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Abstract—It is a classical result of linear prediction theory that
as long as the minimum prediction error variance is nonzero, the
transfer function of the optimum linear prediction error filter for
a stationary process is minimum phase, and therefore, its inverse
is exponentially stable. Here, extensions of this result to the case
of nonstationary processes are investigated. In that context, the
filter becomes time varying, and the concept of “transfer function”
ceases to make sense. Nevertheless, we prove that under mild condi-
tion on the input process, the inverse system remains exponentially
stable. We also consider filters obtained in a deterministic frame-
work and show that if the time-varying coefficients of the predictor
are computed by means of the recursive weighted least squares al-
gorithm, then its inverse remains exponentially stable under a sim-
ilar set of conditions.

I. INTRODUCTION

T HIS PAPER considers the exponential asymptotic sta-
bility (e.a.s.) of inverse linear predictors for zero-mean

nonstationary processes with both known and unknown second
order statistics. We explain the underlying ideas by first refer-
ring to the better understood case of stationary processes when
the input statistics are known (the “given covariance” case).
For such a process , many signal processing techniques are
based on predicting the current value by a linear combination
of the previous measurements. The corresponding forward
prediction error is given by

(1)

The coefficients are generally obtained to minimize the
mean squared error and are uniquely determined by
the second-order statistics of .

The linear predictor has found many applications [12], [13].
For example, in differential pulse code modulation (DPCM), it
is used to reduce the quantization noise in an encoded signal
[5]. In the linear predictive coding (LPC) scheme of speech anal-
ysis/synthesis, it is used to reconstruct the speech waveform [9].
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Fig. 1. Lattice implementation of the prediction error filter for stationary input
(All-zero lattice).

In seismic signal processing, it is used for deconvolution [14].
Other applications include spectral estimation [7], adaptive fil-
tering [4], and high precision analog to digital converters.

The classical solution to the problem (1) is through the cel-
ebrated Levinson–Durbin recursions [8], [12], [13], which si-
multaneously find both the optimal forward predictor and the
optimal backward linear predictor

(2)

that minimizes , being the backward prediction
error. Due to the stationarity of , it turns out that

, . Moreover, the polynomial transfer function
from to is minimum

phase (i.e., all its roots lie strictly inside the unit circle) if the
minimized value is strictly positive [8].

A side benefit of the Levinson–Durbin recursions is that a set
of parameters , , which are known as reflection co-
efficients, are obtained. These can be used to implement the pre-
dictor in lattice form as shown in Fig. 1, where each and

represents the corresponding optimal signal. This struc-
ture presents several advantages over the direct-form implemen-
tation of the difference equation (1), such as higher performance
under similar hardware constraints, orthogonality of its internal
signals, and high modularity (the lattice predictor of order
effectively includes in its structure all predictors of order less
than as well). The minimum-phase property of the forward
predictor is equivalent to having , , [8].

In many applications, such as LPC speech processing, one
transmits/stores only and either the reflection coefficents
or the direct-form coefficients [5]. The original signal is then
asymptotically recovered by implementing the inverse filter ei-
ther in direct form or in the lattice form of Fig. 2. In either case,
the stability of the inverse predictor becomes a crucial issue.
Due to the minimum-phase property, this inverse system is ex-
ponentially stable.
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Fig. 2. Lattice implementation of the inverse of the prediction error filter for
stationary input (All-pole lattice).

In most real-life problems, however, the process is
nonstationary. As the statistics of change, so do the the pre-
dictor coefficients, leading to a linear time-varying filter. The
question that immediately arises is whether the corresponding
time-varying inverse system remains exponentially stable.
Some approaches try to force stability by checking whether the
“frozen” prediction filters obtained along the way are minimum
phase and projecting the unstable roots into the stability region
if necessary [11]. However, stability of a time-varying system
does not, in general, admit a tractable characterization in terms
of the poles of the frozen transfer functions. For example, if the
reflection coefficients of the recursive filter in Fig. 2 change
over time, this time-varying system cannot be guaranteed to be
stable, even if the coefficients remain magnitude bounded by
one at all times [2].

