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Abstract

In this paper, we consider a stochastic linear quadratic mean field game for the continuum-
parameterized multi-agent systems with multiplicative noise. Based on the Nash certain equivalence
principle, we obtain a series of decentralized control laws. Then, Dynkin’s formula and comparison
principle are employed to prove the boundedness of the state of the closed loop system in the mean
square sense. Finally, we show that the set of decentralized controls has an e-Nash equilibrium property.
© 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the control and optimization problems of multi-agent systems (MASs) have
attracted a lot of attention due to its wide application background in many fields, such as
engineering, economics, biology and communication networks [1-3]. In these areas, the
optimization problem of MAS in the game theoretic framework, though is not investigated
extensively, has catched the attention of many researchers. The areas investigated by the
mean field approaches have been extended to game theory, economics and finance. Basar
and Olsder [4] gave a good survey for noncooperative game models, which were widely
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used in the flow control and routing of networks [5,6]. Papers such as [7-13] investigated
the stochastic differential games for large-population multi-agent systems (LPMSs) and gave
e-Nash equilibrium strategies by the Nash certainty equivalence principle methodology.
This approach involves the following steps: Firstly, use the state aggregation method to
approximate the population state average (PSA) by a deterministic signal v; Then, solve the
tracking-like quadratic optimal control problem with the deterministic reference signal; At
last, prove the existence and uniqueness of v, and construct the decentralized control law by
using the unique solution v*. Intuitively, v* should possess the following property: if every
agent views it as an approximation of the PSA, and according to which, makes the optimal
decision, then the expectation of the closed-loop PSA should approach to v* when the number
of agents tends to infinity. This methodology for construction of the decentralized control
law is called Nash certainty equivalence principle (NCEP) [14]. In addition, [15] expounded
the mean field game and mean field type, and [16] discussed for minimizing a social cost.

As is well known, the geometric Brownian motion has many applications in physical
sciences, biology and financial mathematics, such as the equations of the water heating and
cooling model, the drug absorption model, the population model and the stock price model
[17,18]. Motivated by these, we consider the linear quadratic (LQ) mean field game problem
of continuum parameterized multi-agent systems with multiplicative noise, which is different
from the previous models. We assume the dynamic systems of MASs are continuum param-
eterized, for example, [19] considered a sensor network applied to environment monitoring,
where a large number of micro-senors are scattered randomly on a bounded monitoring area
(for example, the parameter takes values in [a, a] x [b, b]). The position (x, y) for each sensor
can be regarded as a realization of a random variable with uniform distribution F(x, y). For
another example, the population growths of different fish groups (the same race) located in the
same sea area (e.g. [a, a] x [b, l_J] X [c, ¢]) are different due to environmental differences, their
relative rates of growth vary from place to place, see references [20,21] for more examples.

The rest of this paper is organized as follows. In Section 2, the mean field stochastic linear-
quadratic games is formulated. In Section 3, stochastic LQ tracking problem with a known
reference signal is studied, then the approximation of the PSA by state aggregation and the
decentralized control laws based on NCEP are discussed. In Section 4, the asymptotic optimal-
ity of the decentralized control law is analyzed. In Section 5, a scalar model is calculated. In
Section 6, we conclude our paper. Appendix contains the proofs of our propositions and
lemmas.

The following notation will be used in the paper. |.|| denotes the Euclidean norm. I denotes
the identity matrix with proper dimension. For a given matrix A, A’ denotes its transpose.
For any vector with proper dimensions and symmetric matrix Q>0, [x|lp = ' Ox)'/2.
Cfl’([O, 00); || - lleo) denotes the class of R”-valued continuous functions in [0, co) with finite
norm, the norm is defined by | flle £ SUP;[0,00) I/ (@)l In addition, Co, Cy, ..., C, etc., are
used to denote a series of positive constants which are independent of the number N of all
agents.

2. Problem formulation

In this paper, we consider the following model:

dxi(t) = [A(6)x;(t) + Bu;(1))dt + i[Djxl'(t) + E)dw] (1), 6]
j=1
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where i =1,..., N, and x;(¢) € R" is the state of agent A;, u;(r) € R™ is its control input,
0, = (0,-‘, e, 9;"’) € ® C R™ is its dynamic parameter vector. A(-) : R — R™" B ¢ R™™
and IV, E/ are n x n and n x 1 dimensional matrix respectively, for each j =1, ..., n,. Denote
wi(t) £ (wi1 (), ..., w™(@)), and {(w;(1), Fi),t>0,i>1} is a sequence of independent
ny-dimensional standard Brownian motion on the complete probability space (€2, F, P).

