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Phasor measurement unit s (PMUs) provide globally synchronized measurements of voltage and current 
phasors in real-time and at a high sampling rate. Hence, they permit improving the state estimation per- 
formance in power systems. In this paper we propose a novel method for optimal PMU placement in a
power system suffering from random component outages (RCOs). In the proposed method, for a given 
RCO model, the optimal PMU locations are chosen to minimize the state estimation error covariance.
We consider both static and dynamic state estimation. To reduce the complexity, the search for the opti- 
mal PMU location s is constrained to the set of locations guaranteeing topological observability. We pres- 
ent numerical results showing the application and scalability of our method using the IEEE 9-bus, 14-bus,
39-bus and 118-bus systems.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

The fast penetration of renewable energy sources have gener- 
ated increasing difficulties for reliable electric energy. Real-time 
dynamic monitoring, analysis, protectio n and control of energy 
managemen t system (EMS) become necessar y to combat the fluc-
tuations caused by renewab le power supply and fast load changes.
State estimation (SE) technology, as a key EMS functionality , pro- 
vides a real-time database of the state of the power system. Effi-
cient and accurate SE is a prerequisite for the reliable operation 
of the EMS. After Schweppe and Wildes introduced the concept 
of SE in the field of power system in the early 1970s [1], many esti- 
mation methods have been proposed . In particular , static estima- 
tion, based on the least squares method, has been successfully 
applied in practice, for SE using the conventional supervisory con- 
trol and data acquisition (SCADA) measure ments. However, the 
low sampling rate and relatively low accuracy of SCADA measure- 
ments limit the reliability of SE. The developmen t of phasor mea- 
surement units (PMUs) is extremely important in this context,
since they permit a significant improvement of power system SE 
technology [2].

PMU devices have several crucial advantages over the conven- 
tional SCADA systems: (1) The sampling rate of PMU measure- 
ments (usually 30 measureme nts per second or more) is much 
higher than that of SCADA measure ments (several seconds per 
measureme nt). This is important to enhance the monitoring and 
analysis of the dynamic behavior of power systems; (2) PMUs 
provide synchronous measureme nts (via global synchronous time 
stamps), which can synchronize measure ments from distant loca- 
tions, so as to give a real-time picture of the whole power system;
(3) A PMU can directly measure both the voltage phasor of the bus,
where it is installed, and the current phasors of the branches linked 
to that bus. Hence, simple linear state estimation can be used,
resulting in higher precision and faster calculatio n, in comparison 
with conventional nonlinear state estimation methods ; (4) A
PMU measureme nt has a much higher precision than that of a
SCADA. If every bus of the power system is installed with a PMU,
the EMS can be operated directly by the obtained measureme nts,
without the need for SE. However, due to the expensive cost of 
PMU devices, as well as the limited communicati on channel band- 
width, it is impossible to install a PMU on every node of the power 
network. Hence, a smart selection of number and locations of PMU 
devices is an important problem.

In recent years, there has been a significant amount of research 
on the problem of optimal placement for PMUs. Generally speak- 
ing, these methods aim at minimizing the number of PMUs under 
various types of constraints, among which is the constraint that the 
whole system must be topologically observable . Roughly speaking,
topologic al observability of a power system means that, at any 
time instant k, the whole state of the system can be uniquely deter- 
mined from noise-free measureme nts obtained at the same time k.
To deal with the PMU placemen t problem to guarantee topological 
observabi lity, a number of stochastic search algorithms have been 
proposed , e.g., simulated annealing [3,4], genetic algorithm [5,6],
non-dom inated sorting genetic algorithm [7,8], Tabu search 
[9,10], binary search [11], iterated local search [12] and swarm 
optimization [13,14]. A number of determini stic search algorithms 
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have also been proposed, e.g., integer programming [15–20] and
quadratic programmin g [21,22]. In general, these algorithms yield 
a number of optimal solutions, i.e., there exist in general more than 
one PMU placement solutions that make the whole power system 
topologically observable with the same number of PMUs (e.g., out 
test shows that more than 2.5 � 104 different solutions can be ob- 
tained for the IEEE 118-bus system).

In order to refine the multiple optimal solutions obtained from 
the methods described above, a number of optimization criteria are 
available. One of them is the maximum measurement redundancy 
(MMR) criterion [5,23,22,13], which is used to maximiz e the total 
number of line current measureme nts for the given (minimum)
number of PMUs. This method significantly reduces the number 
of PMU placements but does not yield a unique solution (e.g., 48 
and 78 solutions are generated for the IEEE 39-bus and 118-bus 
systems, respectively). To resolve this problem, the authors of 
[24] consider dynamic state estimation and use the steady state 
Kalman filter state estimation error covariance to choose the opti- 
mal solution. While this approach leads to a unique solution, as we 
show in Section 5, this solution may no longer be optimal in the 
presence of random component outages (RCOs). For traditional 
power systems, RCO usually refers to power equipment failures 
(e.g., transition lines and transformers ). In this paper, we extend 
this concept to include sensor failure and communication packet 
loss. We emphasize that RCO is a serious problem for PMUs, espe- 
cially in real-time operation s because measureme nt losses can be 
caused by (1) loss of global positions system (GPS) timing due to 
weather problems; (2) excessive communication delays; (3) outage 
in communication networks .