We explore the stability of time-varying inverse predictors
under two settings. In the first, we assume the availability of the
time-varying second-order statistics of and provide suffi-
cient conditions under which the time-varying inverse predictor,
which is obtained by the sample by sample minimization of the
prediction error variance, is e.a.s. Both direct-form and lattice
implementations are studied.

The second setting addresses the practical situation where
the statistics of are unknown, and the predictor coefficients
are obtained by solving a weighted least squares minimization
problem with each new data sample (the “given data”
case). This can be done efficiently by using the recursive
weighted least squares algorithm (RWLS). Again, sufficient
conditions under which the time-varying inverse predictor
remains e.a.s. are presented.

In both cases, the conditions for e.a.s. are particularly mild
and parallel the conditions underlying the nonzero minimum
prediction error variance condition characterizing the stationary
case. The emphasis in this paper on proving exponential asymp-
totic, as opposed to mere asymptotic stability, is motivated by
robustness issues. Exponentially asymptotically stable systems
tolerate modest implementational inaccuracies; asymptotically
stable systems, in general, do not [10].

Section II examines the optimum predictor for nonstationary
processes in the “given covariance” case. Sections III and IV in
turn address the two settings described above. Conclusions are
in Section V.

II. PRELIMINARIES

In this section, we provide the initial machinery to set up
the part of the problem that concerns optimal prediction in the
“given covariance” case. This includes a review of the general
form of the prediction error filter, the state-space representations

of the inverse filter, the assumptions underlying the pertinent
stability analysis, and a discussion on the concept of perfect pre-
dictability.

A. General Form of the Predictor

We examine now the structure and properties of the predic-
tion filters in the general case. Let be a zero-mean (non-
stationary) process with autocorrelation coefficients

, and let the parameters , mini-
mize , , respectively, where

(3)

(4)

In addition, let and be the minimized values of
and , respectively.

By the orthogonality principle, it is readily seen that the pre-
diction errors must satisfy for all

(5)

(6)

From this, upon defining the autocorrelation matrix

...
...

.. .
...

(7)

and the coefficient vectors

(8)

(9)

it follows that the predictor coefficients are the solutions to the
following time-dependent normal equations

...
(10)

...
(11)

Equations (3)–(5) yield the following expressions for
and :

(12)

(13)

The extended Levinson–Durbin recursions [12], which we re-
view next, still provide a means to solving for the th-order
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Fig. 3. Time-varying, asymmetric lattice implementation of the prediction
error filter for nonstationary input.

predictors, given those of order. To this end, with the conven-
tion , define the cross-correlation coeffi-
cient

(14)

and, for , the reflection coefficients

if

if
(15)

if

if .
(16)

Then, one has , and for

(17)

(18)

Therefore, for , the prediction errors obey

(19)

(20)

which show how the prediction error filters admit a time-varying
lattice realization, as shown in Fig. 3. Note that this lattice struc-
ture is, in general, asymmetric, i.e., , by contrast
to the stationary case. Observe also that now, , need
not be bounded in magnitude by one individually. Rather, by
using (14) and the Cauchy-Schwarz inequality, we have

(21)

Then, it follows from (15) and (16) that for
all and for all . This, of course, reduces in the stationary
case to the well-known property .

B. Inverse Filter

As in the stationary case, the inverse forward predictor can
be implemented by direct realization of the input–output time-
varying difference equation

(22)

where and are the input and output signals, respec-
tively. Alternatively, one could use the recursive lattice structure
depicted in Fig. 4. The state-space equations of the direct-form
inverse filter are

(23)

(24)

Fig. 4. Time-varying, asymmetric lattice implementation of the inverse of the
prediction error filter for nonstationary input.

where the matrices , and are given by

...
...

...
...

...

