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Abstract

This paper is concerned with the observer-based H,, control for a class of singular Markov jump
systems over a finite-time interval, where the transition probability (TP) is time-varying and is limited
to a convex hull. Due to the limited capacity of network medium, packet losses are presented in the
underlying systems. Firstly, using a stochastic Lyapunov functional, a sufficient condition on singu-
lar stochastic H,, finite-time boundedness for the corresponding closed-loop error systems is provided.
Subsequently, a linear matrix inequality (LMI) condition on the existence of the H,, observer-based
controller is developed from a new perspective. Finally, three numerical examples are provided to illus-
trate the effectiveness of the proposed controller design method, wherein it is shown that the proposed
method yields less conservative results than those in the literature.
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1. Introduction

The past several decades have witnessed a great deal of interest in Markov jump systems
(MIJSs). This increased interest is due to their strong ability to describe systems subject
to abrupt variation in their structures or parameters [1]. As a result, MJSs can be utilized
to characterize and model many types of systems in applications, such as communication
systems, networked control systems, economics systems, and others. It is a fact that TPs play
an important role in the performance of such systems. Based on the assumption that the TPs
are time invariant, the stability analysis and synthesis for MJSs have been studied in [2-8].
For example, the problem of adaptive sliding-mode stabilization for MJSs with actuator faults
was discussed in [7]; the energy-to-peak state estimation for Markov jump recurrent neural
networks with time-varying delays was studied in [8]. However, in practical applications
involving economic systems, flight control systems and networked control systems, the TPs
are not time invariant. As it is well known that packet dropout and stochastic delays in
the networked control systems can be expressed by a Markov process or Markov chain.
In practice, delay or packet dropouts are changing in different periods, which results in the
time-varying transition probabilities, so the investigation of the control problem on MJSs with
nonhomogeneous Markov process or Markov chain becomes important. Recently, the issue
of state estimation for Markov jump neural networks with piecewise homogeneous Markov
chain was concerned in [9,10]. For nonhomogeneous MJSs (NMIJSs), the stability analysis and
controller design have been investigated in [11-15]. Especially, when the time-varying TPs
are assumed to be in a polytopic sense, the design of controller for NMJSs was investigated
in [12-15]; the filtering problem for Markov jump neural networks was investigated in [16].

Singular systems, also referred to as descriptor systems, differential-algebraic systems,
generalized state-space systems or semi-state systems, have attracted a large number of re-
searchers’ attention. The reason is that they have widespread applications in biological sys-
tems, networked control systems, economic systems, power systems, and so on [17,18]. Re-
cently, the observer-based controller for descriptor system with Brownian motions was in-
vestigated in [19]. Singular MJSs, as a special class of MJSs, have been widely studied due
to their perfect application in the real system [20-32]. Many interesting results for singular
MJSs are produced, for example stabilization [20,21,23-26], sliding mode control [22,27],
finite-time control [28-32]. In particular, the observer-based finite-time control problem for
discrete-time singular MJSs has been studied in [28]. However, in order to use the existing
LMIs method, there is mandatory restriction on the Lyapunov variables in [28], which will
lead to conservative results. By invoking equality constraints P;,B; = B;0;, the reliable sliding
mode finite-time control for discrete-time singular MJSs with sensor fault and randomly oc-
curring nonlinearities has been discussed in [31]. In this case, checking the conditions may
involve numerical difficulties. Thus, developing a method to give a less conservative condition
on the existence of an observer-based controller for singular MJSs in terms of strict LMIs
motivates our current study.

Networked control systems have many advantages such as lower cost, higher reliability
and easier maintenance. The network-induced problems has been attracted lots of researchers
in the past decades, such as network-induced time delays [33,34], event-triggered control
[35,36]. It is worth mentioning that in networked control systems, the data may be damaged
in the network due to limited bandwidth, sensor failure and noisy measurements. This can
degrade the system performance or even cause system-level faults. Consequently, many useful
results on designing networked control systems against the packet losses have been developed
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[37-43]. The Hy control problem for nonlinear systems with missing measurements between
the sensor, controller and actuator was studied in [38]. Authors in [41] considered the H,,
filtering problem for discrete-time singular systems with lossy measurements. For singular
MJSs with missing measurements, the design of filter was given in [42,43]. But up to now,
the issue of observer-based controller design for singular NMJSs in the presence of packet
losses has not been addressed.