The occurrence of RCOs is considered in [25], where the optimal 
placement solution is chosen to maximize the probability of topo- 
logical observabi lity. RCO problems also have been considered in a
determinist ic way in many papers, e.g., [26,15,18,8,14,27] . In most 
of these papers, robust determini stic solutions of optimal PMU 
placement are proposed, in which backups of measurements are 
used to replace the lost measurements . However, we can not guar- 
antee that the original measure ments and the backup do not fail 
simultaneou sly, and the effectivenes s of the backup data can be 
questionable in time-critical operation s (e.g., in dealing with 
power failures).

Measurement placemen t methods in power systems usually 
consider two problems: (1) the improvement of the network 
observability and (2) the minimizatio n of the errors in the esti- 
mates. In this paper we propose a new method to study the PMU 
placement problem based on two optimizati on criteria, i.e. topo- 
logical observability guarantee and state estimation error covari- 
ance (EEC) minimizatio n. A modified integer linear programmin g
(ILP) method is proposed to generate all possible candidat e PMU 
placement solutions to guarantee topologic al observability . Then 
we use the SE performanc e, i.e. EEC, as the optimization criterion 
to refine the candidate solutions. Also a more practical situation 
with RCOs occurring is considered. In the ideal case when RCOs 
do not occur, the proposed method searches for the solution which 
minimizes the norm of the EEC. The motivation for our criterion is 
that the covariance of the SE error in the power system is governed 
by the eigenvalues of the EEC. Since the norm of the EEC equals its 
largest eigenvalue, minimizing the norm is equivalent to minimiz- 
ing the worst case, i.e., the largest estimation error in some sense.
We apply this criterion in two scenarios, namely, static and dy- 
namic estimations. In Static State Estimation (SSE), we estimate 
the state using some prior statistical informat ion and available 
measureme nts. This is done using a maximum a posteriori criterion
(MAP). On the other hand, in Dynamic State Estimation (DSE), the 
estimation is done using the statistics of the state at sample time k,
conditioned on the measure ments available up to time k � 1. This 
is done using a Kalman filter. DSE is considered in this paper be- 
cause the measureme nts at adjacent sampling times are typically 
highly correlated due to the high sampling rate of PMUs, which 
is in large contrast to SCADA measurements (see more details in 
Section 2). In the presence of RCO, topological observability can 
not be guarante ed. The traditional static estimation algorithm,
i.e., weighted least squares, will face numerical problem, whereas 
the proposed two kinds of estimators using previous statistical 
informat ion can continue to provide good estimation.

When RCOs occur, the EEC becomes a stochasti c matrix. In this 
situation , and in the case of SSE, a natural extension of the optimi- 
zation criterion is to choose the placement such that the expected 
value of the norm of the EEC is minimize d. On the other hand, in 
the case of DSE, this expected value is time-vary ing. Hence, the 
natural extension involves minimizing its asymptotic value. A dif- 
ficulty in doing so is that, there is no simple expression to compute 
this asymptotic value. To get around this, we derive a sequence of 
upper and lower bounds on it. Using these bounding sequence s, we 
derive an algorithm to find the optimal solution. The proposed 
algorithm is a sequential one in the sense that at each step it 
chooses a set of tighter bounds, it then eliminates , from the set 
of candidate solutions, those which are no longer candidates for 
the optimal solution, and it stops when the set of candidat es has 
only one solution left. Our method is evaluated in the IEEE 9-bus 
test system. An unique optimal PMU placement solution is ob- 
tained for this test system. The experiments also show that, for 
the case of DSE, the optimal solution depends on the RCO rate.

However , there is still a problem of the bounding sequence algo- 
rithm above, i.e., when applied to a large size power system or using 
a relatively large number of steps, the proposed algorithm can make 
the calculatio n of the upper and lower bounds numerically impos- 
sible. To deal with this problem, we give a Monte Carlo method to 
approximat e these bounds. This is evaluated using IEEE 14-bus,
39-bus and 118-bus test systems. In particular , the 118-bus system 
is tested to demonstrate the scalability of the proposed method.

In this paper, we assume that all the measure ments are made 
using PMUs without SCADA. This is in line with [3–25], which is 
justified when the PMUs become more readily available and that 
many traditional measuring devices can be converted into PMU- 
like devices with GPS-based timing capability. PMU-only based 
state estimation also has the advantage of fast dynamic response 
due to the high sampling rate, and this feature is particularly 
important for power systems involving highly volatile renewab le 
energy sources. We also note that the proposed method can be eas- 
ily modified to accommodate additional SCADA measurements .
Some treatments for mixed PMU and SCADA measurements can 
be found in [28,29].

The remaining sections of this paper are organized as follows.
Both SSE and DSE are introduced in Section 2. Optimiza tion criteria 
for the two kinds of state estimato rs are formulated in Section 3.
Section 4 gives the modified ILP method and the details of the opti- 
mal PMU placement search algorithms. Case studies and analysis 
are illustrate d via simulatio ns based on the IEEE 9-bus, 14-bus,
39-bus and 118-bus systems in Section 5. Section 6 concludes
the paper.
2. State estimation in power system 

In this section we describe the two state estimation scenarios 
addresse d in this paper, namely, static estimation and dynamic 
estimation.
2.1. Static State Estimation (SSE)

A PMU is typically able to measure not only the voltage phasor 
of the node where it is installed, but also the current phasors of all 
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lines connected to this node. Hence, there is a linear relationship 
between PMU measure ments and the system state variables. Thus,
the measureme nt model is given by 

z ¼ CClxþ t ð1Þ

where

Cl ¼

I O

Re ðYlÞ �ImðYlÞ
O I

Im ðYlÞ ReðYlÞ

2
6664

3
7775; C ¼

c1

c2

. .
.

