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ABSTRACT: This paper discusses recent re-
sults relating to the parametric approach to
robust stability. The general problem of ro-
bust stability is defined, and a brief review
of Kharitonov-type, edge, and zero exclu-
sion results is given. Several open research
directions are presented, followed by some
concluding remarks on the future of the ap-
proach.

Introduction

The fundamental justification for using
feedback control is ‘‘to enforce good per-
formance of control systems in the presence
of uncertainty. Also, feedback is used to en-
able a process to work in the neighborhood
of open-loop unstable operating conditions,
that is, to stabilize unstable plants’’ [1]. Al-
though most systems to be controlled are
open-loop stable, the introduction of inte-
grators in the feedback loop (to suppress
steady-state errors) or more general compen-
sators (to improve dynamic performance)
makes the stabilization, in the presence of
uncertain parameters and/or delays, very dif-
ficult. Contrary to the decade of the 1970s,
when most control efforts were concentrated
on known mathematical models, now ‘‘con-
trol engineers must live with uncertainty and
understand that the impact of the level of
modeling uncertainty on the design of con-
trollers is crucial’’ [1]. Thus, questions of
stability and stabilization of uncertain sys-
tems are among the most important issues in
control engineering today. The aim of this
paper is to review and discuss recent resutlts
on some of these issues, i.e., what is now
commonly called robust stability. The reader
interested in tracing the history of robust sta-
bility in the parameter space is referred to a
recent survey [2] and a number of books,
e.g., [3]-[7].

When dealing with a nominal system, there
are a number of well-known methods of ver-
ifying stability. These include analytical
tests, such as the Routh-Hurwitz criterion or
Lyapunov method as well as graphical tests,
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such as the Nyquist criterion. Ensuring the
practical stability of a control system, how-
ever, requires taking into consideration not
only the nominal system but also all its rea-
sonable (expected) perturbations. In the clas-
sical Bode-Nyquist design techniques, the
goal of practical stability is achieved by in-
troducing uncertainty in gain and phase,
leading to the notion of a stability (gain and
phase) margin. In many applications, how-
ever, the uncertain parameters are not the
gain and/or phase but some other well-de-
fined physical quantities, such as time con-
stants, friction coefficients, loads, intercon-
nection gains, chemical reaction rates, time
delays, etc.

There are basically two approaches avail-
able to problems of robust stability. The first
approach uses additive [G(s) + A(s)] or
multiplicative [G(s)[1 + A(s)]] unstructured
perturbations of the nominal system transfer
function (c.f., [8]-[10] and references
therein) with H-infinity (H*)-norm bounds
on the perturbation A(s). The second ap-
proach takes into account the structure of the
perturbations by assuming that some param-
eters (usually physical parameters) are known
to lay within some bounds or tolerances (c.f.,
[4], [6], [11] for examples of uncertainty
models in the parameter space). We will fo-
cus on the parametric approach since

(1) Parameter bounds usually can be ob-
tained from physical considerations,
while it is difficult to find bounds on
A(s).

Models of perturbations in the frequency
domain that proved successful (e.g., gain
or phase perturbations) cannot represent
parameter perturbation as a special case.
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In most practical cases, after deriving an
appropriate uncertainty model in the pa-
rameter space, the remaining uncertainty
in the frequency domain is negligible; it
perturbs the Nyquist plot in a small
neighborhood of the origin.

(4) The classical gain and phase margin
model becomes a special case of a more
general uncertainty model in the space
of transfer-function coefficients, after in-
troducing an uncertain complex gain
coefficient.
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Problem Definition
and Preliminary Remarks

Consider the continuous- or discrete-time
closed-loop system shown in Fig. 1. For
simplicity, the controller is incorporated into
the GH block in the forward loop. The char-
acteristic equation of the system is obtained
from the determinant.

det (1 + GH) =0 (1)

This usually can be represented in the equiv-
alent form shown in Eq. (2), where p is a
function (called the ‘‘characteristic func-
tion’’) in the vector of variables r and the
uncertain coefficient vector a belongs to some
known region of tolerances.

p(r,a) =0 (2)

The components of r are functions of one
complex variable associated with either the
Laplace transform or the z-transform. For
example, they may be of the form s*. exp
(—sT), etc. The general robust stability
problem can now be formulated as follows:
Given a family of characteristic functions P
associated with an uncertain system, and a
set D in the complex plane, provide com-
putationally tractable techniques for deter-
mining the D stability of P, i.e., for checking
whether the zeros of the functions in P re-
main within the set D.

