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Collaborative target tracking in WSNs using
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Abstract: Target tracking using wireless sensor networks requires efficient collaboration among sensors to tradeoff
between energy consumption and tracking accuracy. This paper presents a collaborative target tracking approach in wire-
less sensor networks using the combination of maximum likelihood estimation and the Kalman filter. The cluster leader
converts the received nonlinear distance measurements into linear observation model and approximates the covariance of
the converted measurement noise using maximum likelihood estimation, then applies Kalman filter to recursively update
the target state estimate using the converted measurements. Finally, a measure based on the Fisher information matrix of
maximum likelihood estimation is used by the leader to select the most informative sensors as a new tracking cluster for
further tracking. The advantages of the proposed collaborative tracking approach are demonstrated via simulation results.
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1 Introduction

Recent advances in microelectromechanical systems
(MEMS), wireless communications, and embedded micro-
processor technologies have made possible the massive pro-
duction of inexpensive and low-power sensors which are in-
tegrated with sensing, data processing, and communicating
components. A wireless sensor network is composed of a
large number of such tiny sensors that are randomly and
densely deployed in the surveillance area and form a mul-
tihop ad-hoc network system through wireless communica-
tion [1]. These networked sensors collaboratively sense the
event of interest, process the sensed data, and provide re-
sultant information about the monitored events for a large
number of potential military and civil applications, ranging
from battlefield monitoring and environmental surveillance
to health care [2]. In typical wireless sensor network ap-
plications, each sensor is usually powered by batteries with
limited energy supply. Furthermore, it is impossible and im-
practical to replace or replenish the batteries on these sen-
sors in many applications. A particular challenging prob-
lem in wireless sensor network applications is to develop
an energy-efficient information processing approach to pro-
long the lifetime of the network. The paper is mainly con-
cerned with selection of a subset of sensors for target track-
ing in wireless sensor networks.

While the tracking result is most accurate when all sen-
sors can communicate their measurements to the leader in a
cluster-based target tracking approach, it is usually better to

select only a subset of available sensors to track the target in
order to conserve the energy consumption for the network.
The problem of sensor selection for target tracking in wire-
less sensor networks have received considerable attentions
in the recent literatures [3–8]. In [3], Kaplan presented a
global sensor selection approach which is integrated with a
decentralized bearing-only extended Kalman filter (EKF)-
tracker and minimizes the expected filtered mean squared
(MS) position error. Furthermore, Kaplan [4] presented an
autonomous node selection (ANS) approach which uses
only local knowledge of sensor node localization. Zhao et
al. [5–6] proposed a leader-based tracking scheme, in which
a sensor that can provide the most information is elected
by the previous leader as a new leader to estimate the cur-
rent location of the target, and different information util-
ity measures, e.g., entropy, Mahalanobis distance, expected
posterior distribution, are also given in this paper. Xiao et
al. [7–8] proposed adaptive multisensor scheduling scheme
combined with the EKF estimator for target tracking in
WSNs to reach a balance between tracking accuracy and
energy consumption. In these works, the EKFs have been
proposed to estimate the target state (which typically con-
sists of the position and velocity of the target), and the cor-
responding covariance matrix of the state estimate error is
further utilized to schedule sensors for energy efficiency.

The EKF algorithms are derived through first linearizing
the nonlinear state and measurement equations around the
current estimated state and one-step-ahead predicted state,
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respectively, and then applying the standard Kalman filter to
the linearized system [9–10]. However, a significant draw-
back of the EKF algorithms is that the resulting state es-
timate may seriously diverge from the actual state [11] in
many applications. In target tracking applications, target dy-
namics are usually linearly modeled in the Cartesian coor-
dinates, while the measurements are nonlinear functions in
the target state. In these cases, to overcome the drawback
of EKF, many measurement conversion methods have been
proposed to transform the nonlinear measurement models
into linear ones and simultaneously estimate the covariances
of the converted measurement noises before applying the
standard Kalman filter [9, 12–13]. Significantly improved
accuracy and consistency have been achieved using these
conversion methods.

In [14], we have presented a target tracking approach
based on the combination of maximum likelihood estima-
tion and Kalman filtering. In [15], we further presented a
collaborative target tracking algorithm based on this com-
bination. In this paper, we present the collaborative target
tracking approach in wireless sensor networks by integrat-
ing the maximum likelihood estimation and the Kalman fil-
ter with the sensor selection method, and compare our pre-
sented collaborative tracking approach with other tracking
approaches through simulations.