Inspired by the aforementioned works, we study the observer-based finite-time control
problem for a type of discrete-time singular NMJSs subject to packet losses in this paper.
Bernoulli processes are introduced to describe the intermittent measurements caused by the
packet losses in the forward and feedback channels. First, based on stochastic Lyapunov func-
tional, considering the influence of packet losses, a sufficient condition on singular stochastic
H, finite-time boundedness for the corresponding closed-loop error systems is given. Then,
we design the observer-based controllers in terms of strict LMIs from a new perspective. The
innovations of this paper are outlined as follows:

(1) A new discrete-time singular MJSs model is proposed, which takes singular systems,
nonhomogeneous Markov chain and packet losses into account. In contrast to [30,31,32],
a new method is introduced to better eliminate the coupling between Lyapunov variables
and system matrices.

(2) Different from [5,13,28,31], a new observer-based controller design method is presented
in our paper, which leads to a less conservative result.

(3) To show the practicability of the proposed method, the DC motor controlled inverted
pendulum is applied.

Notations: Throughout this paper, X>0 (X>0) means that the symmetric matrix X is
semi-positive definite (positive definite). I and O represent, respectively, the identity matrix
and zero matrix with appropriate dimensions. The superscript ‘7" denotes the transpose of
a matrix, diag{---} represents a block-diagonal matrix. ||x|| refers to the Euclidean norm of
the vector x. E[-] stands for the mathematical expectation. In addition, in symmetric block
matrices, * represents as an ellipsis for the terms that are introduced by symmetry, and sym(X)
represents X + X7. x represents matrix components that are not relevant in the discussion.

2. Preliminaries

Consider the following discrete-time singular NMJSs:

Ex(k+ 1) = A(0)x (k) + Bi (Ox)u(k) + B2 (O)w(k),
y(k) = axC (6 )x(k), )]
z(k) = H(O)x(k) + DO )w(k),

where x(k) € R", y(k) € R/, and z(k) € R? are the system state, the measurement output,
and the controlled output of the system, respectively. The matrix £ € R™" is singular with
rank(E) = r, < n. w(k) € R? is the exogenous disturbance input that is of the following form:

E{ % wT(k)w(k)} <d?d=>0. 2)
k=0

In this paper, the stochastic variables o represents the possibility of occurring networked
induced packet losses, which is a Bernoulli distributed white sequence with the following
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probability distribution laws:

Prob{ax = 1} = E{ot} = «,
Prob{oy =0} =1—-E{wy} =1 —«, (3)

where «a €[0, 1] is a known constant.
{6k, k>0} is a discrete-time Markov stochastic process taking values in a finite state space
S =1{1,2,...,S}, the evolution of {6, k>0} is governed by the following TPs:

i (k) = Pr{Os1 = jlOx = i}, “4)

s

with the restrictions 7 ;;(k)>0 and ) 7;; (k) = 1. m;;(k) are the entries of the TP matrix IT(k).
J=1

[1(k) is a time-varying matrix that resides in a polytope:

MMk) ecofll*: s =1,2,..., M}, (5

where IT°: s =1,2,..., M are constant TP matrices that are the vertices of the polytope
and co stands for convex hull, namely,

(k) = AZA:Ots(k)HS, (6)

s=1

M
where a(k) € [0,1],s=1,2,..., M, and Y o (k) = 1.
=1

In this paper, we design an observer-based controller for system (1) of the following form:

{Ef(k + 1) = AOIx (k) + B1(Op)u(k) + F (0r) (y(k) — aC ()% (k)), e

u(k) = BrK (6r)x(k).
where x(k) € R™ is the estimated state. F(6;), K(6;) are the observer and controller gains to

be designed later, respectively. The stochastic variables S;, mutually independent of oy, is
also a Bernoulli distributed white sequence with the following probability distribution laws:

Prob{Bx = 1} = E{B} = 8,
Prob{f =0} = | —E{f} = 1 — B, (8)

where B €[0, 1] is a known constant.

Remark 1. In our paper, as depicted in Fig. 1, it is assumed that the packet losses occur in
controller-to-actuator and sensor-to-controller communication links. In this case, two stochastic
variables a(k), B(k), which follow the Bernoulli distribution, are respectively introduced to
model the packet losses.

For notational simplicity, in the sequel, for every 6; =i, we denote A(6y) by A;, B1(6x)
by Byi, B2(0k) by Bai, C(0x) by Ci, D(0y) by D;, H(0y) by H;, K(0y) by K;, and F(0;) by F;.
Define e(k) = x(k) —X(k), and ¢ (k) = [x" (k) " (k)]T, then the corresponding closed-loop
error systems formed by system (1) and controller (7) can be written as follows:

E¢(k+1) = Aig (k) +Bio(k),
z2(k) = Ci¢ (k) + Diw(k),

where

€))
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Fig. 1. Block diagram of networked singular NMJSs.