Let SV be the system comprised of N dynamic equations of (1). For each agent
i=1,...,N, the control set of agent A; is defined by

Upoe,i = {Mi ui(t) € o (x;(0), wi(s); s <1), Elx(T)| =o(T),

T
E/ ()%t = O(T), T — oo}.
0

Here, a control group of SV is uN = {ui, ..., uy}, and the cost function of agent A4; has the
coupled quadratic form

NI By
Jiui, ui) = lim sup - E f [0 = yx® @1 + 17 |, )
0

T—o0

where 0>0 and R>0. u_; = (uy, ..., ui_1, Uis1, ..., uy) and x™ @) = (1/N) Zl;;lxj(t) is
the population state average.

Remark 1. Regarding the model (1), see [8] for the case of the subset ® being a single point
set i.e., the dynamic equations of all agents are the same and [22] for the case of the subset
® only containing finite points. In addition, suppose the state variable in the diffusion term
disappears, our model will degenerate to [23].

The parameter vector 6; in model (1) has the following property: {6;, i>1} are in-
dependently sampled from the statistical structure (R™, F(0)), where F(-):R" — [0, 1]
is a distributed function on the parameter vector space R™, called prior distribution. We
can construct the empirical functions by {6;, i>1}, Fy(0) £ ]i\, f\’: | Xi.<6y, N>1, where
=" ....0M), (6 <026} <0',...,0" <o™).

In the following, for the model considered, we need some assumptions.

Basic assumptions:

(Al). The support of F(-) denoted also by ® is a compact set of R".

(A2). {Fy, N>1} converge to F weakly [24], i.e., for any bounded and continuous
function h(0) on R™, limy_, o f® h(@)dFy(0) = f® h(@)dF (0).

(A3). A(-) are is matrix-valued functions of 6 € ©.

(A4). {x;(0), 1<i<N} are independent and identically distributed stochastic
variables and independent of o(w;(t),t >0,1 <i<N) and satisfy Ex;(0) = xo,
sup; ;< I1%:(0) — xolI? < oo.

3. Construction of decentralized strategies
3.1. Stochastic LQ tracking problem with a known reference signal

In this subsection, we discuss the optimal tracking problem with a known reference signal
for a stochastic LQ system.
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Proposition 1. Consider the following optimal control problem

My,

dx(t) = [Ax(t) + Bu(t)]dt + Z[Djx(t) + E/ldw’ (1),

j=1
. 1 ! 2 2
J(u) =limsup —E [ [llx(@) — yh(@®)lly + lu@)llzldz, 3
T—o0 T 0
where A, D/ e R"™", Be R™" and E/ e R" he C,IZ([O, 0); || - lleo) is a known reference
signal and W' (t), ..., w™@)) is n,-dimensional standard Brownian motion. The admissible

control set is defined by

U= {MIM(I) €o(x(0),w(s); s <1), Elx(T)| =o(T),

T
]E/ lx()*dt = O(T), T — oo}.
0

Assume Q >0, R> 0, then the following results hold:
(a). The algebraic Riccati equation
n,
A'P+PA—PBR'BP+ D'PD'+0=0
j=1
has a unique positive definite solution.
(b). All the eigenvalues of G = A — BR™'B'P have negative real parts.
(c). The backward linear ordinary differential equation
Ny
§(t) +G'g(t) + > DI'PE/ — yQh(t) = 0.
j=1

admits a unique solution in Cf([O, 00); || * Ilco)

00 Mw
g(t) = / exp{—G'(t — 5)) ZDj’PEj — yQOh(s) |ds.
t =1
(d). The optimal control law u® = arginf, e, J(u) is given by
u’(t) = —R™'B'(Px(1) + g(1))
and the corresponding minimal cost value is

T
J(u°) = lim sup 1 / [y2H (t)Qh(t) — ¢ (t)BR™'B'g(t)1dt
0

T—o0 T

+ Z trace(Ej’PEj).
j=1
Proof. We put its proof into Appendix. O

Remark 2. Here, the condition Q>0 is asked to conveniently verify the state process of the
closed-loop of the continuum parameter multi-agent systems satisfy sup,.q E fooo llxe O )?dt <
oo and to show our Lemma | below. In addition, paper [25] discussed the case of g(-) €
sz(R”). Instead, we let the function g(-) € C,L:([O, 00); || - lleo), it seems that to verify the
boundedness of a function is easier than to check its square integrability.
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3.2. Approximation of the PSA based on the NCEP

Proposition 1 solves the stochastic LQ optimal tracking problem with a known reference
signal. However, the reference signal A(f) in the cost function is unknown and cannot be
used directly to design control strategies. Thus, we first try to estimate the reference signal
and then construct decentralized strategies by using Proposition 1 and the NCEP.