When a target moves through the monitored region, only
one cluster of sensors is triggered to monitor and track the
target at every time instant. After receiving all the measure-
ments from the cluster members, the leader performs the
following processing procedures. First, the maximum likeli-
hood estimation method is proposed to convert the received
nonlinear measurements with the same timestamp into a lin-
ear observation model in the target state and approximately
evaluate the covariance matrix of the converted measure-
ment noise. This method is based on the triangulation idea,
commonly used in global positioning systems (GPS), re-
cently extended to sensor and target localization [16–19] in
wireless sensor networks. Then, the converted measurement
and the corresponding noise covariance matrix are used in
a standard Kalman filter to recursively update the target
state estimate. Finally, an information measure based on
the expected Fisher information matrix of the above max-
imum likelihood estimation is used to choose the most in-
formative sensors for the next tracking, which will improve
tracking accuracy while maintaining an acceptable energy
consumption. We demonstrate via simulation results that
the proposed sensor selection approach can achieve signifi-
cant tracking accuracy compared to two EKF-based collab-
orative tracking approaches with different sensor selection
methods. The main contributions of this paper is a sensor
selection measure based on the Fisher information matrix
of the maximum likelihood estimation for our previously
proposed target tracking approach.

The remainder of the paper is organized as follows. The
target motion model, sensor measurement model and prob-
lem formulation are given in Section 2. The proposed col-
laborative target tracking method is detailed in Section 3.
Simulation results are reported in Section 4. Conclusions
are reached in Section 5.

2 System models and problem formulation

For simplicity, we only consider the problem of tracking
a single target moving in a two-dimensional field monitored
by a wireless sensor network in this paper. We first give a
widely adopted nearly-constant-velocity (CV) target motion
model, and then present a sensor measurement model with
additive Gaussian noise. Finally, we present problem for-
mulation for target tracking in wireless sensor networks.
2.1 Target motion model

When a target moves across a two-dimensional field cov-
ered by a wireless sensor network, the state of the target is
usually described by its position and velocity in the X-Y
plane,

xk = [x(k) y(k) vx(k) vy(k) ]T,

where x(k) and y(k) are the position coordinates of the tar-
get along X- and Y -axes at time instant tk, respectively, and
vx(k) and vy(k) are the velocities of the target along X- and
Y -directions at time instant tk, respectively. The following
CV model [9] is adopted to represent the motion of the tar-
get:

xk+1 = Fkxk + Gkwk, (1)
where

Fk =

⎡
⎢⎢⎢⎣

1 0 Δtk 0
0 1 0 Δtk
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ , Gk =

⎡
⎢⎢⎢⎣

Δt2k/2 0
0 Δt2k/2

Δtk 0
0 Δtk

⎤
⎥⎥⎥⎦ .

In the above equations, Δtk = tk+1 − tk is the sampling
time interval between two successive measurement time in-
stants tk+1 and tk, wk = [wx wy ]T is a white Gaussian
noise sequence with zero mean and covariance matrix Qw,
and wx and wy correspond to noisy accelerations along the
X- and Y -axes, respectively.
2.2 Measurement model

We assume that all sensors in the network are of the same
type and have different noisy statistics for their different dis-
tances to the target. Denote by zi(k) the distance measure-
ment to the target obtained by sensor i at time tk. To sim-
plify our notation, the dependence on time tk is suppressed
in the sequel, e.g., zi(k) is simplified to be zi.

Let ri be the true distance between sensor i and the target,
then ri is described as the following equation:

ri =
√

(x − xi)2 + (y − yi)2,
where (xi, yi) is the known location of sensor i, and (x, y)
is the unknown position of the moving target at time instant
tk. The measurement model is represented in the following
form of additive noise:

zi = ri + ni, i = 1, . . . , N, (2)
where ni is the additive Gaussian noise of sensor i with
zero-mean and variance σ2

i , and N is the number of sensors
tasked at time instant tk.