=_[E 0]l % _[Bi] = _rn
E_|:O E],Bi_[BZJ,C,_[H, 0],

Ai+ BBk —BiBuKi | 5 _ p
[ 0 4 — oG | P =P (10)

2|

i = s i —

Before establishing the main results, we first recall the following lemmas and definitions:
Definition 1 [21,23]. System (9) with w(k) = 0 is said to be

(i) regular if det(sE —A;) 20 for Vi e S,
(i1) causal if degree { det(sE — A;)}= rank(E) for Vi e S.

Definition 2 [28]. (singular stochastic finite-time boundedness (SSFTB)) System (9) is said
to be SSFTB with respect to (cy, ¢z, Gi, N, d), where 0 <c| <c¢, G;>0 and N € Z, if system
(9) is regular and causal, and satisfies
E(7 (O GE¢(0) < ¢} an
= E{TKE GE¢(k)} <, Vkel 2, ... N.

Definition 3 [28]. (singular stochastic Hy, finite-time boundedness (SSH,,FTB)) System (9) is
said to be SSH.FTB with respect to (ci, ¢z, G;, N, d, y), where y is a prescribed positive
scalar, if system (9) is SSFTB with respect to (ci, ¢z, G;, N, d) and under zero initial condition,
the controlled output z(k) satisfies

N N
E{ > (k)z(k)} <2 o wk). (12)
k=0 k=0

Lemma 1 [3,6]. The following conditions are equivalent.

(1) There exists a symmetric matrix P> 0 such that

ATPA—P < 0.
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(2) There exist a symmetric matrix P and G such that

P (GA)"
|:>x< sym(G) — Pi| > 0.

Lemma 2 [44]. Given any real matrices X, Y and Z with appropriate dimensions and such
that Y> 0 and symmetric. Then, we have
X"Z+7Z"X <X'vyX +7"y"'Z.

The purpose of the paper is to design the observer-based controllers in the form of Eq. (7) for
system (1) such that system (9) is SSHooFTB with respect to (ci1, ¢, Gi, N, d, y).

3. Main results

In this section, taking into account the influence of the packet losses, we aim to study the
SSHFTB problem for system (9). The result is given in the following theorem:

Theorem 1. For given scalars u>1, ¢y >0, N>0, d>0, and matrices G; >0, system (9) is
SSH.FTB with respect to (cy, ¢z, G;, N, d, y), where y = \/puV, zf there exist constants
>0, A2>0, p>0, a set of positive definite symmetric matrices P and Pl, matrices Uj,
Vi, Ji, Vi, j € S, such that

Dy; Dy, U;B, E,-T
_vV._vyl L P B.
* ‘/l ‘/l + Pll ‘/IBI _OT < O, (13)
* * —pl D,
* * * —1I
G < Ff < MGy, (14)
Azcl + de < u- cz, (15)

where

®y; = sym{U;(A; — E)} + ETFZE - “ETF?E
Dy = Ui+ (A —E)'V]! ‘f‘ETﬁfl + ST
. S MM ;

P,=> Z Z(X (k)oy (k) P;,

j=ls

S

F.:

L

Mi

as (k)P

Il
-

5

A; is defined as in Eq. (10) with oy, By replaced by a, B. S; € RZV*C1=20 jg the arbitrary
matrix satisfying FTSi = 0 and rank (S;) = 2n —2r.

Proof. Firstly, we prove that system (9) with w(k) = 0 is regular and causal.
From Eq. (13), we have
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Dy; Dy;

—s . 1
] &
Setting ¢ = [I  (A; — E)"], which is of full row rank. Then we pre- and post-multiply
Eq. (16) by ¥ and ¢4/, it follows that:

A PLA; + sym{A, SiJT} — uE' PE < 0. (17)
Now we choose two nonsingular matrices .#; and .4/ such that
T A — _IZr 0 A _ Kli Z2i

r°

155 o1 | Py P
% TP;% I _ lil _%ll:|7

L * Py
H TP = [P ng
i 1 i i * P3i 4
TS = gﬂ,M= [i i) (18)

From ETS[ =0, it follows that S;; = 0. Then pre- and post-multiply Eq. (17) by 4.7 and
A, it follows from Eq. (18) that:

[: Zi| <0, (19)
where

B —— T =5 s T B ——
Ai = AyPyAi + sym{Ay (Pyy)" Agi + AySaidui} + Ay Py A
From P); > 0 and Eq. (19), it is obtained that
T =5 5 5T B ——
sym{Ay; (Py) Agi + AySaidai} + AyPyyAsi < 0. (20)

Then, Eq. (20) implies that Z4i is nonsingular. From Definition | and reference [18], we have
system (9) with w(k) = 0 is regular and causal.