(25)

(26)

(27)

The state vector is given by

Let be the matrix with elements given by

(28)

and also define

(29)

(30)

one can show that the state-space equations for the lattice inverse
filter are

(31)

(32)

Here, theth element of is simply the output of the
th delay element in Fig. 4. Then, it is readily seen by choosing

as and by reversing the recursions (19) and (20) that

Thus, from the fact that when then ,
one has from (3) and (4) that

(33)

where is a lower triangular matrix given by

...
...

...
. . .

...

(34)
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It follows that

(35)

(36)

(37)

which give the relations between the direct-form and the lat-
tice-form state-space representations.

C. Assumptions

In this subsection, we motivate and state the standing assump-
tions for Section III. The minimum requirement for stability
is that the coefficients be bounded. Since these are solu-
tions to the normal equations (10), it is clear that the assumption
below on suffices for their boundedness.

Assumption 1:Consider defined in (7). Then, the
matrix sequence is uniformly positive definite (u.p.d.),
i.e., there exist positive constants, such that

for all (38)

This requires some elaboration. In the stationary case,
is constant, and therefore , it is either singular or nonsingular
for all time . Its singularity will simply imply the existence of
a perfect th-order predictor for (see also the next subsec-
tion), which may well be bounded. However, in that case, the
forward predictor will have zeros on the unit circle, precluding
the exponential stability of the inverse filter.

In the nonstationary case, however, there is the added pos-
sibility of either becoming occasionally singular or its
smallest eigenvalue going to zero asymptotically. In such a case,
we argue that the predictor coefficients may be unbounded. In-
deed, consider the case . Then

While , it is not true, in general, that
. Now, suppose that for all but that

even
odd.

Then, it is readily seen that for even , and
therefore, it becomes unbounded. Thus, even though is
nonsingular at all and bounded, an unbounded results.
An assumption such as Assumption 1 is needed to ensure a
bounded predictor. Observe that this assumption does not force

, which is needed later, to be u.p.d.

D. Perfect Predictability

Recall that in the stationary case, one needs
in order to have all the roots of

strictly inside the unit circle
[8]. If , then at least one root lies on the unit circle,
and at least one reflection coefficient has magnitude one. In
that case, the inverse filter is not e.a.s. Note that is
possible only if the -dimensional autocorrelation matrix
is singular. In view of this, it seems reasonable to expect that
in the nonstationary case, some conditions should be imposed
on (or ) in order to have e.a.s. The difficulty
that arises is that these quantities are no longer constant: The

forward prediction error variance can occasionally become
zero, even though it may be positive at other times. Now,
moreover, in general, which suggests that
one may become zero even while the other does not. Next, we
present some properties that illustrate this perfect predictability
problem. First, a formal definition is needed.

Definition 1: The process is forward (resp. backward)
perfectly predictable of order at time if (resp.

).
Observe from (7), (12), and (13) that

(39)

(40)

Then, or implies singular
(the converse is not true though). Therefore, if the matrix se-
quence is u.p.d., then , for
all , and perfect predictability of order cannot occur.

In fact, for the first stage that achieves perfect prediction, the
following property holds (a proof is given in the Appendix).

Property 1: Consider the sequences , , ,
defined in (12)–(16), respectively. Under Assumption 1

the following statements are equivalent.

1) .
2) .
3) .

Therefore, forward and backward perfect predictability are
equivalent. In the next section, we present sufficient conditions
for the e.a.s. of the inverse system. It turns out that these
conditions indeed involve the frequency with which the process

becomes perfectly predictable.

III. STABILITY OF THE INVERSEFILTER

Recall the definition of e.a.s. for time-varying systems.
Definition 2: The linear time-varying system

is e.a.s. if there exist and such that
for every and every bounded initial condition ,
the resulting state vector sequence satisfies the exponential
bound

for all

We will also use the concept of uniform stabilizability of a
pair , . The definition is rather technical and can be
found in [1]. Loosely speaking, uniform stabilizability of ,

reduces to saying that in the system

the state trajectories that cannot be controlled from the input
must be exponentially decaying, and vice versa. It was shown in
[1] that uniform stabilizability is equivalent to the ability to sta-
bilize the system by means of state feedback (hence, its name).
Since this is the property of interest here, we shall use the fol-
lowing definition.