According to equation (2), the conditional probability
density function of the measurement zi, given (x, y), is writ-
ten as follows:

p(zi|x, y) =
1√

2πσi

exp
{
− (zi − ri)2

2σ2
i

}
. (3)
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2.3 Problem formulation

We assume that there are Nk (Nk � 3) sensors
that have been selected to detect the target at time tk,
and all the measurements (with the corresponding time-
stamps) are transmitted to the leader. Let Zk denote the
measurements gathered from all the Nk sensors, that is,
Zk = {z1(k), . . . , zNk

(k)}. The collaborative target track-
ing problem is for the leader to recursively estimate the tar-
get state xk, denoted by x̂k|k, given the current measure-
ments {Zk} and the past target trajectory history, and then
select the most informative set from all available sensors for
the next time target tracking to achieve the tradeoff between
energy consumption and tracking performance.

3 Collaborative target tracking algorithm

In this section, we discuss our proposed collaborative
target tracking algorithm in detail. When a target moves
through the surveillance region monitored by a wireless sen-
sor network, multiple activated sensors which can sense the
target form a temporary tracking cluster, and one of them is
designated as the leader which serves as the center of signal
and information processing. All the activated sensors simul-
taneously detect the target, evaluate their distance from the
target, and transmit their measurements to the leader. After
receiving all the measurements, the leader will perform the
following steps to fulfill the tracking task.

Step 1 (Measurement conversion) The leader utilizes
the maximum likelihood estimation method to convert the
received nonlinear measurements to a good linear estimate
of the target position in the Cartesian coordinates and evalu-
ate the approximate covariance matrix of the converted mea-
surement noise.

Step 2 (Target trajectory updating) The converted mea-
surement and the corresponding noise covariance matrix are
used by a standard Kalman filter to recursively update the
target state estimate and the corresponding estimate error
covariance matrix.

Step 3 (Sensor selection) The leader selects the most
informative sensors as a new tracking cluster for the next
time tracking according to a given criterion. And one of
them is designated as the leader of the new cluster.

Step 4 (Data transmissions) The current leader wakes
up the selected cluster and transmits the current estimate
(including the corresponding covariance matrix) to the new
selected leader. The current cluster sensors are going to
sleep for energy efficiency.

The above processing steps continue until the the target
disappears or leaves the monitored region.

In the remainders of this section, we first lay out the
prelocalization algorithm using maximum likelihood esti-
mation method. The solution to the maximum likelihood
estimation-based prelocalization is solved by a Newton it-
erative method. This will be followed by a standard linear
Kalman filter for recursive estimation of the target state.
Then, the Cramer-Rao lower bound is analyzed for tar-
get tracking in wireless sensor networks. Finally, we intro-
duce a sensor selecting approach using a Fisher information
matrix-based measure to choose an optimal subsect of avail-
able sensors to balance the tracking performance with the

energy consumption.
3.1 Prelocalization using maximum likelihood estima-

tion

In this section, we discuss how to convert the nonlinear
distance measurements into a linear model with respect to
the position of the target in the Cartesian coordinates us-
ing the maximum likelihood estimation method. We assume
that every sensor has the knowledge of the positions of their
neighborhoods and themselves. Also we assume that the ge-
ometrical relation of the sensors is such that, if measure-
ment noises are not present, the position of the target can
be uniquely determined. Note that with three or more sen-
sors, this is not a problem unless all the sensors are in a line,
a case which can be easily discounted by a careful selec-
tion of sensors. We further assume that there are no delays
and losses when sensors transmit their measurements to the
processing center. We will call this measurement conversion
process prelocalization.

Our method for prelocalization is based on maximum
likelihood estimation. Assume that there are Nk (Nk � 3)
sensors which have been selected to detect the moving tar-
get at time instant tk (which we will suppress in the fol-
lowing section for simplicity) and that the measurement
noises of different sensors are mutually independent. De-
fine Z = {zi, i = 1, . . . , Nk}. Denote by p(Z|x, y) the
jointly conditional probability density function of Z, given
the location of the target, (x, y).

The maximum likelihood estimation-based prelocaliza-
tion is to seek for the unknown target positions (x, y) such
that p(Z|x, y) is maximized. Since the noises of individ-
ual sensors are mutually independent, the jointly conditional
probability density function is represented as

p(Z|x, y) =
Nk∏
i=1

p(zi|x, y), (4)

where p(zi|x, y) is given by (3). Under the assumption of
Gaussian measurement noise, the maximum likelihood esti-
mate of (x, y) is given by

(x̄, ȳ) = arg max
x,y

p(Z|x, y) = arg min
x,y

f(x, y), (5)

where

f(x, y) =
Nk∑
i=1

(ri − zi)2

2σ2
i

. (6)

It is obvious that the maximum likelihood estimation-based
prelocalization is reduced to a nonlinear weighted least
squared problem.

