this paper are presented in Theorem 
3.1 and Algorithm 3.2 below and are proven in Appendix A. 

Theorem 3.1. Given a nonsingular transfer matrix T(s), one 
of the following two cases must occur and they are mutually 
exclusive: 

(a) There exists a pair D(l/s)  and L)(s) of the forms (3) 
and (1), respectively, such that 

K,, := lim {6(s)T(s)D(1/s)) (6) 

is nongenerically singular. In this case, there does not exist 
any other diagonal precompensator of the form (3) to 
achieve a diagonal interactor matrix. 

(b) There exists a pair D(1/s) and /)(s)  of the forms (3) 
and (1), respectively, such that Ko in (6) is nonsingular. In 
this case, the compensated system T(s)D(1/s) has a diagonal 
interactor D(s). 

Based on this theorem,_ the following algorithm is 
developed for determining D(s) and D(1/s) which ensures 
that Ko is either nonsingular or nongenerically singular. 

Algorithm 3.2. Initialize D(1/s) = I, i.e. d i = O, Vi. 
Step 1. Find /)(s)  with the minimal number of 

differentiations in each entry such that every row of 
K(s)=D(s)T(s)D(l /s)  has an entry with zero relative 
degree, and take Ko = lira K(s). There are three cases: 

s ~  

1. K.  is nongenerically singular: no diagonal compensator 
exists which will give a diagonal interactor. 

2. Ko is nonsingu_lar: D(1/s) is a diagonal precompensator 
for T(s), and D(s) is the associated diagonal interactor. 

3. K. is generically singular: proceed to Step 2. (Note that 
D(s) guarantees that K0 has no zero rows.) 

Step 2. Extract the maximum set i of rows for which the 
nonzero columns form a tall matrix. Denote the set of those 
nonzero columns by j and the set of remaining columns by j± 
for which all elements in the rows in set i are zero. Then 
determine y, the minimum relative degree of any element 
contained in the set i of rows and the set j± of columns of 
K(s). Then for all I e j, increment d t by y. Return to step 1. 

The algorithm is complete when either case 1 or case 2 
o c c u r s ,  

In case 2, D(1/s) found is minimal order because we only 
introduce the minimum number of integrators required to 
remove generic singularities, and not more. 

We now illustrate Algorithm 3.2 with two examples. 

Example 3.1. Let 

T(s) ~ s31 

Ls ~ s ~ ~ 

(7) 

Initialize D ( l / s )  = 1, i . e .  d I = d e = d 3 = O. 

Iteration 1. In order to ensure that every row of K(s) has 
some entry with zero relative degree, Step 1 gives d t = 1, 
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d 2 = 2 and d3 = 2 resulting in 

1 s 2  - $3 

K(s)=  1 , with 

1 
s 2 ~ 

Ko = 1 , (8) 

0 

where Ko is generically singular. We now apply Step 2 to 
K(s). We find the set i = {1, 3}, i.e. rows 1 and 3 of Ko are 
linearly dependent. We also find j = {1} and accordingly 
j± = {2, 3}. The minimum relative degree of any element of 
K(s) which belongs to both sets i and jx is 7 = 2. For all l e j  
we choose dt a__ dt + Y, which gives d I = 2, d 2 = 0 and d3 = 0. 

Iteration 2. We now return to Step 1 and formulate a new 
_K(s) with our new D(1/s) by updating d I = 3, at 2 = 2 and 
d3 = 4 such that each row of the new K(s) has some entry 
with zero relative de ree. 

[ 1 2 ~" 
S 

1 
K(s) = ~ I 1 , 

I 

with Ko = 1 . ( 9 )  

1 

Note that Ko is now nonsingular, hence the new /)(s) is the 
diagonal interactor for the precompensated system 
r(s)D(1/s). 

Example 3.2. Consider the matrix T(s) in (5). Application of 
Step 1 of Algorithm 3.2 gives 

II K ( s ) = [ 0  0s 1 S l  ~ -  01 ~] 

= 1+ - 1 +  

As a result, 

:] 
is nongenerically singular. By Theorem 3.1, there does not 
exist any diagonal dynamic precompensation which will give 
a diagonal interactor. Notice however that if any one of the 
constant coefficients of T(s) in _(5) were perturbed, then Ko 
would be nonsingular, and the D(s) and D(1/s) found would 
be the diagonal interactor and precompensator respectively 
which give a diagonal interactor matrix to the perturbed 
r(s). 

We end this section by considering the particular case of 
triangular transfer matrices. 

Corollary 3.1. For any lower (or upper) triangular 
nonsingular proper transfer matrix T(s), there exists a 
diagonal dynamic precompensator D 0 / s  ) of form (3) such 
that T(s)D(1/s) has a diagonal interactor matrix. 