Typical choices for set D are the open left
half-plane (for continuous-time systems), the
open unit disk (for discrete-time systems),
or specified subsets thereof. The general
problem is very difficult, and additional as-
sumptions are required before concrete re-
sults can be given. To better understand some
of the difficulties, consider the particular case
where the characteristic function of a contin-
uous-time system is given by a polynomial
in s with uncertain coefficients:

s,a)=as" +a,_;s" "+ .-
P n n=1

+ a;s + aq, witha, >0 (3)
y GH(s) >
Fig. 1. Closed-loop system.



We assume that the uncertain coeflicients
vary independently in the intervals g; € [,
B:1,i =0, 1, ..., n. One way of checking
the stability (in this case, D is the open left
half-plane) would be to discretize the ad-
missible parameter space and to check the
stability of each p (s, a) at all discrete values
of a;. This is tractable only when n is small
and the discretization is coarse; for example,
forn = 3, 10 values of g¢;, i = 0, 1, 2, 3,
would require checking 10,000 polynomials.
This approach is clearly not a good method
to use, since it would be necessary to check
thousands of polynomials, even for rela-
tively small n. Furthermore, the discretiza-
tion might be too coarse, and this approach
would not guarantee the correctness of the
result. On the other hand, it is obvious (in
view of the Hurwitz conditions) that: for n
= 2, it is sufficient to check whether oy >
0 and «; > 0; for n = 3, it is sufficient to
check the positivity of the lower bounds of
the coefficients and the inequality a,a; —
B3B8y > 0. However, forn > 3, the problem
becomes cumbersome. Fortunately, recent
results [12] obviate the necessity of pursuing
this approach, at least for the polynomial in
Eq. (3) and for independent coeflicient vari-
ations.

Recent Results on the
Robust Stability Problem

In this section, recent results for special
cases of the general robust stability problem
are reviewed.

Interval Polynomials
and Kharitonov-Type Results

For the polynomial p(s, a) given in Eq.
(3), a complete solution has been obtained
by Kharitonov [12] under two assumptions.

The first assumption (K1) is that the family
P is a so-called ‘‘interval polynomial,”
meaning that the coefficient variations are
independent and the coefficient g; can take
positive values from ¢; (minimum) to @;
(maximum), i.e.,

a; € [oy, Bil, 0< =6,

i=0,...,n 4)

The second assumption (K2) is that region
D is the open left half-plane.

Kharitonov demonstrated that the family P
is D stable if, and only if, exactly four
polynomials corresponding to specially cho-
sen extreme values of the coefficients are sta-
ble. The four polynomials are as follows:

Pac(8) = g + s + 6252 + 5353

+a4s4+a5s5+

Pes(s) = By + Bis + s’ + ays’
+ Byt + Bss® + ..
Pas(s) = g + Bis + Bos” + ays’
+ st + Bss® + L
Psa(S) = Bo + s + azsz + 6333
+ Bust +oass® + L (5)

If the coefficients in Eq. (3) are complex
fi.e., (K1) is modified such that each coef-
ficient varies independently in a rectangle in
the complex plane], Kharitonov [13] has
shown that only eight polynomials must be
checked. Kharitonov’s results make the so-
lution to the particular robust stability prob-
lem considered earlier straightforward; it is
necessary and sufficient to check no more
than four (eight in the case of complex coef-
ficients) polynomials, rather than potentially
millions. (Recently, a number of ‘‘simple”’
proofs [14]-[18] of Kharitonov's results have
appeared in the literature. Although simplic-
ity, like beauty, is in the eye of the beholder,
one cannot help but ask: If the proofs are so
simple, why are there so many?)

The types of systems that can be treated
using Kharitonov’s results are limited by as-
sumptions (K1) and (K2). For example, dis-
crete-time systems cannot be treated since
the stability region is the open unit disk, vi-
olating assumption (K2). A considerable re-
search effort has gone into attempts to relax
these assumptions ([19]-[34] and references
therein), i.e., to consider other regions D
and/or dependent coefficient variations and/
or systems with p (s, a) different than the one
in Eq. (3). We note that, if the system pos-
sesses only one unknown coefficient satis-
fying Eq. (4), then Eq. (5) reduces to check-
ing two polynomials differing only in that
one involves the minimum and the other the
maximum value of the unknown coefficient.
We refer to this as checking extreme values,
and say that a given class of systems will
not generally admit a Kharitonov-like result
if checking extreme values does not guar-
antee stability. Based on this: Neither dis-
crete-time [23], [29] nor delay systems [28]
admit Kharitonov-like results.