The minimization of (5) is numerically difficult because
f(x, y) is a nonlinear function in the unknown parameters
(x, y). The Newton-Raphson iterative method [20] has been
widely used to solve this nonlinear optimization problem.
Let p = [x y ]T, the iterative solution is given by

p̂(j+1) = p̂(j) − H−1(p̂(j)) · ∇fT(p̂(j)),

where ∇fT(p̂(j)) and H(p̂(j)) are the first and second
derivatives of f(p) evaluated at p = p̂(j). The initial val-
ues is given as follows:

p̂(0) =

[
x̂1

k|k−1

x̂2
k|k−1

]
,
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where x̂1
k|k−1 and x̂2

k|k−1 are the first and second elements
of the one-step-ahead predicted state x̂k|k−1 of the Kalman
filtering algorithm presented in the next section.

Although it is theoretically possible for the Newton it-
erative method not to converge to a global minimum unless
we initialize the MLE to a value close to the correct solution
for f(p) is a noncovex function, simulation results show that
this is not a problem in our target tracking applications. Typ-
ically, only a few iterations are sufficient to guarantee the it-
erative process to converge to the global minimum. The nice
convergence is partly due to the fact that the initial estimate
of the iterative process coming from the Kalman predictor
is typically good and near the true target position, provided
that the sampling time interval is not too long.
3.2 Kalman filtering

Once the above prelocalization is completed, we only
need to consider the new converted measurement z̄k =
[ x̄(k) ȳ(k) ]T, which has the following linear representa-
tion in the target state:

z̄k =

[
1 0 0 0
0 1 0 0

]
xk + vk = Cxk + vk, (7)

where vk is the converted measurement noise. The statistics
for noise vk must be given before the converted measure-
ment z̄k can be used in Kalman filtering. The computation
method for the converted measurement noise is summarized
in the following lemma.

Lemma 1 Assuming that the prior probability density
function for the position of the target, pa(x(k), y(k)), is uni-
form (i.e., we have no knowledge of the target position).
The converted measurement equation after prelocalization,
z̄k, can be approximated by (7) and the associated converted
noise vk is Gaussian white with zero mean and covariance
matrix Rk approximately given in (8),

Rk = H−1(x̄(k), ȳ(k)), (8)
where H(x̄, ȳ) is the Hessian matrix given by

H(x, y) =

⎡
⎢⎢⎣

∂2f(x, y)
∂x2

∂2f(x, y)
∂x∂y

∂2f(x, y)
∂y∂x

∂2f(x, y)
∂y2

⎤
⎥⎥⎦ (9)

evaluated at (x̄, ȳ).
This step is to utilize the Kalman filtering algorithm to

update the target state using the converted measurements
and associated noises. Its expression is standard [10] and
given below:

Phase 1 (Prediction phase) Predict the next state and
the corresponding state prediction covariance matrix as fol-
lows:

x̂k+1|k = Fkx̂k|k, (10)

Pk+1|k = FkPk|kFT
K + GkQwGT

k , (11)
where x̂k+1|k is one-step-ahead predicted state of xk+1

based on measurements {z̄i, i = 0, . . . , k}, Pk+1|k is the
corresponding predicted error covariance matrix.

Phase 2 (Correction phase) Use the converted observa-
tion z̄k+1 to correct the predicted state and the correspond-
ing error covariance matrix as follows:

Sk+1 = CPk+1|kCT + Rk+1, (12)

Kk+1 = Pk+1|kCTS−1
k+1, (13)

x̂k+1|k+1 = x̂k+1|k + Kk+1(z̄k+1 − Cx̂k+1|k), (14)

Pk+1|k+1 = Pk+1|k − Kk+1Sk+1K
T
k+1. (15)

x̂k+1|k+1 is the state estimate of xk+1 based on the mea-
surements {z̄i, i = 0, . . . , k +1}, Pk+1|k+1 is the estimated
error covariance matrix, Kk+1 is the Kalman gain and Sk+1

is the covariance of the innovation.
The initial estimates are given as x̂0|0 = x̂0 and P0|0 =

P0 for some large positive definite P0.
3.3 Cramer Rao lower bound for target tracking

The lower bound on the minimum achievable covariance
in state estimation is given by the (posterior) Cramer-Rao
lower bound (CRLB) for random parameters [21–23]. Un-
der the above Gaussian noises and linear measurements and
target models case, the covariance of the Kalman filter x̂k|k
given by the solution Pk|k to the Riccati equations (11) and
(15) achieves the CRLB, which can be rewritten as the in-
verse of the Fisher information matrix (FIM)

Jf,k = Jp,k + Jz,k, (16)

where Jf,k = P−1
k|k , Jp,k = P−1

k|k−1, and Jz,k = CTR−1
k C

represent the posterior, prior and measurement Fisher infor-
mation matrices, respectively.