c2d

2
66664

3
77775

with z 2 R2d being the PMU measureme nt vector, which includes 
the real part and imagina ry part of the measured bus voltage and 
branch current phasors. d is the number of measurem ents. The en- 
tries of the state vector x 2 R2n are the real part and imaginary part 
of all the bus voltage phasors. n is the number of buses. We assume 
that x is known a priori to have a white Gaussian distribution with 
mean value �xp and covariance matrix Rp. The measureme nt matrix 
Cl 2 R2d�2n depends on the chosen PMU locations , hence we use the 
subscript l to denote differen t PMU placements. Also, Yl 2 Rb�n is the 
branch admittance matrix, where b is the number of current mea- 
surement s. I 2 Rg�g is the identity matrix with g standing for the 
number of PMUs, and the entries of O 2 Rg�(2n�g) are all zeros.
t 2 R2d is the measureme nt noise vector, which is assumed to be 
white and Gaussian with zero mean and covariance matrix Rt.
The random matrix C 2 R2d�2d models the RCO behavior of the 
power system (i.e., ci = 1 when the ith measureme nt is available 
and 0 otherwis e). The binary random variables ci are assumed 
to be indepen dent and identically distributed (i.i.d.), with 
pi = Pr(ci = 0) being the RCO rate of channel i. We further assume 
that x and t are uncorrela ted.

It is worth to note that the priori knowled ge of the state (�xp and
Rp) can be obtained from SCADA measure ments, which is a nature 
way to mix SCADA and PMU measurements .

The MAP estimation criterion is given by [30]

x̂ ¼ arg max 
x

f ðxjzÞ ð2Þ

where f(xjz) denotes the probability density function of x condi-
tioned to the measureme nt z. In the case of the system (1) and 
(2) becomes

x̂ ¼ arg min 
x
ðz� CClxÞTR�1

t ðz� CClxÞ þ ðx� �xpÞTR�1
p ðx� �xpÞ

h i
ð3Þ

Then, it is straight forward to obtain 

x̂ ¼ CT
l C

TR�1
t CCl þ R�1

p

� ��1
CT

l C
TR�1

t zþ R�1
p

�xp

� �
ð4Þ

Using this, the EEC is given by 

Re ¼ Rp � RpCT
l C

T R�1
t þ CClRpCT

l C
T

� ��1
CClRp ð5Þ

In (5), the EEC Re is a function of the PMU location parameter Cl as
well as the RCO paramete r C. Hence, Re is a random matrix which 
depends on the PMU locations.

2.2. Dynamic State Estimation (DSE)

The dynamics of generators or load flows in power systems usu- 
ally can be utilized to describe the system dynamic behaviors. In 
this paper, considering the high sampling rate of PMU measure- 
ment as well as the relatively slow changes of the system, we 
utilize a generic linear model (6) to describe the dynamic behavior 
of the system.

xkþ1 ¼ Axk þ B�xþxk ð6Þ
where xk 2 R2n is the state vector at sample time k, A 2 R2n�2n is the 
transmit ion matrix which relates the states at time k and k + 1,
B 2 R2n�2n. It is common to choose B = I � A (where I is the identity 
matrix) so that lim k!1EðxkÞ ¼ �xðEð�Þ denotes expectat ion). In this 
case, the term �x is regarded as the expected steady-stat e. The noise 
xk 2 R2n is a white Gaussian vector random proces s with zero 
mean and covariance matrix Rx. We also assume that the initial 
state x0 has Gaussian distribution with mean �x0 and covariance 
Rx0 .

The use of the dynamic model (6) can significantly improve the 
quality of state estimation. This is due to the fact that the high 
sampling rate of PMUs makes the adjacent state variables (xk+1

and xk) highly correlated, whereas such correlation is much weaker 
with SCADA measure ments. For example, one may use a simple 
Brownian motion model:

xkþ1 ¼ xk þxk

which means that the state evolves as a random walk, or 

xkþ1 ¼ Axk þ ðI � AÞ�xþxk

with A = diag{ a1,a2, . . .} and 0 < ai < 1 for all i, which means the state 
has tendency to revert back to its steady state �x.

The measure ment model is given by 

zk ¼ CkClxk þ tk ð7Þ

All the parameter s in (7) are the same to those in (1), except for the 
time subscr ipt k.

The estimation of the state in (6) and (7) is carried out using a
Kalman filter [31].

x̂kjk ¼ x̂kjk�1 þ Gk½zk � CkClx̂kjk�1�
x̂kþ1jk ¼ Ax̂kjk þ B�x

Gk ¼ Rkjk�1C0lC
0
k CkClRkjk�1C 0lC

0
k þ CkRtC

0
k

� ��1

Rkjk ¼ Rkjk�1 � GkCkClRkjk�1Rkþ1jk ¼ ARkjkA0 þ Rx;

ð8Þ

which is initialized by R0j�1 ¼ Rx0 and x̂0j�1 ¼ �x0. The variable x̂kjk�1

denotes the predict ion of the state at time instant k, based on the 
measureme nts available up to time k � 1, and Rkjk�1 denotes its 
associat ed error covariance. Then, x̂kjk�1 and Rkjk�1 are used as the 
prior statistical informa tion of the state, to build its estimate x̂kjk
at time k, once the measureme nt at time k becomes available. The 
auxiliary matrix Gk is called the Kalman gain.