For some special D regions and/or re-
stricted types of polynomials, however,
checking the extreme points may be suffi-
cient [31], [32], [35].

Assumption (K1) often is not satisfied in
typical situations. To see this, consider the
transfer function (with uncertain gain param-
eter k € [0.5, 3])

k(s> + s + 5)

GH(s) =
O = T4 + 14 11

6

The characteristic equation is given by Eq.
B)ywithn =3,a;=1,a, =a, =14 +
k, and ay = 1 + 5k. Clearly, the coefficient
variations are linearly dependent and do not
satisfy assumption (K1). On the other hand.
the stability is preserved if, and only if, a,a,
> q, (note that the positivity of a;, i = 0,
..., 3, is assured). Checking this inequality
for k = 0.5, I, and 3, it is found that the
system is stable, unstable, and again stable,
respectively. Hence, stability for the ex-
treme values of the uncertain parameter does
not guarantee stability for the entire region
of uncertainty, and a Kharitonov-like result
cannot, in general, be obtained for systems
where the coefficient variations are linearly
dependent. This seems to indicate that prog-
ress in the theory of robust stability to in-
clude linearly dependent coefficients is dif-
ficult to achieve. Fortunately, however, some
recent results bring positive reactions.

Polytopes of Polynomials and Edge Results

Now consider coefficient variations that
span a polytope in the space of coefficients.
A polytope in a vector space is a set of all
convex combinations of a finite number of
fixed vectors. For instance, a triangle, rect-
angle, and cube are polytopes (convex com-
binations of their corners). A general expres-
sion for a polytope of polynomials is

P = {p(s, M:p(s, ) = Api(s) + - -+
+ APl A 2 0, 2N = 1} 7)
i=1

Note that the characteristic polynomial in
Eq. (6) belongs to the polytope

P+ 04 +ks+ 04 +ks+1
+ Sk: k € [0, 3]}
= (NG + 1487 + Lds + 1)
+ NG+ 4.4587 + 4.45 + 16):
NZ0, N =07 +N=1}

As an introduction to edge results, con-
sider the polynomial given in Eq. (3), with
n =3,a; =1, a, = a,, and assume that q,
and a, are bounded by a triangular region (a
polytope), as shown in Fig. 2. Using the
Routh or Hurwitz test, it can be seen that,
in order to check the stability of the whole
triangular region, it is sufficient to check the
stability of its edges (note that gy = a? de-
fines the boundary of the stability region).
This reduces the dimensionality of the prob-
lem, since it is not necessary to check the
stability of interior points of the triangle.

The preceding example generalizes to the
multidimensional case with the so-called
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region

7

Fig. 2. Example showing that checking
the edges is sufficient for checking the
stability of the triangular region.

*‘edge theorem’’ of Bartlett et al. [21], which
states that, given a polytope in the space of
coefficients ag, ... , a,, the stability of the
whole polytope is equivalent to the stability
of its edges. This yields a great reduction in
computational complexity; not as dramatic
as Kharitonov’s result, but still substantial
since checking the stability of the edges can
be executed by checking the root locations
of certain easily derivable matrices. A nec-
essary and sufficient condition for the sta-
bility of an edge

{ANPiI() + Napa(): Ny + N = 1L\, = 0}

is that p, be stable and the matrix H' H, (or
H,H; ") does not have eigenvalues in (— oo,
0], where H, and H, are Hurwitz matrices
corresponding to p, and p,, respectively [22].
(The counterpart of this condition for dis-
crete-time systems can be found in [11] and
[36].) In addition, an attractive graphical test
has been found for checking edges [28]: It
is sufficient to check stability of p, and then
verify whether for all w,

—7m < arg (M> <7 (7)
pi(jw)

For example, if py(s) = (s + 1)* and p,(s)
=(s — l)z, then the continuous function

paa)\ _
g<p1<jw>> T e @

reaches —7 at w = 1, thus indicating insta-
bility of some convex combination of p,(s)
and p,(s). In general, the practical compu-
tation can be executed over a finite interval,
since for large w the ratio p,(jw)/p,(jw) ap-
proaches a constant value.