Proof. Let T(s) be any triangular transfer matrix. Using 
Theorem 3.1, there exist some D(1/s) and/5(s )  of the form 
(3) and (1), respectively, such that 

K o = !Lm D(s)r (s )O( l / s )  (11) 

is either nonsingular or nongenerically singular. Note that 
K(s) is triangular and so is Ko. Therefore, Ko must be 
nonsingular and /)(s) is the diagonal interactor for 
T(s)D(1/s). VVV 

4. Conclusion 
Necessary and sufficient conditions have been given to 

characterize those systems for which there exists a diagonal 

dynamic precompensation to achieve a diagonal interactor 
matrix. More specifically we have shown that the 
decouplability is determined by the generic/nongeneric 
singularity of a certain matrix associated with the system. In 
support of this cause, we have provided an algorithm for the 
construction of a minimal order diagonal dynamic precom- 
position required to achieve a diagonal interactor matrix. 
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Appendix A: Proof of Theorem 3. ! and Algorithm 3.2 

Proof. To solve Theorem 3.1, it is sufficient to show that 
given any nonsingular transfer matrix T(s), cases 1 and 2 of 
Step 1 of Algorithm 3.2 are exclusive, and that the 
application of Algorithm 3.2 will result in either case 1 or 
case 2, i.e. we will end up with either a nonsingular or a 
nongenerically singular Ko. 

In the following, part (i) implies the exclusiveness of the 
two possibilities, and part (ii) shows that one or the other can 
always be achieved. 

(i) Suppose lim D(s)T(s)D(1/s) is nongenerically singular 

for some pa i r / ) ( s )  and D(1/s), then for any other pair 
Dl(s ) and Dl(1/s ), the matrix lira Dl(s)T(s)Dl(1/s ) 

s ~  

cannot be nonsingular. In other words, if 
lim D(s)T(s)D(1/s) is nonsingular, then there does 

not exist any other pair Dl(s) and Dl(1/s ) such that 
lim f)l(s)T(s)Dt(1/s) is nongenerically singular. 

(ii) Given any T(s), the application of Algorithm 3.2 will 
lead to a pair D(s) and D(l /s)  such that 
lim D(s)T(s)D(1/s) is either nonsingular or nongeneri- 

s ~  

cally singular. 
For (i) it is sufficient to show the following: 

(iii) Given a matrix K(s) for which lira K(s) is nongeneri- 

caily singular, there do not exist any/92(s ) and D2(1/s ) 
such that lim Dz(s)K(s)D2(1/s) is nonsingular. 

Indeed, suppose_ (iii) holds, let K(s)=ff)(s)T(s)D(1/s) 
and for any given Dl(s) and Dl(1/s) define 

Dz(l/s ) = D(s)Dl(l/s)s -~ 

Dz(S ) = S6ff),(S)b(l/s) 

where 6 > 0 is the minimum integer which keeps D2(1/s ) and 
L)z(l/s ) proper. Then 

ID,(s)T(s)Ot(l/s) = ff)z(s)K(s)D2(1/s). 

Hence, if lim 02(s)K(s)D2(l/s ) cannot be nonsingular, 

then neither can lim lOt(s)T(s)Dl(1/s ) for any /St(s ) and 

Dl(1/s ), which implies (i). 
To show (iii) we suppose that lim K(s) is nongenerically 

singular, and assume on the contrary that there exist matrices 
D2(s ) and 32(1# ) such that 

lim IDz(s)K(s)Dz(l/s ) = lim/~(s) 

is nonsingular. We denote D2(s)K(s)D2(1/s ) by K2(s ). 
Without loss of generality we assume that we can choose 

where I I, ! 2 arc identity matrices. This can be achieved by 
using row/column interchanges which place K(s) in the 
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following form, 

K(s) = [Kii (s)  K2i(s)] (12) 
LK21(s) K22(s) J 

where the dimensions of the submatrices correspond to those 
of/522(s ), D22(1]s ) and li, I 2. We now assume that either (or 
both) It 9 r I2, will have at least dimension one. Otherwise, 
replace D2(s ) and D2(1/s ) by/)2(s)s -* and D2(1/s)s_ ~, where 
• is the minimum order of the diagonal terms of D2(s ) and 
Dz(s ). Note that for the new/)2(s) and Dz(1/s ) either ! t or 12 
will not be empty. With the given choice of D2(s ) and 
D2(1/s), we have 

0 l l , , , ,(s),, ,:(s)ir,,  0 
ID22(s)JLK2,(s) Kz2(s)JL0 D22(1/s)] 

I -  K,,(s) K,~(s)O=(lls) ] 
= LD22(s)K2,(s) b22(s)K22(s)D22(lls).l" 

In order for lira /(2(s) to be nonsingular then L)22(B)K21(s) 
must be proper, which implies that KEI(S ) is strictly proper, 
that is lira K2t(s ) = 0. This implies that K22(s) cannot be a 

tall matrix, otherwise lira K(s) would be generically singular 

(Remark 2.1). Similarly, lim Kiz(s)D2z(l[s)=O because 

K,2(s ) is proper, which implies that Kil(s) cannot be tall, 
otherwise .!imKz(s) would be generically singular, thus 

contradicting the initial assumption that g2(s ) is nonsingular. 
Therefore both Kl~(s) and g22(s ) must be square matrices. 
This implies that 1~ and 12 are of the same dimension. 