Remark 1. If the parameters A, B and Rx in (6) or Rt in (7) are not 
available , they can be identified either offline or online. SCADA 
measure ments are particularly suitable for carrying out this task,
due to their high redundancy [32]. This identification problem is 
not considered in this paper.
3. Optimization criterion for PMU placement 

The stochastic nature of RCOs turns the EEC into random matri- 
ces in both SSE and DSE cases. As explained in Section 1, the natu- 
ral criterion for choosing the PMU locations is to minimize the 
expected EEC norm E(kRek), in the SSE case, and the asymptotic ex- 
pected EEC norm lim k?1E(kRkjk}), in the DSE case. The norm k � k
denotes the largest eigenvalue of the matrix. For SSE, it is relatively 
simple to calculate E(kRek). However, for DSE, a difficulty arises be- 
cause there is no exact expression for computing lim k?1E(kRkjkk).
However , it turns out that we can still find the optimal locations by 
using a sequence of lower and upper bounds for this limit. We de- 
scribe below the resulting optimization criteria for both SSE and 
DSE. Finally, Monte Carlo methods are given to simplify the calcu- 
lations of the optimization procedures.
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3.1. Optimization criterion for SSE 

Recall that g denotes the number of PMU measureme nts. Let 
Sm 2 R2d�2d, m = 1, . . . , 2g denote all 2g possible measurement arri- 
val patterns at each time instant. Let Pr (Sm) be the probability that 
C = Sm. Then the expected EEC norm E(kRek) of SSE (4) can be com- 
puted by 

EðkRekÞ ¼
X2g

m¼1

PrðSmÞkRek ð9Þ

where Re given by (5).

3.2. Optimization criterion for DSE 

Instead of calculatin g the asymptotic expected EEC norm 
limk?1E(kRkjkk), a sequence of monotonically tight upper and low- 
er bounds are proposed for DSE.

3.2.1. Upper and lower bounds 
The next lemma introduce s the starting point for obtaining the 

sequence of monotonically tight upper and lower bounds.

Lemma 1. Let

R ¼ solR R ¼ ARA0 þ Rx � ARC 0l ClRC 0l þ Rt
� ��1

ClRA0
n o

R ¼ solRfR ¼ ARA0 þ Rxg

Then, if R0 P R, for all k,

R 6 Rk 6 R ð10Þ
Proof. Notice that R is the steady state solution for the standard 
Kalman filtering problem when no packet drop occurs, and R is
the same solution obtained when all the measure ment are lost. h

The bounds in Lemma 1 are too loose to be used for our optimi- 
zation problem. Below we explain how they can be refined to make 
them arbitrarily tight, at the expense of increased computational .

Let GN
k describe the measurements received from time k � N to

k � 1, i.e.,

GN
k ¼ fCk�Nþ1;Ck�Nþ2; . . . ;Ck�1g ð11Þ

Also, we let SN
m; m ¼ 1; . . . ;2Ng denote all 2Ng possible arrival pat- 

terns in a time interval of length N. Let Pr ðSN
mÞ be the probabi lity that 

GN
k ¼ SN

m, i.e., that the sequence SN
m was observed from times k � N to

k � 1. Also, let /(�, �) be the function describi ng the evolution of the 
error covariance according to a given sequence, i.e.,
Rk ¼ /ðRk�N;G

N
k Þ. Then, we define

CN ¼
X2Ng

m¼1

Pr SN
m

� �
k/ R; SN

m

� �

CN ¼
X2Ng

m¼1

Pr SN
m

� �
k/ R; SN

m

� �
k

ð12Þ

The next lemma shows that CN is monoton ically increasing and 
CN is monoton ically decreasing.

Lemma 2.

CNþ1 < CN

CNþ1 > CN

ð13Þ
Proof. We will only show the monotonicity of the lower bound.
That of the upper bound follows from the same argument. Consider 
the following partition of the sequence SNþ1

j :
SNþ1
j ¼ fS1

n; S
N
mg ð14Þ

Then,

CNþ1 ¼
X2Ng

m¼1

X2g

n¼1

Pr SN
m

� �
Pr S1

n

� �
k/ R; fS1

n; S
N
mg

� �
k

¼
X2Ng

m¼1

Pr SN
m

� �X2g

n¼1

Pr S1
n

� �
k/ /ðR; S1

nÞ; S
N
m

� �
jj

P
X2Ng

m¼1

Pr SN
m

� �
k/ R; SN

m

� �
jj ¼ CN ð15Þ

where the inequal ity in (15) follows since 

/ R; S1
n

� �
P R ð16Þ

h

Now, it follows from [33, Theorem 2.4] that the bounds CN and
CN approach the asymptotic expected norm of the error covariance 
as N ?1, i.e.,

lim
N!1

CN ¼ lim
k!1

EðkRkkÞ

lim
N!1

CN ¼ lim
k!1

EðkRkkÞ
ð17Þ

Hence, from Lemma 2, we have that 

CN 6 EðkRkkÞ 6 CN ð18Þ

i.e., CN and CN are bounds on lim k?1E(kRkk), which becom e mono- 
tonically tight at the limit.