We can now ask whether the edge theorem
holds for a wider class of systems. The an-
swer is that: The edge theorem holds for the
case with a reduced system order (vanishing
highest order coefficients) [30], for discrete-

August 1989

L

time systems [21], and can be extended to
time-delay systems [28] as well as almost
arbitrary D regions (some mild assumptions
on D are required [27], [28]).

Note that, for time-delay systems, we en-
counter polynomials in s, and exp (—h;s), i
=1....,k, where hy, ..., h are positive
numbers (time delays). In addition, the
graphical tests for checking the edges extend
to this case [28], where they are of even
greater interest than in the case of polyno-
mials since no general analytic tests exist for
checking stability of time-delay systems.

Results Based on the
Zero Exclusion Principle

The main idea behind the so-called *‘zero
exclusion principle’” is the fundamental
property that the roots of polynomials are
continuous as functions of coefficients. To
explain this, consider the robust stability of
a continuous-time system with coeflicients of
the characteristic polynomial depending con-
tinuously on a number of independent pa-
rameters located within specified intervals.
Then the robust stability is guaranteed if (1)
a nominal system is stable and, (2) for any
admissible values of the parameters, the
characteristic polynomial does not have ze-
ros on the imaginary axis. Statement 2 means
that no polynomial can assume a zero value
at the boundary of the left half-plane (zero
exclusion).

This principle can be developed further to
obtain numerical tests for robust stability. A
number of results [19], [20], [25], [26], [37],
[38] are based on this approach. In [19], Bar-
mish uses the zero exclusion principle to
generalize the concept of four Kharitonov
functions for a polytope of polynomials. This
generalization would seem to be of real in-
terest for reducing the computation time
when treating cases involving many uncer-
tain parameters. Barmish and Khargonekar
{20] extend the results of [19] to include un-
modeled dynamics. Dasgupta et al. [37] ad-
dress the issue of robust stability of poly-
topes of functions that are not necessarily
polynomials and develop a more general
form of the zero exclusion principle. Fu [26]
proposes an approach based on the zero ex-
clusion principle for the robust stability of
polytopes of polynomials, which provides a
closed-form description for the ‘‘maximal’’
size of a polytope of robustly stable poly-
nomials. Simple and efficient numerical al-
gorithms are also given in [26] for calculat-
ing the maximal size.

Open Research Directions

In this section, three directions for future
research are presented.

Direction 1

An important class of open problems is the
multilinear case. This case assumes that the
characteristic function is given by Eq. (3),
where g; is multilinearly dependent on a set
of other parameters. To illustrate this case.
consider the following transfer function.
where the gain and poles are uncertain:

GH(s) = k 8

O ®

Then the characteristic polynomial has un-

certain parameters k, A;, and \,, which are

assumed to vary independently within cer-
tain intervals.

p(s,a) =8 + a;s + ay

S H N+ M)S + k+ NN
9

Unfortunately, no eflicient results cur-
rently exist for treating the general case of
multilinear parameter perturbations. Since
the multilinear case is encountered often in
applications, it represents a major barrier that
needs to be overcome through future re-
search on the parametric approach to robust
stability.

Direction 2

When the state-space approach is used for
modeling, the system uncertainties lead to
perturbations of the elements of the matrices
relating the state variables. the inputs. and
the outputs. Typically, the problem of robust
stability becomes that of the robust stability
of a polytope of matrices (i.e., convex com-
binations of finitely many matrices) or an
interval matrix (i.e., a matrix whose ele-
ments vary independently in given inter-
vals). This problem, however, is much more
complicated than the one of a polytope of
polynomials because the coefficients of the
characteristic function of the system are mul-
tivariable or, in special cases, multilinear
functions. Consequently, the results on the
polynomial counterpart no longer hold (see
[39] for some false conjectures and insights
into the difficulties). Nevertheless, there are
some useful sufficient robust stability con-
ditions available in the literature [34], [40]-
[48].