Next, we prove that system (9) is SSFTB, i.e. Eq. (11) holds. To this end, we assume
that the left hand side of Eq. (11) holds for the given c¢; >0. We construct the Lyapunov
functional as:

M
V(). b en) = ¢T(OE PLEC(K) = Y e (k)eT (OE PEC (k). @1

s=1

where P/ > 0, Vi € S. Then we have

S
E[V((k+ 1), Ot )0 and = 3 > Y as(R)ay(k + Ve (k+ DE PEC(k +1).

j=1 s=

—
—_

§=

(22)

Denote
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M M
Y ak+ 1P =Y o (k)P},
s=1 =1
where 0 < o0;(k) < 1, Zf\il o;(k) =1, we rewrite Eq. (22) as
T —5 —
E[V (£ (k+ 1), Ocs1, )16 ] = &7 (k+ DE PyEC (k+ 1),

where P = Y3 Y1 oM oy (K)o (k) P
Let

t(k) =E;(k+1) — E¢ (k).
From Eq. (25), we rewrite Eq. (24) as the following equivalent form:
E[V($(k+ 1), O, otq1) |6k, o]
= (E¢ (k) + (k) Py (EC (k) + 7 (k).
From Eq. (9) and Eq. (25), it follows that:
(Ai — E)¢ (k) — (k) + Biw(k) = 0,
then for any matrices U; and V;, we get
2w ()M {(A; — E)¢ (k) — T (k) + Biw(k)} = 0,
where

wk) =["®) k) oK),
M;=[uf v o]

Noting that 2t7 (k)S;J7 ¢ (k) = 0, along with Egs. (25) and (27), it is obtained that

E[V (¢ (k+ 1), i1, )0, ax] = w7 (k)O;m T (k),

where
Oy Dy, UB;
Q=% —Vi—VI+P, VB |,
* * 0

©y; = sym{U;(&; —E)} + E' PE.

From Eq. (13), we have

E[V (¢ (k + 1), Os1, xe)16k, ax] < 1V (£ (K), 6k, ) + po” (K)o (k).
Further, we iterate this process of Eq. (29), and it follows from Eq. (2) that

E[V (¢ (k), 6k, ax)] < RELV (£ (k = 1), 61, ax-1)] + pE[0” (k — Dok — 1)]

k—1
< W*EIV (£ (0), 6, o)1 + pE[Z Tl (n)w(n)]

n=0
< uE[V (£(0), 60, ap)] + pputd?.

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

€29
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R Cy. =T = . .
Define P{ = G, *P;G, ?, considering E{{T(O)ETG,-EC(O)} < ¢} and Eq. (14), it is obtained
that

E[V (£ (0), 60, @) = E[¢” (O)E" P,E¢(0)]

= E[¢" (OE G} P:GIE¢ (0)]

< max A (PE( T (OF GiE¢ (0))

< Aaci. (32)
On the other hand, from Eq. (14), it follows that:

E[V (¢ (k). 6. 00)] = E[¢7 (WE ' PiEC (k)]

— El¢T (OE G PG E¢ (k)]

> E(tT (OE GE¢ (k). (33)
Considering the proof process between Egs. (30) and (32), we have
E{¢T(WE GE¢ (k) < 1 (ac} + pd?®) < u¥ Gt + pd?).

Then one obtains from Eq. (15) that E{¢T ())E ' GE¢ (k)} < c3, ¥k € {1,2,...,N}. Based on
this, it is obtained that system (9) is SSFTB with respect to (cy, ¢2, Gi, N, d).

Finally, we discuss the H,, performance of system (9), that is, under zero initial condition,
Eq. (12) holds. From Eq. (13), it is obtained that

E[V (¢ (k + 1), Op1, axs1)] < 1V (R, Ok, o) + poo” () (k) — 2 (k)z(k). (34)
In the following, we give the iteration process of Eq. (34)
E[V (£ (k), Ok, )]

< UE[V (¢ (k — 1), 61, ax-1)] + pE[@’ (k — Dok — 1)] — E[z" (k — Dz(k — 1)]

k=1 k—1
< WELV (£ (0), 60, a0)] + pE[Z u’””wT(mw(n)} - E[Z phton? (n)z(n)]- (35)
n=0 n=0