3.3. Monte Carlo approxim ation 

The numbers of possible arrival patterns, i.e. 2g for SSE and 2Ng

for DSE will become extremely large when the size of system in- 
creases. Hence, to simplify the calculation of the optimization cri- 
teria. We use the following Monte Carlo approximat ions.

3.3.1. Criterion approxim ation for SSE 

eEðkRekÞ ¼
1
M

XM

i¼1

kRekSi
ð19Þ

where Si, i = 1, 2, . . . , M stand for the different realizations of ran- 
dom measureme nt arrival patterns, M is the number of realiza tions.

3.3.2. Criterion approxim ation for DSE 

eCN ¼
1
M

XM

i¼1

k/ R; SN
i

� �
k � CN

eCN ¼
1
M

XM

i¼1

k/ R; SN
i

� �
k � CN

ð20Þ

where SN
i ; i ¼ 1;2; . . . ;M are M realizations of random measure- 

ment arrival pattern s till time N.
It is noted that the number M of realizations needs to be suffi-

ciently large so that the approximation error is small. According 
to our tests, M = 5000 is typically sufficient for both cases.

4. Optimal PMU placement algorithm 

In bo th SSE an d DS E, we ne ed to find th e op tim al PMU pl ace -
me nt s in the se ns e of mi ni mi zin g eit her E(kRek) or li mk?1E(kRkjkk).
In principle, this could be done evaluating these magnitudes for all 
possible PMU arrangem ents. However, this can be numerically 
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unaffordable in a large power network. Hence, to reduce the 
numerical complexity, the initial set of candidat es is formed by 
those PMU arrangem ents which result in systems being topologi- 
cally observable. This can be the done using any available method.
In this sense, the optimal PMU placement algorithm contains two 
main steps: (1) candidate PMU placement solutions calculation 
and (2) state estimation performanc e refining.

4.1. Candidate PMU placement solutions calculation 

In this paper the ILP method proposed in [16] is chosen and 
modified to search for candidate PMU placemen ts. The original 
ILP method is valid to get a PMU placement solution which can 
make the whole system topologically observabl e with minimum 
number of PMUs. However, this method gives only one such possi- 
ble solution. Hence, we propose a modified version where an aux- 
iliary parameter is introduced, which can excite all the possible 
PMU placement solutions with a sufficiently large number of real- 
izations. In the modified version, we also consider the MMR crite- 
rion proposed in [5,15,23,22] . According to our simulation results,
although the MMR criterion can not lead to a unique solution, it is 
still useful to refine the original set of candidate solutions, espe- 
cially for relatively large power systems. We will also modify the 
ILP method to allow some redundancy in the PMU number, which 
is useful in making state estimation robust and fault tolerant.

4.1.1. The original ILP method 
We first roughly review the original ILP method in [16], as 

follows:

sPMU ¼min
Xn

i¼1

ui

s:t: TPMUU P b

ð21Þ

where TPMU is a binary connectiv ity matrix (see the details in [16]),
b ¼ ½1;1; . . . ;1�Tn�1. U ¼ ½u1;u2; . . . ; un�T , where ui 2 {0,1} is the PMU 
placemen t variable on the ith bus, with 0 indicatin g no placemen t
and 1 indicatin g a placemen t. Based on the above ILP metho d, we 
can obtain the minimum number of PMU, i.e. sPMU, that is necessary 
for topological observabil ity. Take ~sPMU P sPMU to allow some possi- 
ble redundan cy, if necessary.

4.1.2. Modified version of ILP 

(i) Without MMR criterion 
An auxiliary parameter D = [d1,d2, . . . ,dn], di = rand(0,1),
i = 1, 2, . . . , n, is added in the cost function. When the num- 
ber of realizations of D is sufficiently large, all the possible of 
candidat e optimal PMU placement solutions will be gener- 
ated. A new constrain t is added to guarantee the required 
number of PMUs, as follows:
min DU
s:t: TPMUU P b

Xn

i¼1

ui ¼ ~sPMU

ð22Þ
(ii) With MMR criterion 
We first calculate the maximum number of measurements ,
mPMU, of ~sPMU PMUs via:
mPMU ¼max
Xn

i¼1

uijTPMU;ij

s:t: TPMUU P b
Xn

i¼1

ui ¼ ~sPMU

ð23Þ
where jTPMU,ij stands for the number of 1’s in the ith row of TPMU.
Then use the following ILP method to generate all the possible can- 
didate optimal PMU placement solutions, which guarantee topo- 
logical observability with ~sPMU PMUs and contain mPMU

measure ments.
min DU

s:t: TPMUU P b
Xn

i¼1

ui ¼ ~sPMU

Xn

i¼1

uijTPMU;ij ¼ mPMU

ð24Þ
4.2. State estimation performance refining

After the candidate set of optimal PMU placement solutions are 
obtained, state estimation performanc e, EEC, is used as the final
optimization criterion to choose the best placement solution.

For SSE, the expected EEC norm E(kRek) for each candidat e solu- 
tion is directly evaluated using (9). Then the optimal solution is 
chosen as the one with the smallest E(kRek).