Direction 3

An interesting open area in which results
are just beginning to appear [26], [42], [45],
[48]-[50] is that of finding ‘‘maximal per-
turbation bounds’ --finding the maximal
value of a scaling factor for the set of un-
certain parameters such that robust stability
is preserved. The interest here is that, in con-



trast to cases where the perturbation bounds
are assumed known, we are attempting to
find the largest set of perturbations for which
the system remains robustly stable. This may
be of particular interest for the robust con-
troller synthesis problem, where design pa-
rameters need to be chosen. In [50], a closed-
form description is given for the maximal
perturbation bound of Hurwitz stable inter-
val polynomials. For the polytope of poly-
nomials defined in Eq. (9), a solution based
on the zero exclusion principle is given in
[26]. Although analytical results for more
general cases probably will be difficult to
obtain, computational methods offer a prom-
ising avenue of approach.

Remarks and Conclusions

The necessity of developing tools to deal
with uncertainty in control systems is now
widely recognized, and in the last five years
the parametric approach to robust stability
has been receiving increasing interest. If
knowledge of the system justifies assuming
independent or linearly dependent coefficient
perturbations in the characteristic function,
the theory underlying the parametric ap-
proach to robust stability is reasonably well
developed. Furthermore, conditions under
which Kharitonov-type results or edge re-
sults can be applied are now fairly clear. In
addition, the zero exclusion principle offers
a method of determining the maximal size
of the polytope of polynomials for which sta-
bility can be achieved. Thus, for a wide class
of systems, we believe the theory is suffi-
ciently well developed that work can begin
on developing efficient software to aid con-
trol engineers in incorporating the parametric
approach into their analysis and design tool-
boxes.

The major stumbling block to the exten-
sion of the parametric approach to a wider
class of systems is the lack of a theory for
treating multilinear and/or nonlinear cases.
Currently, the only results concern sufficient
conditions for limited cases. Undoubtedly,
this is the main area that begs for results,
and we feel that numerical approaches rep-
resent the most promising direction.

References

[1] A. Levis et al., **Challenges to Control: A
Collective View, Report of a Workshop
Held at the University of Santa Clara on
Sept. 18-19, 1986, IEEE Trans. Automat.
Contr., vol. AC-32, no. 4, pp. 275-285,
1987.

[2] D. D. Siljak, ‘‘Parameter Space Methods
for Robust Control Design: A Guided

131

14]

[6]

17]

(8]

19]

[10]

(]

112]

[13]

[14]

{15]

L16]

1171

[18]

Tour,”" School of Engineering, Santa Clara
Univ.. Tech. Rept. EECS-031588, Jan.
1988.

S. P. Bhattacharyya, Robust Stabilization
Against Structured Perturbations, Lecture
Notes in Control and Information Sciences.
vol. 99, New York, NY: Springer-Verlag,
1987.

1. Horowitz, Synthesis of Feedback Svs-
tems, New York, NY: Academic Press,
1963.

M. G. Safonov, Stability and Robustness of
Multivariable Feedback Systems, Cam-
bridge, MA: MIT Press, 1980.

D. D. Siljak, Nonlinear Systems: The Pa-
rameter Analysis and Design, New York,
NY: Wiley, 1969.

G. J. Thalerand R. G. Brown, Analysis and
Design of Feedback Control Systems, New
York, NY: McGraw-Hill, 1960.

P. Dorato, '*A Historical Review of Robust
Control,”” IEEE Contr. Syvst. Mag., vol. 7,
pp. 44-47. 1987.

J. C. Doyle and G. Stein, “*Multivariable
Feedback Design: Concepts for a Classical/
Modern Synthesis.”” IEEE Trans. Automat.
Contr., vol. AC-26. no. 1, pp. 4-16, 1981.
Q. Huang and R. Liu, "*A Necessary and
Sufficient Condition for Stability of a Per-
turbed System,”” [EEE Trans. Automat.
Contr., vol. AC-32, no. 4, pp. 337-340,
1987.

J. Ackermann and B. R. Barmish, **Robust
Shur Stability of a Polytope of Polyno-
mials,”” IEEE Trans. Automat. Contr., vol.
AC-33, no. 10, pp. 984-986, 1988.

V. L. Kharitonov, **Asymptotic Stability of
an Equilibrium Position of a Family of Sys-
tems of Linear Differential Equations, ™ Dif-
ferentsyalnye Uravnenya, vol. 14, no. 11,
pp. 1483-1485. 1978.