Then under zero initial condition, together with V(¢(k), 6y, oy)=>0, it follows from
Eq. (35) that

k—1 k—1
PE [Z e (n)w(n)} > E[Z phtmngt (n)z(n)] , (36)

n=0 n=0

Since p>1, it implies from Eq. (36) that
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k—1 k—1
E[Z z’ (n)z(n)} < E[Z T (n)z(n)}
n=0 n=0
k—1
< pE[Z p ! (n)w(n)}
n=0

k—1
< puklE[Z o' (n)w(n)} (37)

n=0

which further implies that

N N
E[Zz%n)z(m} < yzE[Z o (n)w(n)},
n=0 n=0

with y = \/pu. Thus, by Definition 3, system (9) is SSHFTB with respect to (ci, ¢z, G,
N, d, y). The proof is completed. I

Remark 2. A sufficient condition on SSH.,FTB for a class of singular NMJSs with packet
losses is presented in Theorem 1. In contrast to [30-32], where the traditional inequality
P,P~'P, > 2P, — P is introduced to eliminate the coupling between Lyapunov variables and
system matrices, the slack variables U; and V; in Eq. (28) are used in the paper. It is noted
that this alternative controller synthesis method will give less conservative results by means
of the incremental flexibility from Lyapunov variables and additional slack variables.

We have analyzed the SSHFTB problem of system (9). On the basis of the obtained
results, we will design the parameters for the observer-based controller of Eq. (7) in terms of
strict LMIs.

Theorem 2. For given scalars ©>1, «, B, a1, az, az, a4, ¢ >0, N>0, d>0, and matrices
G, >0, system (9) is SSH.oFTB with respect to (c1, ¢z, Gi, N, d, y), where y = \/puV, if
there exist constants ¢ >0, A, >0, p >0, matrices P};, Py;, P;, Ui, Ui, Vii, Vai, J1i, Jais J3is
Jai, Y, Qi>0, L;, T;, Ny, Vi, j € S, such that Eq. (15) and

m+0  BWIL] 0

* sym{—N;} T." | <0, (38)
* * —0;
ST )
G; < [* P§i:| < MG, 39)

where
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My; My My My M5 HY

* I Il Ty Ilo; 0

o= * * Iy Il Il O
' * * * Iy Iy 0 )

* * * * —pl DiT

* * * * * -1
y; = sym{Uy;(A; — E) + BByLi} + ETPL,E — nET PSE,
My = —BByL; — a1aT,C; + a\Y;(A; — E) + BL] B, + (A; — E)'U); + E"P),E — uET PE,
M3 = —Uy; + BL B}, + (A — E)'VE + ETPy; + JuR]
My = —arYi + BLT B + (A; — E)TV,E + ETPy; + JuR!,
[l5; = Uy;iBai + a1YiBa,
Mg = sym{—BBiL; — axaT,C; + axYi(A; — E)} + ETPy,E — uETPS.E,
M7 = —Uy — BL! Bl, — a32CI T" + a3(A; — E)'Y" + ETPL + J5RT,
Mg = —ayY; — BLI B, — ayaCl' T + as(A; — E)'Y," + ETP3; + JuR!
[y; = UpiBai + a2Y;By;,
My = —Vii — Vi + Pus,
My = —asY; — V) + Pa,
Iy, = V1;Bai + a3Y;By;,
M3 = —asY; — asY;" + Psi,
[My4; = VaiBa; + a4Y;By;,
T = [BLUL — NBY,  BLUL —NIBY, BIVI —N'BI, BLvi—NIBL, 0 o],
Wi=[I -1 0 0 0 0]

s
Pi=) jTinPz[j’ t=1,2,3.
=

R; € R™W=1) s the arbitrary matrix satisfying ETR; = 0 and rank (R;) = n — r. Moreover,
the state feedback controller gains are K; = NflLi and the observer gains are F; = YflT,'.

Proof. Firstly, from Eq. (37), we have —Y; — ¥,/ + P3; < 0 and —N; — NI < 0. Since P3; >
0, it implies that Y; and N; are nonsingular. From K; = Nl.’lL,- and F; = Yl.’lTi, it is obtained
that

L; =NK;, T, =YF,. (40)
Setting
U = -Ulz ar; | Vi asY;
U @i T [V ad;
J = _Jll J21 o R, 0
T _J3l J41 ’ T 0 Rl ’
s __ [P ISi P zsi P _ F;i I_J;i D _ Fiil F;il
= | * P3Sii|’Pi_|:* Py, Fu = x Pyl @b
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Then, we substitute Eq. (10) with oy, Bi replaced by «, 8, Egs. (39) and (40) into Eq. (13),
we have