For DSE, we use the bounds CN and CN to derive an algorithm for 
finding the optimal PMU placements in the sense of minimizing 
limk?1E(kRkjkk). In principle, this could be done by choosing N
large enough so that both bounds are ‘‘sufficiently close’’. However,
this approach can be numerically unaffordable since the complex- 
ity of evaluating CN and CN grows exponenti ally with N or g. To 
avoid this, we propose an alternativ e algorithm. The main idea is 
to proceed sequentially for N = 1, 2, . . . . For each N, the bounds 
CN and CN are computed for all candidate PMU arrangem ents 
(i.e., the initial set of candidate arrangements ). Then, all arrange- 
ments whose lower bound is greater than the smallest upper 
bound between all candidate arrangements , is eliminated from 
the set of candidates, before continuing to the next step. The steps 
proceed until only one candidat e is left. We summarize these steps 
below:

(a) Set N = 1 and obtain the initial set of candidat e solutions. To 
this end we use the modified ILP algorithm proposed above.

(b) Compute the upper bound CN for all candidat e solution and 
let CN be the smallest among them.

(c) For each candidat e solution compute the lower bound CN,
and if this value is greater than CN , remove the solution from 
the set of candidat es.

(d) If the set of candidates has only one solution, stop the itera- 
tions; otherwise, put N = N + 1 and go to (b).

Remark 2. For large power systems, a combination of the pro- 
posed algorithm and the Monte Carlo approximat ion will be a good 
choice to optimize the PMU placemen t solutions, which will be 
tested on the IEEE 39-bus and 118-bus system later.

5. Simulation results 

The performanc e of the proposed SSE and DSE estimato rs are 
evaluated on the IEEE 9-bus (shown in Fig. 1), 14-bus, 39-bus 
and 118-bus test systems separately (the topological structure of 
the last three standard IEEE test systems can be found in [34]).
The optimal PMU placement solution is obtained by comparing 
the correspond ing SE performanc es.

Since the size of the power system does not affect the calcula- 
tion speed of SSE performance (19) seriously, the test procedures 
for the four systems are similar. Hence SSE is tested for the IEEE 
9-bus system only.



Fig. 1. The topological structure of IEEE 9-bus system.

Table 1
Simulation values of parameter s of IEEE 9-bus system.

A diag (0.8,0.8,0.95,0.8,0.95,0.95,0.8,0.95,0.8)
B diag (0.2,0.2,0.05,0.2,0.05,0.05, 0.2,0.05,0.2)
Rx diag(0.12, . . . ,0.1 2)
Rm diag(0.12, . . . ,0.1 2)
Rx0 diag(0.12, . . . ,0.1 2)
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For DSE, the IEEE 9-bus system is used to test the original upper 
and lower bounds in (12). The Monte Carlo approximation s of the 
upper and lower bounds in (20) are tested by the IEEE 14-bus sys- 
tem. Finally, the Monte Carlo approximat ion method is used to 
choose the best PMU placemen t solutions for the IEEE 39-bus 
and 118-bus systems. In all simulatio ns, we take ~sPMU ¼ sPMU for
simplicity.
0.03
5.1. IEEE 9-bus system 

To obtain the initial set of candidate solutions in the IEEE 9-bus 
system, we use the modified LIP algorithm (22), which gives all 
PMU arrangements leading to topologic ally observable systems,
using the minimum number of PMUs. The resulting set has four 
solutions, each of them using three PMUs. The installation buses 
of these four solutions are {1,6,8}, {2,4,6}, {3,4,8} and {4,6,8},
respectively . We point out that the solution {4,6,8} has two extra 
current measurements , in comparison with the other three 
solutions. This makes the comparison somehow unfair, since this 
solution consumes more communi cation resources than the oth- 
ers. Hence, we remove two current measurements on Branch 5
and 9 from the fourth solution so that all solutions have the same 
number of measureme nts. It is noted that without the two current 
measureme nts, the fourth solution still can make the system 
topologically observable.
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Fig. 2. E(kRek) of four candidate locations in IEEE 9-bus system.
We assume that RCO affects all the measureme nts of a PMU 
simultaneou sly. In other words, when RCO occurs, all the measure -
ments of the correspondi ng PMU will be lost. Hence, there are 23

and 23N received measurement patterns for SSE and DSE, respec- 
tively. This assumption is not necessary for the proposed method,
and is used only to simplify the computation.

5.1.1. Static estimation 
The static measureme nt model (1) is summarized by the data 

given by IEEE 9-bus system, with Rt = diag(0.12, . . . ,0.1 2). Fig. 2
shows the estimation performanc e, i.e., E(kRek), of the four candi- 
date optimal locations, with p varying from 0.5 to 0. From this fig-
ure, we can see that the placement {3,4,8} always has the best 
estimation performanc e for different CORs.

5.1.2. Dynamic estimation 
The associated dynamical system model (6) and (7) used in our 

simulatio n is summarized in Table 1. This particular set of values 
used here is just an example to test the proposed method.

To illustrate the converge nce of the bounds CN and CN we show 
in Figs. 3 and 4 their values for different values of N, correspond ing 
to the fourth solution {4,6,8}. The packet loss rates are 0.05 and 
0.35 respectively . We can see how both bounds converge mono- 
tonically to the same limit value and that the converging speed 
changes for a different RCO rate.

The bounds for the four candidate solutions for packet loss rates 
of 0.05 and 0.35 are shown in Figs. 5 and 6 respectively. From the 
two figures, we can see the following: (1) The optimal PMU place- 
ment solutions for both cases can be found after four iterations.
Even the gaps between the upper bound and the lower bound 
shown in Figs. 3 and 4 are still distinct at sample time four, the 
optimal solution can be already identified. (2) The optimal solu- 
tions depend on the packet loss rate. For different packet loss rates,
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Fig. 3. Bounds of lim k?1E(kRkk) in IEEE 9-bus system, PMUs located in buses 
{4,6,8}, pi = 0.05.
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the final solution switches between the second candidate solution 
{2,4,6} and the third one {3,4,8}.