Definition 3: The pair , is uniformly stabilizable
if there exists a bounded gain sequence such that the system

is e.a.s.
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We are now in position to study the stability of the inverse
predictor. Consider first the direct-form implementation of (23)
and (24). The key observation is stated next.

Lemma 1: The pair , defined in (7) and (12) sat-
isfies the following time-varying equation for all:

(41)

where and are given in (7), (12), respectively.
Proof: Define as the unit vector with 1 in theth

location, and let

i.e., is the , element of the left-hand side of (41). Then,
from (7), (10), and (12), we immediately have

...

For , from (7), (10), and (25), one has

...

Finally, for , from (7) and (25)

Note that unless . This,
together with the symmetry of the matrices in (41), proves the
result.

Note that (41) resembles a Lyapunov equation [1]. This fact
will be used in the Appendix to prove the following main result
of this section.

Theorem 1: Under Assumption 1, the system (23) is e.a.s. if
there exists an integer and a constant such that for all

, there exists satisfying the following.

1) .
2) .
3) for .
The conditions in Theorem 1 impose in a sense a limitation on

“how often” the process may become perfectly predictable.
They boil down to saying that in any time window of a fixed
size , there should be consecutive time instants in which
the forward prediction error variance is bounded away from zero
(recall that is the order of the system). These conditions are
satisfied if, for example, is u.p.d. and are a natural
extension to the standard stability condition for the stationary
case.

Next, we present two examples that should clarify the role of
the conditions in Theorem 1.

Example 1: Here, we show that the conditions in Theorem 1
are not necessary, in general. Consider the process, which
is defined as follows:

if mod
else

where is a zero-mean, unit-variance white process. Now,
observe that

if mod
else.

Further, for mod , one has . Thus, from
(10), the optimum forward prediction error of order is

if mod
else.

(42)

The corresponding minimum variance is

if mod
else.

The prediction error filter is periodically time varying with
period 3. Accordingly, the inverse filter is e.a.s. iff all the
eigenvalues of the state transition matrix
have magnitude strictly less than one. From (42), we have

Thus, is the zero matrix, and the inverse filter
is e.a.s. Note, however, that during any three consecutive time
instants, becomes zero once so that the conditions of The-
orem 1 do not hold. This shows that these conditions, although
sufficient, need not be necessary for e.a.s.

Example 2: Let ; consider now the process ,
which is defined as

if mod
else

(43)

where again, is a zero-mean, unit-variance white process.
Now, observe that

if mod
else.

Further, for mod , one has . Thus, from
(10), the optimum forward prediction error of order is

if mod
else

and the corresponding variance is

if mod
else.

Again, the prediction error filter is periodically time varying
only now with period . Further, now

...
...

...
...

...
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and

...
...

.. .
. . .

...

Note that is simply a shift matrix, i.e., for any

Thus

...
...

...
...

and the state transition matrix reduces to

diag

Hence, the inverse system is not e.a.s. since is an eigen-
value. Observe that again, the conditions of Theorem 1 are vio-
lated since during any consecutive time instants, must
become zero once. Note thatcan be arbitrarily large. This ex-
ample illustrates how the violation of the conditions of Theorem
1 may cause instability.

Consider now the lattice form of the inverse predictor, given
by (31) and (32). As shown by (35), the feedback matrices of
the lattice and direct forms are related through the matrix se-
quence given in (34). Under Assumption 1, the elements
of are bounded from above since they satisfy the normal
equations (11). Therefore, is bounded, which im-
plies that e.a.s. of the direct-form inverse is equivalent to e.a.s. of
the lattice-form inverse. Nevertheless, it is instructive to present
the analog of (41) for the lattice form.