A Ay Ay Ay Tsp HT

*  ANg A7 Ag; Iy 0
* * A A Iy 0
* * * Ay Ty 0| = 0.
* * * * —pl D!
* * * * * —1I
where

Ay = sym{Uy;(A; + BB\,K; — E)} + ETP|,E — uETP},E,
Agi=— BUB1K;—a\aT,C;i+a,Yi(Ai—E) + (A; + BB\,K;—E)"U), + ETP5,E—nET PE,
Az = —Uy; + (A + BBiK; — )TV + ETP |, + JuRY
Ay = —arY; + (A; + BB1K; — E)'V) + ETPy, + JuR!
Agi = sym{—BUnB\K; — a2 T,C; + aY;(A; — E)} + ETPy,E — pnETP,E,

Azi = —Uy — BKT BTV — a3aCT T + a3 (A; — E)TYT + ET(Py,)" + JuRY,
Agi = —ayY; — BKT BTV — ayaCT TT + as(A; — E)'Y + ETPS, + JuR!

i

Ao = =Vii = VI + P,
=

A= —asYi = Vy +P2L1;

Az = —agY; — agY;" + Py,

By considering the nature of the convex combination, the above inequality holds if the fol-
lowing inequality is satisfied:

- — — - T
g By By By o Iy H;
* Bg &7 By Iy 0
* * Iy Ty Iy O
<0, (42)
k k k I1 13i I1 14i O
* * * * —pl DI
* * * * * —1
where

sym{U;(A; + BB1iK; — E)} + E" P\,E — nE' PJE,

— BUIiB\Ki—a1aT,Ci+a\Yi(Ai—E) + (A; + BB1K; — E)'Uj; + ETPyjE — uET PSE,
= —Uii+ (Ai + BBK; — E)'VE + ETPy; + JuR],
—arY; + (A + BB1K; — E)'Vy; + ETPy + JaiR]
= sym{—BUxBiK; — a2aT,C; + ayY;(A; — E)} + ETP3,E — nET P.E,
= —Usi — BK{ BIVi; — a3eC[ T +a3(Ai = E)'Y + E" P, + IR} ,

= —ayY, — BKT BTV — ayaCT T + as(A; — E)TY + E"Py; + JuR! .

w ez
T

S
|

o] [ [ E] o] o [
Il

e

Now, we decouple the terms in Eq. (41), Eq. (41) is rewritten as the following equivalent
form:
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A Ay Ay Ay s HY

l

*  ANei A7 A Ilo 0
* * Mo Iy Ty
* * * | § CETRRN § P, 0 + Sym{,BQlI(le} <0, (43)
. * —pl D]
L * * * * x =1
where

Ay = sym{Uy;(A; — E)}Y + ETPLE — nET PE,
Ay = —a1aT,C; + aYi(A; — E) + (A; — E)'UL + ETPyE — uETPS.E,
A3 = —Uy+ (A — E)TVE + ETPy; + JuRT,
Ay = —arY; + (A; — E)'VyE + ETPy + JuR],
Agi = sym{—a,aT,C; + arY;(A; — E)} + E" P3,E — nE" PE,
Aqi = —Us — a3aC] T + a3(A; — E)Y," + ETPL + JyR!
Asi = —aoY; — asaCT T, + ag(A; — E)'Y,T + ETPs; + JyuR!

i
T
Q =[BlUj; BlUy BV B{Vy; 0 0].

Further, Eq. (42) has the following equivalent form:

I1; + sym{BT,K;W;} < 0. (44)
On the other hand, from Lemma 2, we have

sym{BTKW;} < Qi + (BTEKW)' 07 (BTIKW)). (45)
From Eq. (37), using Schur complement, we have

[T1; + Q; BWILT
* sym{—N;} + T, 0;"!

Applying Lemma 1 to Eq. (45) with G = N;, then Eq. (45) is equivalent to

T} <o 46)

[T, + O WIKT
« ¢ —(ﬁTQ,lm—l} =0 @
which further implies that
I, + Qi + (BTKW)HT O (BTiIKW;) < 0. (48)

From Eq. (44), it is obtained that if Eq. (47) holds, then Eq. (43) holds, which further implies
that Eq. (13) holds. On the other hand, it follows from Eq. (38) that Eq. (14) holds. Therefore,
according to Theorem 1, if Egs. (15), (37), (38) hold, one has system (9) is SSHFTB with
respect to (c1, ¢z, Gi, N, d, y). The proof is completed. [

Remark 3. In Theorem 2, the criterion on finite-time observer-based control is established for
a class of discrete-time singular NMJSs with packet losses. In the case of £ = I, the problem
studied in this paper reduces to the finite-time observer-based controller design for NMJSs.
Compared with the results in [13], where the Lyapunov variables have a diagonal form, U;
and V; are introduced in our conditions to eliminate the restriction form. This suggests that
our method is less conservative.