5.2. IEEE 14-bus system 

There are five candidat e PMU placement solutions in the IEEE 
14-bus system, i.e., {2,6,7,9}, {2,6,8,9}, {2,7,10,13}, {2,7,11,13},
{2,8,10,13}. The solution {2,6,7,9} is used to examine how the 
Monte Carlo approximat ion (20) works. Fig. 7 shows the simula- 
tion results, from which we can see that with M = 5000, the upper 
and lower bounds can be approximated well for different values of 
N. The best PMU placemen t solution obtained via (20) is {2,6,7,9}.
The details of the search result is shown in Table 2.

5.3. IEEE 39-bus and 118-bus systems 

In order to test the scalability of the proposed method for large 
size power systems, the IEEE 39-bus and 118-bus systems are 
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Fig. 5. Bounds of lim k?1E(kRkk) in IEEE 9-bus system, pi = 0.05.
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Fig. 7. Monte Carlo approximations in IEEE 14-bus system, p = 0.1 

Table 2
Searching progress of the optimal PMU placement algorithm.

Time N Number of candidate solutions left 

1 2 3 4 5 6 7 8 9

14-Bus 5 5 5 3 2 1 N/A N/A N/A 
39-Bus 48 48 48 40 8 8 7 2 1
118-Bus 78 78 78 12 10 2 2 2 1
studied. The modified ILP algorithm with MMR criterion (24) is
used for the IEEE 39-bus and 118-bus systems respectively, then 
48 and 78 candidat e PMU placemen t solutions are found. Monte 
Carlo approximat ions eCN and eCN are calculated for different candi- 
date solutions with M = 5000. Table 2 shows the search result. The 
IEEE 39-bus system get its best PMU placement solution 
{2,6,9,10,11,14,17,19,20,22,23,25,29} (using 13 PMUs). The 
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solution {3,5,9,12,15,17,21,25,28,34,37,40,45,49,53,56,62,64,
68,70,71,76,79,85,86,89,92,96,100,105,110,114} (using 32 
PMUs) is found to be the best for the IEEE 118-bus system.
6. Conclusion 

In this paper, a new method is proposed for optimal PMU place- 
ment in power systems suffering from random component out- 
ages. The state estimation performanc es of two kinds of 
estimators (i.e., SSE and DSE) are evaluated based on different 
PMU locations and different RCO rates. Then using the norm of 
the estimation error covariance as the optimization criterion, an 
algorithm is proposed to solve the optimization problem. This 
method chooses the placement from a set of candidate PMU place- 
ments, each of them guaranteein g topological observability . Then 
the optimal PMU placement is chosen to minimize the expected 
value and the asymptotic expected value of the norm of the state 
estimation error covariance for SSE and DSE, respectivel y. In view 
of the potential difficulty in computation, we propose a sequential 
algorithm which uses a sequence of lower and upper bounds for 
the estimation error covariance, which are monotonically tight.
The proposed method is tested on several standard IEEE test sys- 
tems. The simulation results show the validity of the proposed 
algorithm to deal with the RCO problem. Finally, we note that 
the optimal PMU placement in general depends on power network 
topology and system parameters. Since placement is typically done 
at planning stage, the most representative system model should be 
used for searching the optimal PMU placement. Further research is 
needed to seek robust PMU placements under different operating 
conditions (including normal and faulty conditions).
References

[1] Schweppe FC, Wildes J. Power system static-state estimation, part I, II, III. IEEE 
Trans Power Apparat Syst, PAS-89 1970(1):120–35.

[2] Ree JDL, Centeno V, Thorp JS, Phadke AG. Synchronized phasor measurement 
applications in power systems. IEEE Trans Smart Grid 2010;1(1):20–7.

[3] Baldwin TL, Mili L, Boisen MBJ, Adapa R. Power system observability with 
minimal phasor measurement placement. IEEE Trans Power Syst 
1993;8(2):707–15.

[4] Nuqui RF, Phadke AG. Phasor measurement unit placement techniques for 
complete and incomplete observability. IEEE Trans Power Deliv 
2005;20(4):2381–8.

[5] Milosevic B, Begovic M. Nondominated sorting genetic algorithm for optimal 
phasor measurement placement. IEEE Trans Power Syst 2003;18(1):69–75.

[6] Aminifar F, Lucas C, Khodaei A, Fotuhi-Firuzabad M. Optimal placement of 
phasor measurement units using immunity genetic algorithm. IEEE Trans 
Power Deliv 2009;24(3):1014–20.

[7] Peng C, Sun H, Guo J. Multi-objective optimal PMU placement using a non- 
dominated sorting differential evolution algorithm. Int J Electr Power Energy 
Syst 2010;32(8):886–92.

[8] Jamuna K, Swarup KS. Optimal placement of PMU and SCADA measurements 
for security constrained state estimation. Int J Electr Power Energy Syst 
2011;33(10):1658–65.
[9] Cho K-S, Shin J-R, Hyun SH. Optimal placement of phasor measurement units 
with GPS receiver. In: IEEE power engineering society winter meeting; 2011. p.
258–62.

[10] Peng J, Sun Y, Wang HF. Optimal PMU placement for full network observability 
using Tabu search algorithm. Int J Electr Power Energy Syst 
2006;28(4):223–31.