V. L. Kharitonov, **On a Generalization of
a Stability Criterion.”” Izv. Akad. Nauk. Ka-
zakh. SSR Ser. Fiz. Mat., vol. 1, pp. 53~
57, 1979 (in Russian).

Y. Bistritz, ‘*Stability Criterion for Contin-
uous-Time System Polynomials with Un-
certain Complex Coefhicients,”” IEEE Trans.
Circuits Syst., vol. 35, no. 4, pp. 442-448,
1988.

N. K. Bose. *A System-Theoretic Ap-
proach to Stability of Sets of Polynomials,””
Linear Algebra and Its Role in Systems The-
ory, Contemporary Mathematics, vol. 47,
Providence, RI: American Math Soc., pp.
25-34, 1985.

N. K. Bose and Y. Q. Shi, "*A Simple Gen-
eral Proof of Kharitonov's Generalized Sta-
bility Criterion,”" [EEE Trans. Circuits
Syst., vol. CAS-34, no. 8, pp. 1233-1237,
1987.

N. K. Bose and Y. Q. Shi, **Network Re-
alizability Theory Approach to Stability of
Complex Polynomials,”” IEEE Trans. Cir-
cuits Syst., vol. CAS-34, no. 2, pp. 216-
218, 1987.

K. S. Yeung and S. S. Wang, “"A Simple

[19]

120}

(21}

(22]

[23]

[24}

(25]

126]

{27)

(28]

{291

(301

131]

Proof of Kharitonov's Theorem,”’ JEEE
Trans. Automar. Contr., vol. AC-32, no.
9, pp. 822-823, 1987.

B. R. Barmish, **A Generalization of Khar-
itonov’s Four Polynomial Concept for Ro-
bust Stability Problems with Linearly De-
pendent Coefficient Perturbations,”” Proc.
1988 ACC, Atlanta, GA, pp. 1869-1875.
June 1988.

B. R. Barmish and P. P. Khargonekar,
“‘Robust Stability of Feedback Control Sys-
tems with Uncertain Parameters and Un-
modelled Dynamics,”” Proc. 1988 ACC.
Atlanta, GA, pp. 1857-1862, June 1988.
A. C. Bartlett, C. V. Hollot, and H. Lin.
“‘Root Locations of an Entire Polytope of
Polynomials: It Suffices to Check the
Edges,”” Proc. 1987 ACC, Minneapolis.
MN., pp. 1611-1616. June 1987: also.
Math. Contr. Signals Syst.. vol. 1, pp. 61-
71, 1987.

S. Bialas, “*A Necessary and Sufficient
Condition for the Stability of Convex Com-
binations of Stable Polynomials and Matri-
ces,”” Bull. Polish Acad. Sci., Tech. Sci.,
vol. 33, no. 9-10, pp. 473-480, 1985.

S. Bialas and J. Garloff, “*Convex Combi-
nations of Stable Polynomials,”” J. Franklin
Inst., vol. 319, no. 3, pp. 373-377, 1985.
J. Cieslik, "*On Possibilities of the Exten-
sion of Kharitonov's Stability Test for In-
terval Polynomials to the Discrete Time
Case,”" IEEE Trans. Automat. Contr., vol.
AC-32, no. 3, pp. 237-238, 1987.

R. R. E. de Gaston and M. G. Safonov,
“*Exact Calculation of Multiloop Stability
Margin,” IEEE Trans. Automat. Contr.,
vol. AC-33, no. 2, pp. 156-171, 1988.
M. Fu, **Polytopes of Polynomials with Ze-
ros in a Prescribed Region: New Criteria
and Algorithms,’" to appear in Robustness
in Identification and Control, M. Milanese,
R. Tempo, and A. Pecile, eds.; also pre-
sented at the International Workshop on Ro-
bustness in Identification and Control.
Turin, Italy, June 1988.

M. Fu and B. R. Barmish, “*Polytopes of
Polynomials with Zeros in a Prescribed
Set,”” Proc. 1988 ACC, Atlanta, GA, pp.
2461-2464, June 1988; also, to appear in
IEEE Trans. Automat. Contr.

M. Fu, A. W. Olbrot, and M. P. Polis.
“‘Robust Stability for Time-Delay Systems:
The Edge Theorem and Graphical Tests.™
to appear in /EEE Trans. Automat. Contr.
C. V. Hollot and A. C. Bartlett. **Some
Discrete-Time Counterparts to Kharito-
nov's Stability Criterion for Uncertain Sys-
tems,"* J[EEE Trans. Automat. Contr., vol.
AC-31. no. 4, pp. 355-356. 1986.