Remark 4. It should be pointed out that when Il(k) = I1 for some constant matrix II,
the problem studied in this paper reduces to finite-time observer-based controller design for
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discrete-time singular MJSs with packet losses. And the result is correspondingly elaborated
as follows:

Corollary 1. For given scalars u>1, «, B, ai, az, as, as, ¢c; >0, N>0, d> 0, and matrices
G; >0, system (9) is SSH,oFTB with respect to (ci, ¢z, Gi, N, d, y), where y = \/pu", if
there exist constants c, >0, Ay >0, p >0, matrices Py;, Py, P3;, Uii, Usi, Vii, Vai, J1is Jois J3i,
Jai, Yi, Qi>0, L;, T;, Ny, Vi, j € S, such that Eq. (15) and

ri+0, WL 0

* sym{—N;} 7:7 <0, 49)
* * —0;
P P .
Gi < [ . PJ < MG, (50)
where

Iy I';; Ty Ty s HY

* TIe I'zz Ty Iy 0
r = * * Iy Iy Il O
* * * Iy Iy 0|
* * * x —pl DI
* * * * * —1I

I'y; = sym{Uyi(A; — E) + BBLi} + ETP,E — uET PE,
'y = —BBLi — a,aT,C; + a,Yi(A; — E) + IBLiTBlTi + (Ai = E)TUZTi +E'PuE — pE"PyE,
T3 = —Ui + BL B}, + (A — E)"VI + ETP\; + JuR]
Fu = —arY; + LI Bl + (A; — 'V + ETPy + IR
Tei = sym{—PBB;L; — axaT,C; + a;Y;(A; — E)} + ETP3,E — nET PE,
U7 = Uy — BL! Bf, — a3aC] T," +a3(A; — E)'Y! + ETPJ, + J3R]
Py = —axY; — BL] B, — asaCl T, + as(A; — E)'Y + E"Py; + JuR]

i

S
]P)”‘ = Z JT,‘J‘PU', L= 1, 2, 3.
j=1

IIs;, Mo;, Mo, 1y, Mygs, Tysi, g, T, Wi, R; are the same as Theorem 2. Moreover, the
state feedback controller gains are K; = Nl._lLi and the observer gains are F;, = Yi_lTi.

Remark 5. When there are no packet losses affecting the underlying system, i.e. o =1,
B =1, Corollary | reduces to the finite-time observer-based control criterion for discrete-
time singular MJSs. Note that similar problems were investigated in [5,28,31]. However, the
equality constraints Cy;X; = W;C,; in [5], P,,B; = B;6; in [31] are involved, which may make
it difficult to check the condition numerically. The conditions given in our paper are in the
form of strict LMIs without invoking equality constraint, which are reliable and tractable
in numerical computation. Compared with [28], where special structure was imposed on the
Lyapunov variables, more flexible conditions are given in our paper via introducing slack
variables U; and V.

4. Examples

In this section, three numerical examples are given to show the effectiveness of the proposed
design methods. First, we present two examples to show the benefit of our methods over the
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existing ones. Then, an inverted pendulum is provided to illustrate the application of the
proposed methodologies.

Example 1. Consider the following MJSs with two operation modes, which were given in

[5].

* Mode 1
15 0 1o
Ar= |:1.8 0.6]’3“ = [0 1}’

1 0 0.5 1
321=|:O 1]’Cl=|:08 1i|,

* Mode 2

12 1 10
AZ:[O.S 1]’3122[0 1}’

1 1 1 0
B = [0 1]’ €= |:0.8 1]’
The TP matrix is given by

0.6 04
= [0.4 0.6]'

In addition, similar to [5], we choose G =G, =14, c; =1, N=5, d =1. In order to
compare with [5], we set « =1, 8=1, H =0, H,b,=0,D,=0, D, =0, E=1L, R =
R, = 0. By using the method in [5], we can find feasible solution when 1.92 <p <43.75.
However, according to Corollary 1, we can find a feasible solution when 1.05<u <47.2,
which is larger (better) than the one given in [5]. Particularly, when u = 1.05, the state
feedback controller gains and observer gains are given below:

ko _ [F0.0916  —0.2708] . _ [-0.6899 —0.7332
= 1207964 —0.2795" ™2 = | -0.5569 —0.5614 |

F— —0.0061 0.6597 F = 0.4267 1.0753
"7 113200 0.0241 772 7 {09293 0.5592

Example 2. Consider the following singular MJSs with the parameters, which were given in
[28].