By the orthogonality conditions (6), the random variables
, are mutually orthogonal. Then

...

diag (44)

Note from (33) that the matrix sequence satisfies

(45)

Premultiplying in (41) by , postmultiplying by
, and using (35) and (36) and (45), one obtains the

following Lyapunov-like equation for the lattice structure:

(46)

for all . This could have been used to directly show the e.a.s.
of the lattice structure using the same technique as in the proof
of Theorem 1. It is appealing, though not entirely surprising,
that the Lyapunov matrices featuring in the stability analysis of
the direct and lattice realizations are the autocorrelation matrix
and a diagonal matrix, respectively. Such is also the case for
stationary .

IV. STABILITY OF THE RWLS INVERSEFILTER

In this section, we analyze the “given data” case, in which
the statistics of the input process are unknown, and one attempts
to obtain the filter that is optimum in a weighted least squares
(WLS) sense based on the observed data. In the nonrecursive
WLS scheme known as the autocorrelation method, a time-in-
variant prediction error filter is obtained from afinite data reg-
ister and is minimum phase [4] as long as the minimum value
of the underlying cost function is nonzero. However, in recur-
sive implementations, the input data sequence need not be finite
in principle, and the optimum filter is updated on a sample-by-
sample basis. The inverse system again becomes time varying,
rendering its stability analysis nontrivial.

If the samples are available, then one seeks the
coefficients that minimize

(47)

where is a forgetting factor. The data are prewin-
dowed according to , . As increases, this
sequence of problems can be efficiently solved by the recur-
sive weighted least squares (RWLS) algorithm [4], [17], [18],
which computes the optimum coefficients at timefrom those
at time . We will consider the RWLS algorithm with soft
constrained initialization (see [4, Tab. 13.1]). This starting pro-
cedure is commonly used in practice; it sets the initial value
of the inverse of an autocorrelation matrix defined below at

with . Due to this initialization,
which is used to avoid a singular autocorrelation matrix, the co-
efficients obtained by the RWLS algorithm minimize the cost
function

(48)

rather than (47) [17].
In this deterministic framework, the autocorrelation coeffi-

cients are defined as

(49)

where we assume that for all . The
deterministic autocorrelation matrix is defined
to bear the same relationship to as does
to in (7). If, in addition, we introduce the vector

, then the coefficients
recursively computed by

the RWLS algorithm satisfy the following modified normal
equations:

(50)

with

(51)
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A typical assumption made on the deterministic autocorrelation
matrix is the condition of persistent excitation (p.e.);
see [6].

Assumption 2:The matrix sequence is u.p.d. for all
.

Since one assumes for all [17], one cannot
have positive definite. In fact

(52)

with . Thus, in
Assumption 2 must exceed . In addition, observe from
(52) that this ensures that is u.p.d. for all .

Therefore, the provided by (50) obeys for all and
for some

(53)

Note also that Assumption 2 holds iff there exist positive,
and integer such that for all

(54)

(see [3]). We wish to show that the system

(55)

is e.a.s., with defined as in (25). Consider now instead
the vector defined by

for all (56)

and the corresponding system

for all (57)

where with , the matrix
is given by

...
...

.. .
...

...

(58)

The following lemma establishes the relationship between the
e.a.s. of (57) and that of (55).

Lemma 2: Consider (57) under (56) and (58) and (55) under
(25), (50), and (51). Suppose Assumption 2 holds and that (57)
is e.a.s. for all , i.e., there exist and such
that for all , and

(59)

Then, (55) is e.a.s. for all .
Proof: Because of (50), (51), and (56)

Because of (54) (which also ensures the boundedness of)
and Assumption 2, there existssuch that for all ,

. Thus

for all

for some constant . Thus, if (57) is e.a.s. for all ,
then so is (55) under (25) and (50), [19]. Further, since
is bounded, this proves that (55) under (25) and (50) is e.a.s. for
all .