From equation (16), it is easy to show that Jf,k is related
to the covariance Rk of the converted measurement noises
z̄k. Furthermore, the covariance Rk is also lower bounded
by the CRLB which can also be represented as the inverse
of the FIM,

Jk =−E

⎡
⎢⎢⎣

∂2 ln p(Z|x, y)
∂x2

∂2 ln p(Z|x, y)
∂x∂y

∂2 ln p(Z|x, y)
∂x∂y

∂2 ln p(Z|x, y)
∂x2

⎤
⎥⎥⎦

=
N∑

i=1

1
σ2

i

⎡
⎢⎢⎣

(x − xi)2

r2
i

(x−xi)(y−yi)
r2
i

(x−xi)(y−yi)
r2
i

(y − yi)2

r2
i

⎤
⎥⎥⎦

(17)
evaluated at the true target position or an estimate of it.
The FIM of the estimator z̄k = [ x̄(k) ȳ(k) ]T is related
not only to the geometry of the target and the sensors,
but also to the measurement statistics of the sensor noises,
σ2

i (i = 1, . . . , N).
The variances of the target position estimate x̄(k) and

ȳ(k), obtained from the prelocalization procedure are lower
bounded by the diagonal elements of the inverse matrix of
the FIM, respectively, i.e.,

var(x̄(k)) � [J−1
k ]1,1, var(ȳ(k)) � [J−1

k ]2,2, (18)

where [J−1
k (x, y)]1,1 and [J−1

k ]2,2 are the first and second
diagonal elements of J−1

k (x, y). Then, we have the follow-
ing result:

var(x̄(k)) + var(ȳ(k)) � [J−1
k ]1,1 + [J−1

k ]2,2

=
tr{Jk}
det{Jk} =

N∑
i=1

1
σ2

i

det{Jk} . (19)

The trace of the FIM is only related the statistics of the sen-
sors. If all sensors have the same variances, i.e., σ2

i = σ2,
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then (19) is reduced to the following equation:

var(x̄(k)) + var(ȳ(k)) �

N∑
i=1

1
σ2

det{Jk} =
N

σ2det{Jk} . (20)

In this case, the accuracy of prelocalization is only related
to the geometry of the target and the sensors.

A key problem in target tracking in wireless sensor net-
works is to improve tracking accuracy under the energy con-
straint. However, tracking accuracy is not only associated
with the motion model of the target, but also the converted
measurement using prelocalization. In this paper, we con-
sider selecting an optimal sensor set along the target trajec-
tory at every time instant to provide the best information for
target localization, and to further improve the performance
of target tracking, with the fixed number of tasked sensors.
3.4 Sensor selection using Fisher information matrix

The objective of target tracking is to estimate the state of
the target as accurately as possible under energy and com-
munication constraints. The best target state estimate is ob-
tained by employing all sensors in the network to sense the
target and transmit their measurements to the processing
center. However, transmitting all the information to the cen-
ter will incur huge energy consumption on communication.
It is critical to select an optimal subset of sensors and incor-
porate their measurements into target tracking. This process
is called sensor selection, or sensor scheduling. Different
measures have been presented for sensor selection accord-
ing to the adopted sensor measurement models and the re-
quired estimation accurate and processing time; see a sur-
vey paper [5]. In this paper, we consider selecting a set of
M sensors from available sensors at every time which min-
imize the target localization variance of the prelocalization.