C. V. Hollot, D. P. Looze, and A. C.
Bartlett, **Unmodeled Dynamics: Perfor-
mance and Stability via Parameter Space
Methods,”” Proc. 26th IEEE CDC, pp.
2076-2081, 1987.

F. J. Kraus, M. Mansour, and B. D. O.
Anderson, **Robust Schur Polynomial Sta-

IEEE Control Systems Magazine



[32]

{33)

[36]

[37]

138]

[39]

[40]

[41]

142]

[43]

144}

[45]

bility and Kharitonov's Theorem,™” Proc.
26th IEEE CDC, Los Angeles. CA, pp.
2088-2095, Dec. 1987.

I. R. Petersen, **A Class of Stability Re-
gions for Which a Kharitonov-like Theorem
Holds,”" Proc. 26th IEEE CDC, Los An-
geles, CA, pp. 440-444, Dec. 1987.

I. R. Petersen, “‘A New Extension to Khar-
itonov's Theorem,’’ Proc. 26th IEEE CDC,
Los Angeles, CA, pp. 2070-2075, Dec.
1987.

K. M. Zhou and P. P. Khargonekar, *‘Sta-
bility Robustness Bounds for Linear State
Space Models with Structured Uncer-
tainty,’’ IEEE Trans. Automat. Contr. , vol,
AC-32, no. 7, pp. 621-623, 1987.

N. K. Bose, E. I. Jury, and E. Zeheb, *‘On
Robust Hurwitz and Schur Polynomials,™
Proc. 25th IEEE CDC, Athens, Greece, pp.
739-744, Dec. 1986.

A. C. Bartlett and C. V. Hollot, ‘A Nec-
essary and Sufficient Condition for Schur
Invariance and Generalized Stability of
Polytopes of Polynomials,”” IEEE Trans.
Automat. Contr., vol. AC-33. no. 6, pp.
577-578, 1988.

S. Dasgupta, P. J. Parker, B. D. O. An-
derson, F. J. Kraus, and M. Mansour,
“‘Frequency Domain Conditions for the Ro-
bust Stability of Linear and Nonlinear Dy-
namic Systems,’” Proc. 1988 ACC. At-
lanta. GA, pp. 1863-1868, June 1988.

A. Vicino, **Some Results on Robust Sta-
bility of Discrete Time Systems,” [EEE
Trans. Automat. Contr., vol. AC-33, no.
9, pp. 844-847, 1988.

B. R. Barmish, M. Fu, and S. Saleh, **Sta-
bility of a Polytope of Matrices: Counter-
cxamples,”" IEEE Trans. Automar. Conir.,
vol. AC-33, no. 6, pp. 569-571, 1988.

R. Byers, ‘A Bisection Method for Mea-
suring the Distance of a Stable Matrix to the
Unstable Matrices."” to appear in SIAM J.
Scientific and Statistical Computing.

J. A. Heinen, *‘Sufficient Conditions for
Stability of Interval Matrices,”” /Intl. J.
Contr., vol. 39, no. 6, pp. 1323-1328,
1984.

D. Hinrichsen and A. J. Pritchard, ‘‘Sta-
bility Radii of Linear Systems,”” Svysr.
Contr. Lent., vol. 7, no. 1, pp. 1-10, 1986.
W. H. Lee, ‘‘Robustness Analysis for State
Space Models, "’ Alphatech, Inc., Rept. TP-
151, 1982.

R. V. Patel and M. Toda, ‘‘Quantitative
Measures of Robustness for a Multivariable
System,”” Proc. JACC, San Francisco, CA,
Paper TP8-A, 1980.

L. Qui and E. J. Davison, ‘‘New Pertur-
bation Bounds for the Robustness Stability
of Linear State Space Models,"" Proc. 25th

August 1989

IEEE CDC, Athens, Greece, pp. 751-755,
1986.

[46] L. X. Xin, **Stability of Interval Matrices,"’
Intl. J. Contr., vol. 45, pp. 203-214, 1987.

[47] D. Y. Xu, **Simple Criteria for Stability of
Interval Matrices,"” Intl. J. Contr., vol. 41,
no. |, pp. 289-295, 1985.