Thus, instead of directly proving that (55) is e.a.s. under (50),
it suffices to consider (56)–(58) for all . Observe that the
value of (47) under (56) is

Further, as in Section III, one has

Noting the correspondence between this equation and (41), one
arrives at the result below, where now, plays the role of

in Section III.
Theorem 2: Suppose that Assumption 2 holds,

, and there exist an integerand a constant such that
for all , there exists satisfying the following.

1) .
2) .
3) for .

Then, the inverse prediction error filter (23) with coefficients
obtained by the RWLS algorithm is e.a.s.

Although we have considered here the transversal filter
computed by the standard RWLS algorithm, these stability
results also apply well to least-squares filters obtained by
order recursive algorithms, in view of the equivalence of the
direct-form and the lattice implementations of the inverse
system. For example, several lattice LS algorithms in the
literature can be shown to be equivalent to the QR decompo-
sition-based least squares lattice (QRD-LSL) algorithm [17],
[18]. The QRD-LSL algorithm with zero initialization of the
state variables produces a filter that minimizes at everythe
cost function (47) [18]. Therefore, our approach readily applies
to those algorithms as well.

V. CONCLUSIONS

We have examined the stability properties of time-varying in-
verse prediction error filters. Our analysis provides sufficient
conditions on the nonstationary input sequence for exponential
asymptotic stability of these systems (in both, the “given covari-
ance” and the “given data” cases and, for both, the direct-form
and lattice structures. The key condition in both cases is that the
input sequence should not become perfectly predictable (i.e.,
yield an arbitrarily small prediction error variance) arbitrarily
often. These properties are natural extensions of the minimum-
phase character of the time-invariant prediction error filters ob-
tained in the given covariance case for stationary processes and
in the given data case when the coefficients are obtained from
a pre- and post-windowed finite data register (autocorrelation
method).

As a future line of research, it would seem worthwhile to ex-
plore the connections of the results here presented to the work
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of Sayedet al. [15], [16], where the properties of displacement
equations similar to (41) and (46), and their connections to in-
terpolation problems, are investigated.

APPENDIX

A. Proof of Property 1

First, observe that from the direct evaluation of ,
using (14)–(16) and (19) and (20), one finds that for

(60)

(61)

Now, suppose that . Then

Hence

The last step is valid since u.p.d. implies ,
for all . Given the definition (15) of , it

follows that , and there-
fore, from (15) and (16)

Now, using the definition (18) of and the fact that
, from (61)

The implication
is similarly proved.

B. Proof of Theorem 1

Let . By the duality theorem [1], the
system is e.a.s. if and only if
the system is e.a.s.; define now

and .
Then, (41) becomes

(62)

which is a time-varying Lyapunov equation. Accordingly, the
extended lemma of Lyapunov [1] guarantees exponential sta-
bility of provided that we have the fol-
lowing.

1) The sequence matrix is bounded and positive
semidefinite.

2) , are bounded.
3) The pair is uniformly stabilizable.
Condition 1 is a consequence of Assumption 2. Condition 2

follows from (39) and the fact that u.p.d. implies the
boundedness of the ’s. Therefore, it remains to be shown

that the pair is uniformly stabilizable. To do
so, introduce the following gain sequence:

if
if

Observe that is bounded. We claim now that the system
is e.a.s., where

To see this, let be the shift matrix with ones in the first
subdiagonal and zeros elsewhere. Since all the eigenvalues of
this matrix are zero, one has from the Cayley–Hamilton
theorem. It is clear that

if
if

Now, let , be the state transition matrix of the
system , i.e.

if
if

Then, for .
Since for any there exists an obeying the conditions of

the theorem, one has

Then, for all , one has

because . Therefore, any state trajectory of
becomes zero after at mosttime instants, showing

that the system is e.a.s. and that the pair is
uniformly stabilizable. This concludes the proof.
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