[11] Chakrabarti S, Kyriakides E. Optimal placement of phasor measurement units 
for power system observability. IEEE Trans Power Syst 2008;23(3):1433–40.

[12] Hurtgen M, Maun JC. Optimal PMU placement using iterated local search. Int J
Electr Power Energy Syst 2010;32(8):857–60.

[13] Ahmadi A, Alinejad-Beromi Y, Moradi M. Optimal PMU placement for power 
system observability using binary particle swarm optimization and 
considering measurement redundancy. Expert Syst Appl 2011;38(6):7263–9.

[14] Mahdi H, Mohammad RA, Amraee MT, Babak. Optimal placement of PMUs to 
maintain network observability using a modified BPSO algorithm. Int J Electr 
Power Energy Syst 2011;33(1):28–34.

[15] Dua D, Dambhare S, Gajbhiye RK, Soman SA. Optimal multistage scheduling of 
PMU placement: an ILP approach. IEEE Trans Power Deliv 
2008;23(4):1812–20.

[16] Gou B. Optimal placement of PMUs by integer linear programming. IEEE Trans 
Power Syst 2008;23(3):1525–6.

[17] Gou B. Generalized integer linear programming formulation for optimal PMU 
placement. IEEE Trans Power Syst 2008;23(3):1099–104.

[18] Aminifar F, Khodaei A, Fotuhi-Firuzabad M, Shahidehpour M. Contingency- 
constrained PMU placement in power networks. IEEE Trans Power Syst 
2010;25(1):516–23.

[19] Azizi S, Dobakhshari AS, Sarmadi SAN, Ranjbar AM. Optimal PMU placement 
by an equivalent linear formulation for exhaustive search. IEEE Trans Smart 
Grid 2012;3(1):174–82.

[20] Enshaee A, Hooshmand RA, Fesharaki FH. A new method for optimal 
placement of phasor measurement units to maintain full network 
observability under various contingencies. Electric Power Syst Res 
2012;89(0):1–10.

[21] Chakrabarti S, Eliades D, Kyriakides E, Albu M. Measurement uncertainty 
considerations in optimal sensor deployment for state estimation. In: IEEE 
international symposium on intelligent signal processing; 2007. p. 1–6.

[22] Chakrabarti S, Kyriakides E, Eliades DG. Placement of synchronized 
measurements for power system observability. IEEE Trans Power Deliv 
2009;24(1):12–9.

[23] Peng C, Xu X. A hybrid algorithm based on BPSO and immune mechanism for 
PMU optimization placement. In: 7th World congress on intelligent control 
and automation; 2008. p. 7036–40.

[24] Zhang J, Welch G, Bishop G, Huang Z. Optimal PMU placement evaluation for 
power system dynamic state estimation. In: Innovative smart grid 
technologies conference Europe (ISGT Europe); 2010. p. 1–7.

[25] Aminifar F, Fotuhi-Firuzabad M, Shahidehpour M, Khodaei A. Observability 
enhancement by optimal PMU placement considering random power system 
outages. Energy Syst 2011;2:45–65.

[26] Chawasak R, Suttichai P, Sermsak U, Neville RW. An optimal PMU placement 
method against measurement loss and branch outage. IEEE Trans Power Deliv 
2007;22(1):101–7.

[27] Roy BKS, Sinha AK, Pradhan AK. An optimal PMU placement technique for 
power system observability. Int J Electr Power Energy Syst 2012;42(1):71–7.

[28] Zivanovic R, Cairns C. Implementation of PMU technology in state estimation:
an overview. In: IEEE 4th AFRICON; 1996. p. 1006–11.

[29] Jamuna K, Swarup KS. Two stage state estimator with phasor measurements.
In: International conference on power systems; 2009. p. 1–5.

[30] Steven MK. Fundamentals of statistical signal processing. NJ (USA): Prentice 
Hall; 1993.

[31] Anderson BDO, Moore JB. Optimal filtering. Mineola (NY): Dover Publications,
Inc.; 1979.

[32] Indulkar C, Ramalingam K. Estimation of transmission line parameters from 
measurements. Int J Electr Power Energy Syst 2008;30(5):337–42.

[33] Bougerol P. Kalman filtering with random coefficients and contractions. SIAM J
Control Optim 1993;31:942–59.

[34] Standard IEEE test system. <http://www.ee.washington.edu/research/pstca>.

http://www.ee.washington.edu/research/pstca

	Optimal PMU placement for power system state estimation with  random component outages
	1 Introduction
	2 State estimation in power system
	2.1 Static State Estimation (SSE)
	2.2 Dynamic State Estimation (DSE)

	3 Optimization criterion for PMU placement
	3.1 Optimization criterion for SSE
	3.2 Optimization criterion for DSE
	3.2.1 Upper and lower bounds

	3.3 Monte Carlo approximation
	3.3.1 Criterion approximation for SSE
	3.3.2 Criterion approximation for DSE


	4 Optimal PMU placement algorithm
	4.1 Candidate PMU placement solutions calculation
	4.1.1 The original ILP method
	4.1.2 Modified version of ILP

	4.2 State estimation performance refining

	5 Simulation results
	5.1 IEEE 9-bus system
	5.1.1 Static estimation
	5.1.2 Dynamic estimation

	5.2 IEEE 14-bus system
	5.3 IEEE 39-bus and 118-bus systems

	6 Conclusion
	References