Due to the nonsingularity of lim Kz(s ) and since 
s ~  

lira K12(s)D22(1/s) is zero, we know that lim K,l(s ) and 
s ~  s ~  

lira ff)z2(s)Kzz(s)Dz2(1/s) are both nonsingular. 
s ~  

Using the nongeneric singularity of lim K(s), 

nonsingularly of lim Ki~(s), and the fact that lim K2,(s)= 0 

then lim Kzz(s) must be nongenerically singular. 

In conclusion, our initial assumption leads to two 
observations, 

• lira K22(s) must be nongenerically singular, 

• ::1/522(s), D22(1/s ) such that lim f)z2(s)g22(s)D22(1/s) is 
nonsingular. ~ 

Noticing however that the dimension of K22(s) is lower 
than tha t  of K(s), the problem described in (iii) is repeated 
in a lower dimension, with K2z(s), /)22(s), D22(1/s) replacing 
K(s), f)2(s), D2(l/s). We can repeat the above argument 
until in the limit we have a 1 x 1 nongenerically singular 
matrix K22(s), which is not possible. This conclusion 
contradicts the initial assumption and therefore lim K2(s) 

cannot be made nonsingular by any choice of/)2(s), D2(1/s) 
if lim K(s) is a nongenerically singular matrix. 

To show (ii) we suppose that D(l/s)  is initialized to b e / ,  
/)(s) is chosen according to Step I of Algorithm 3.2, and the 
resulting Ko is generically singular. Without loss of 
generality, let the set i of rows and the set j of columns 
described in Step 2 be the first i rows and the first j columns 
of K o. Then we can write K(s) in the form (12), where 
Kij(s) contains the first i × j  elements of K(s) and Kt2(s), 

g21(s), g22(s ) are suitably dimensioned. Note that Kl2(s) is 
strictly proper, and KN(s ) is tall by the definition of generic 
linear dependence. Also, the relative degree of every row of 
K22(s ) is zero and !inn Kz2(s ) must be nongenerically singular 

[any row for which this is not the case should have been 
included in Kll(S), K12(s)]. 

Choose y according to Step 2 of Algorithm 3.2 and 
formulate Dl(l/s ) = diag {lls ~, 12}, where lj, 12 are identity 
matrices of dimensions j × j  and ( m - j )  × ( m - j )  respec- 
tively. The new D(1/s) matrix, denoted by D"~W(l/s), 
becomes D"eW(l/s) = D(1/s)Dl(l/s)._ The application of Step 
1 of the algorithm will lead to D"eW(s)= Dl(l/s)D(1/s), 
where / ) l (s )= diag {sYl,, 12}. Here, the lower block of Di(s) 
is an identity because the diagonal interactor matrix of each 
row of K22(s) is zero. The resulting K(s) matrix becomes 

K.~W(s) = b"~W(s)T(s)D°CW(l/s) 

=! K,,(s) l 
LK21(s)s Y K 2 2 ( s  ) J" 

Note now that K2j(s)s ~ is strictly proper and at least one 
column of s YK~t(s) has zero relative degree. 

The new matrix K"¢W(s), if its limit is still generically 
singular, can again be reorganized in the form (12), i.e. 

K.~W(s) = [ K77~(s) K?~"(s) l 
new K 2 2  ( s ) J  K21 (s) new ' 

The conclusion that we make from the above is that the 
new , number of columns of Kj2 (s) will be reduced by at least 

one. 
We can apply the algorithm as many times as is required 

until the number of columns of K~W(s) is reduced to zero, in 
which case K"CW(s) is either nonsingular or nongenerically 
singular. ~TV 

References 
Descusse, J. and J. M. Dion (1982). On the structure at 

infinity of linear square decoupled systems. IEEE Trans. 
Aut. Control, AC-27, 971-974. 

Falb, P. L. and W. A. Wolovich (1967). Decoupling in the 
design and synthesis of multivariable control systems. 
IEEE Trans. Aut. Control, AC-12, 651-659. 

Gibbens, P. W., C. Schwartz and M. Fu (1991). Dynamic 
decoupling of MIMO systems: linear case. Proc. 1991 Am, 
Control Conf. 

Hautus, M. L. J. and M. Heymann (1983). Linear feedback 
decoupling--transfer function analysis. IEEE Tran. Aut. 
Control, AC-28, 823-832. 

Isidori, A. (1989). Nonlinear Control Systems: An 
Introduction, 2nd ed. Springer-Verlag, Berlin. 

Morse, A. S. (1976). System invariants under feedback and 
cascade control. Mathematical Systems Theory: Vol. 131. 
pp. 61-74. Springer, New York. 

Morse, A. S. and W. M. Wonham (1971). Status of 
noninteracting control. IEEE Trans. Aut. Control, AC-16, 
568-581. 

Singh, R. P. and K. S. Narendra 0984). Prior information in 
the design of multivariable adaptive controllers. IEEE 
Trans. Aut. Control, AC-29, 1108-1111. 

Wolovich, W. A. and P. L. Falb (1976). Invariants and 
canonical forms under dynamic compensation. SlAM J. 
Control Optimiz., 14, 996-1008. 