From the previous section, we know that the variance of
the target prelocalization is lower bounded by (19) or (20).
In this section, we propose to use this lower bound as a mea-
sure to select the optimal subset of sensors for our proposed
tracking approach. This measure can be computed using the
predicted state of the Kalman filter. Therefore, the current
leader sensor does not require the transmission of measure-
ments from the available sensors when it selects sensors and
hence avoids communicating useless information. Assume
that there are Nk+1 (Nk+1 � 3) sensors available for tar-
get tracking at next time instant tk+1, i.e., the target will
move into the detecting ranges of these Nk+1 sensors ac-
cording to one-step-ahead predicted state of the Kalman fil-
ter, x̂k+1|k. Define Sk+1 to be the set of all the available
sensors, Sk+1 = {1, . . . , Nk+1}. In this paper, we choose
a subset consisting of M(M � 3) sensors from the total
Nk+1 candidates for target tracking at tk+1. Since we are
usually more concerned with the target position, an informa-
tion measure based on the Fisher information matrix Jk+1

for prelocalization is given as follows [5–6]:

Ck+1(S) =
tr{Jk+1}
det{Jk+1} , (21)

where S is a sensor set, Jk+1 is the Fisher information ma-
trix obtained from the sensor set S, and evaluated at one-
step-ahead predict of the target position (x = x̂1

k+1|k, y =
x̂2

k+1|k). x̂1
k+1|k and x̂2

k+1|k denote the first and second ele-

ments of x̂k+1|k, respectively. Then, a subset of M sensors
is selected from Sk+1 to minimize the information measure,

L∗
k+1 = arg min

Lk+1⊂Sk+1
Ck+1(Lk+1), (22)

where Lk+1 denote the set of M selected sensors and
Ck+1(Lk+1) is the information measure that the sensors of
Lk+1 can achieve. If all sensors have the same measure-
ment statistics, i.e., σ2

i = σ2, the information measure can
be given as follows:

C ′
k+1(S) = det{Jk+1}. (23)

A subset of M sensors is selected to maximize C ′,
L∗

k+1 = arg max
Lk+1⊂Sk+1

C ′
k+1(Lk+1). (24)

In this paper, we use the optimal enumerative search
method to determine the M sensors. To arrive at the opti-
mal M sensors all possible combinations of M sensors have
to be considered. If Nk+1 sensors are available for target
tracking at time tk+1, there are CM

Nk+1
sensor combinations

to be considered. To reduce the computation complexity of
the above FIM-based sensor selection, the ‘add one sensor
node at a time’ method can be used to select one sensor at a
time by maximizing the determinant of the FIM [3].

4 Simulation results

We run Monte Carlo simulations to compare the per-
formance of the proposed collaborative target tracking ap-
proach with FIM-based sensor selection, with two EKF-
based tracking approaches with different sensor selection
methods: 1) FIM-based sensor selection method calcu-
lated by EKF [23]; and 2) prediction nearest neighbor
(PNN)-based sensor selection method in which the first
M sensors nearest to the prediction of the target position,
(x̂1

k+1|k, x̂2
k+1|k), are taken as the selected sensor. That is,

the best set L of M sensors are selected according to the
following iterative procedure: L is set to be an empty set
first, i.e., L = ∅, then for i = 1 : M ,

j∗i = arg min
j∈Sk+1

√
(xj − x̂1

k+1|k)2 + (yj − x̂2
k+1|k)2,

L = L ∪ j∗i ,

Sk+1 = Sk+1 − {j∗i },
where (xj , yj) is the coordinate of sensor j and Sk+1 is the
available sensor subset excluding the selected sensors.

As shown in Fig. 1, there are 100 sensors, denoted by
circles, randomly and densely deployed in a 20 m×20 m re-
gion. We assume that all sensors in the network have the
same sensing radius rs = 4 m, and constant variance σ2 =
0.01 for all sensory observations. A target moves through
the surveillance region with a constant speed of v = 1.2 m/s
along a programmed trajectory from (1.0, 1.0), as shown by
the solid line in Fig. 1. The process noise wk corresponds to
the variable acceleration of the target at time instant tk and
is approximated by a white Gaussian sequence with zero
mean and covariance matrix of Q = diag{0.25, 0.25}. In
the simulations the initial state estimate and the correspond-
ing estimation error covariance matrix for all collaborative
target tracking approaches are given as follows:

x̂0|0 = [1.1 0.7 0.9 0.3 ]T; P0|0 = 0.01 · I4,

where In is an n × n identity matrix. And we set M = 4,
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that is, 4 sensors are chosen from available sensors at every
time instant.

Fig. 1 True and estimated target trajectories using different track-
ing approaches with the different sensor selection methods.