* Mode 1

H =[0 02],D,=0.1,
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H,=[0 0.1],D; =0.1.

The singular matrix and TP matrix are given by
1 1 0.7 03
b= [0 o}’ = [0.4 0.6]'
Setting Ry =R, =[0 1], Gi =Gy =L, c;=1,d =2, u=1, N =6. It should be noted
that there is no feasible solution by using the method given in [28] (Remark 5). However, if

we chooseax =1, 8=1,a;=0,a, =1, a3 =0, as = 1, by using Corollary 1, it is feasible.
Then, we have the following state feedback controller gains and observer gains

K _ [~05267 022147 . [1.5995
=1 02214 —0.6991 """ = [1.8397]

o _ [04852 003027 . _ 20920
27100302 —0.6534"72 7 [3.9520|

Thus, from the above discussion, it is obtained that the methods given in our paper are less
conservative.

Example 3. In this example, we consider a DC motor device driving an inverted pendulum,
which is shown in Fig. 2. As noted in [24,27], the following equations of motion are used to
represent the inverted pendulum:

Ex(t) =A@0)x)+ Bi(6)u).

By setting a certain sampling time, such as 7Ty =7/10, we can discretize the obtained
continuous-time singular MJSs. The system parameters are given by

* Mode 1
w=liioos) 2=
2 11
321=[8_2 06},@:[0.2 0.2],
H =[-05 03],D,=[12 0.1],

* Mode 2
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Mass m

Massless shaft

length 1 —

Current [ Resistance R1

—>

Inverted
Pendulum

Inductance L Resistance R2

Control Gear
Inputu | Train
Fig. 2. DC motor controlled inverted pendulum.
T T T T
_—a |
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<IN
10 20 30
3
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-0.2 1
-0.4 .
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-0.8 1
_1 1 1 1 1 1
0 5 10 15 20 25 30
time k

Fig. 3. State responses of the closed-loop error system (9).

The motor is subject to abrupt failures, and the equipment is altered to take these failures
into account according to a prescribed Markov chain. The TP matrix is known to be cumber-
some in some circumstances but is assumed in [24,27] to be precisely known. In our paper,
we assume that the TP matrix is not precisely known but belongs to the polytope defined by
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0
0 é 16 15 26 25 30
Fig. 4. Data packet losses a(k).
1
ol
0 é 16 15 26 25 30

Fig. 5. Data packet losses B(k).

the following two vertices:

,_[02 08] ., [06 04
& _[0.65 0.35}’1_I _[0.53 0.47}'

0
0
Additionally, we suppose G| =G, =14, c;=1,d=2,N=5, u=10l,a ==02,a, =
0.3, a» =1, a3 = —0.1, a4 = 1. According to Theorem 2, solving the LMIs (15), (37), (38),
the optimal performance index, y, is calculated as y = 5.9351, the optimal ¢, is ¢, = 13.1014,

The singular matrix is given by E = [ (3)], therefore, we take Ry and R, as Ry = R, = [g].
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the associated state feedback controller gains and observer gains are given below

Ki=[-1.1037 02540]. F, = [i;ig;ﬂ
Ky =[-03910 —0.4803]. F, = [_3114883296]

2
For simulation, we choose the disturbance input as w(k) =[ %
P “/gexp(—k)cosk
the response of states of the closed-loop error systems. From Fig. 3, it can be seen that system
(9) is SSH..FTB with respect to (1, 13.1014,14, 5,2,5.9351).

exp(—k)smkl Fig. 3 shows

5. Conclusions

The problem of finite-time observer-based H., control for singular MJSs subject to packet
losses has been investigated in this paper. Packet losses, which follow the Bernoulli distri-
bution, occur both in the forward and feedback channels. Based on a stochastic Lyapunov
functional and considering the impact of packet losses, a sufficient condition on SSH.,FTB for
the closed-loop error systems is given. Then, the controller gains and the observer gains are
designed in terms of strict LMIs from a new perspective. Numerical examples demonstrate the
effectiveness of the proposed method. Applying the theoretical results developed in this paper
to some practical applications such as bio-economic systems, oil catalytic cracking process,
and so on, will be part of our future research. Inspired by [45,46], the adaptive observer-based
controller design for singular switched nonlinear systems will be another interesting future
research topic.
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