[48] R. K. Yedavalli and Z. Liang, *‘Reduced
Conservatism in  Stability Robustness
Bounds by State Transformation,”” [EEE
Trans. Automat. Contr., vol. AC-31, pp.
863-866. 1986.

[49] B. R. Barmish, ‘‘Invariance of the Strict
Hurwitz Property for Polynomials with Per-
turbed Coefficients,”” IEEE Trans. Auto-
mat. Contr., vol. AC-29, no. 10, pp. 935-
936, 1984.

[50] M. Fu and B. R. Barmish, ‘*‘Maximal Uni-
directional Perturbation Bounds for Stability
of Polynomials and Matrices,’” Svst. Contr.
Lett., vol. 11, pp. 173-179, 1988.

[51] R. M. Biemacki, H. Hwang, and S. P.
Bhattacharyya, ‘‘Robust Stability with
Structured Parameter Perturbations,”” IEEE
Trans. Awtomat. Conir., vol. AC-32, pp.
495-506, 1987.

{52] C.B. Soh, C. S. Berger, and K. P. Dabke,
*‘On the Stability Properties of Polynomials
with Perturbed Coefficients,”” IEEE Trans.
Automat. Contr., vol. AC-30, pp. 1033-
1036, 1985.

Minyue Fu was born in
Zhejiang, China, in 1958.
From 1978 to 1982, he at-
tended the China Univer-
sity of Science and Tech-
nology, Hefei, China,
and, in 1982, received the
bachelor’s degree in elec-
trical engineering. He was
awarded the Moro Guo's
Scholarship for his out-
standing  undergraduate
study in China in 1981. He entered the University
of Wisconsin-Madison in 1982 and received the
M.S. and Ph.D. degrees in electrical engineering
in 1983 and 1987, respectively. From 1983 to
1987, he held teaching and research assistantships
at the University of Wisconsin-Madison. Cur-
rently, he is a Visiting Assistant Professor in the
Department of Electrical and Computer Engineer-
ing, Wayne State University, Detroit, Michigan.
His main research interests include robust control,
adaptive control, signal processing, microproces-
sor-based systems, and computer algorithms.

Andrzej W. Olbrot re-
ceived the master’s de-
gree in electronics in
1970, the doctorate de-
gree in control in 1973,
and the habilitation de-
gree in 1977, all from
Politechnika Warszaws-
ka, Warsaw, Poland. His
appointments include:
1988-present, ECE De-
partment, Wayne State
University (Visiting Professor): 1970-1987. In-
stitute of Automatic Control, Politechnika War-
szawska (1970-1973, Teaching Assistant; 1973-
1974, Assistant Professor; 1974-1978, Associate
Professor; 1978-1987, Professor); summer 1977,
C.R.M., University of Montreal (researcher); and
1979-1980, Electrical Engineering Department,
University of Minnesota (Visiting Professor). He
is an Associate Editor for the IEEE Transactions
on Automatic Control and a member of the IFAC
Working Group on Robust Control. His main re-
search interests are robust control, systems with
time delays and of infinite dimension, ring-theo-
retic approaches, optimal minimax observers, bi-
linear and nonlinear control. frequency-domain
approaches, adaptivity, periodic controllers, com-
puter-aided design. and control in robotics. He has
published over 40 papers in refereed international
journals.

Michael P. Polis received
the B.S.E.E. degree from
the University of Florida,
Gainesville, in 1966, and
the M.S.E.E. and Ph.D.
degrees from Purdue Uni-
versity. West Lafayette,
Indiana. in 1968 and
1972, respectively. In
1987, he joined the De-
partment of Electrical and
Computer Engineering at
Wayne State University as Professor and Chair-
man. From 1983 to 1987, he was Program Direc-
tor for Systems Theory and Operations Research
at the National Science Foundation, Washington.
D.C. From 1972 to 1986, he was on the faculty
of the Department of Electrical Engineering at
Ecole Polytechnique de Montreal. He has served
as a consultant for several organizations, including
Sidbec Dosco, Montreal, and the Montreal Met-
ropolitan Transit Burecau. He is an Associate Ed-
itor at Large for the JEEE Transactions on Auto-
matic Control. His research interests include
identification and control of distributed parameter
systems, robust control, computer-aided design.
and transportation systems.