The performance of the proposed tracking approach with
FIM-based sensor selection is compared with the other two
EKF-based target tracking with different sensor selection
methods, in terms of the MSEs of the target state estimate.
Fig. 1 shows a successful tracking process of our proposed
collaborative target tracking approach with FIM-based sen-
sor selection and the other two tracking ones. The solid line
is the actual trajectory; the dashed line is the estimated tra-
jectory using the tracking approach based on the EKF with
FIM-based sensor selection, and the dashdot line is the es-
timated trajectory using our tracking approach with FIM-
based sensor selection, the dotted line is the estimated tra-
jectory using the EKF with PNN-based sensor selection. It
demonstrates that our proposed tracking approach achieves
more accurate tracking results than the other tracking ap-
proaches.

Figs. 2 and 3 show the mean square errors (MSEs) of the
target position in x and y coordinates, respectively. They
show that our proposed tracking approach with FIM-based
sensor selection offers a significant error reduction for most
of the tracking time compared to the other two tracking ap-
proaches based on the EKF with FIM-based sensor selection
and PNN-based sensor selection, respectively. The MSE of
the position estimate improves approximately by 10.97%
using the proposed method compared to the EKF method
with FIM-based sensor selection, and 70.71% compared to
the EKF with PNN-based selection on X-coordinate, and
11.35% and 73.85% on Y -coordinate, respectively.

Moreover, we also compare the computation times of the
three sensor selection methods. Our proposed sensor selec-
tion consumes about 0.307 microseconds, the EKF-based
tracking approach with FIM-based sensor selection con-
sumes about 0.562 microseconds, and the EKF-based track-
ing approach with PNN-based sensor selection consumes
about 0.042 microseconds. Although the PNN-based sen-
sor selection is faster than the other two selection methods,
it has the poorest tracking performance. And our proposed
sensor selection method is faster than the EKF-based track-

ing approach with FIM-based sensor selection, and also has
higher tracking accuracy than the other two sensor selection
methods.

Fig. 2 Comparison of MSEs for the x coordinate of target posi-
tion calculated using different tracking approaches with
different sensor selection methods.

Fig. 3 Comparison of MSEs for the y coordinate of target posi-
tion calculated using different tracking approaches with
different sensor selection methods.

We further compare our proposed collaborative target
tracking approach with FIM-based sensor selection to the
target tracking approach without sensor selection in terms
of the MSEs of the target position estimate. In our proposed
tracking approach, only 4 (M = 4) sensors (including the
leader) are activated to sense, communicate and track the
target, while in the optimal tracking approach without sen-
sor selection, all available sensors along the target trajectory
are utilized to track the target at each time instant. Figs. 4
and 5 show that the performance of the proposed collabora-
tive tracking approach are less than that of the optimal track-
ing approach without sensor selection, while Fig. 6 shows
that it uses less sensors than the optimal approach without
sensor selection. Although the proposed collaborative track-
ing approach has larger MSE than the optimal tracking ap-
proach without sensor selection, it wake ups less sensors to
track the target at every time instant, which will consumes
less energy (In this paper, we assume that all sensors have
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the same energy consumption on sensing, data processing
and communicating, thus, the tracking energy consumption
is only related to the number of the activated sensors).

Fig. 4 Comparison of MSEs for the x coordinate of target position.

Fig. 5 Comparison of MSEs for the y coordinate of target position
calculated.

Fig. 6 Comparison of the number of activated sensors.
Fig. 7 illustrates the behavior of the proposed approach

in MSE improves whenever M increases. As M increases,
more sensors are selected to track the target, which will
provide more information about the target state. In order
to improve the tracking performance, more sensors along

the trajectory can be selected to track the target, but will
incur more energy consumption. Therefore, a tradeoff can
be made between the tracking performance and the energy
consumption of the network.

Fig. 7 Tracking performance comparison with respect to the num-
ber of selected sensors.

5 Conclusions

In this paper, we have presented a new collaborative tar-
get tracking approach in a wireless sensor network based
on the combination maximum likelihood estimation and
Kalman filtering, and Fisher information matrix-based sen-
sor selection. The maximum likelihood estimator is used for
prelocalization of the target and measurement conversion to
remove the measurement nonlinearity. The converted mea-
surement and its associated noise statistics are then used in
a standard Kalman filter for recursive update of the target
state. Finally, the sensors which collectively minimize the
measure function established on the Fisher information ma-
trix, are activated while other sensors are still in the idle
state to conserve energy. The proposed approach is very
simple and yet effective. Simulation results have shown that
the proposed approach improve the tracking accuracy at the
energy consumption constraints.
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