Denote A; =A(6;) and in the cost function (2), if x™ is replaced by some
v € C2([0,00); || - loo), then Eq. (2) changes into

N
s, w) = timsup 2 B [ (10 =y + o) 1. @

By Proposition 1, we may obtain the optimal control for agent .4;
ul(t) = —R™'B'(Poxi(t) + &i(1)), )

where P; = Pylg—g, and g;(t) = go(t)lo=s;-
From the term (a) of Proposition 1, we have

Ny
AiPi+ PA;i = PBR™'BP +Q+ ) D'PD’ =0. (6)
j=1

Let h(t) = v(t). Proposition 1 also yields

gi(t) = / " exp(=Gi(t — )| DI RET - y0v(s) |ds, @)

j=1

where G; £ A; — BR™'B'P,.
Substituting Eq. (5) into Eq. (1), we obtain the closed-loop equation for agent A;

dx;(t) = [Gix;(t) — BR™'B'gi(t)]dt + i[D-ixi (t) + E/ldw] (). (8)
j=1

Taking the integral on both sides of above equation, along with the Fubini’s theorem, we
have

t
Exi(r) = xo + / [GiExi(s) — BR™'B'gi(s)]ds. 9
0
Taking the differential on both sides of Eq. (9) yields
dEx;(t) = [GEx;(t) — BR™'B'g;(1)]dt. (10)

Now, we approximate the PSA by state aggregation. To do so, we construct an auxiliary
system
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dEx} (1) = [GeEx};(t) — BR™'B'gq (1)]d1,
Exg (0) = xo,
go(t) = [ exp(—G, (1 = )| L, DV PoET — y Ov(s) Jds,
v(t) = [, Ex}(t)dF (9),

Y

where Gy = A(0) — BR™'B'P;.

This describes the limiting system of S¥ when N— oo, which is a continuum of agents,
each agent marked by a parameter vector 6.

By Eq. (11), we have

t o0
Ex; (t) = exp{Gyt}xo —l—/ / exp{Gy(t — s1)}BR™'B’
0 Js

ny,

x exp{Gy (s2 — s1)}| yQv(s2) = > D/ Py(s2)E’ |dsadsy. (12)
j=1
Define an operator 7 on Cﬁ([O, 00); || - lleo) as
(Tv)(t) & f Ex; (t)dF (9), (13)
®

where Exp (¢) is given by Eq. (12).
In the following, we want to prove the existence and uniqueness of v by Banach’s fixed-
point theorem. To do it, we need the following proposition and we put its proof into Appendix.
Under (Al)-(A4), it is easy to check from Eq. (12) that (7v)(t) is continuous in
te[0, oo) and ||[(TVv)(t)|leo < 0. Thus, T is indeed an operator from the Banach space
Cf([O,oo); Il - lloo) to itself. From the definition of the operator 7, the auxiliary system
(11) can be rewritten as

v="Th. (14)

The following theorem shows under some conditions, the linear operator 7 is a contraction
operator on the Banach space C,ll’([O, 00); || - lloo)-

Theorem 1. Under (Al)—(A4), if

0o 2
I)/IIIQIIIIBIIZIIR_lll/O[/0 l eXp{Get}lldt} dF(9) <1 (15)

holds. Then there exists a unique solution v* for Eq. (14).
Proof. For v{, v} € Cﬁ([O, 00); || - lleo)s Eqgs. (12) and (13) yield

1o = ol =| [ [ [ ewiGue - spr's
®J0 Js

X exp(Gj (52 = s}y OV (1) = V3 (O)ldsadsrdF )

< Iy HQIBIPIR™ IVE (@) = v5 (1) llos
2

x/ [/w I exp{GGt}||dt:| dF ().
(€] 0
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The theorem holds by the contractive mapping theorem. [J

Remark 3. Li and Zhang [26] discussed the linear quadric mean field game problem, where
the multi-agent systems are additive noise. It appears that the form of the condition (15) is the
same as theirs, except for Py in Gy. In addition, suppose all eigenvalues of G have negative
real part, [27] provides a kind of method to estimate |exp{Gt}||. For detail, there are two
real numbers r, k>0, such that || exp{Gt}| < rexp{—kt}, where k satisfies that k + 1; < O for
each eigenvalue A; of G. It is not hard to choose a real number k> 0, satisfying the conditions
above, in the case of the compact support set ® containing only finite sample points, i.e.,
|l exp{Got}|| < rexp{—kt}. In the case of continuum-parameter, the method of a sample space
partition can be used to approximate ® by finite sample points and this gives a numerical
method. The theory method to calculate & is still open, we take it as our future work.

4. Asymptotic equilibrium analysis
4.1. Stability of closed-loop system

From the analysis and conclusion of the previous subsection, we obtain a series of
decentralized strategies:

ui () = —R'B (P} () +g](), 1=i<N. (16)

where P; is the solution of Eq. (6) and g} () is given by Eq. (7), just substituting v with v*
in there.

Applying the control strategy Eq. (16) into Eq. (1), for 1 <i<N, we have the closed-loop
system equation

dx; (t) = [Gix} (t) — BR™'B'gf(t)}dt + Y _[D/x}(t) + E'ldw] (). (17)
j=1
In the following, we study the stability of the closed-loop system. Here, we use Dynkin’s
formula and the comparison principle to estimate it.

Lemma 1. Suppose (Al)—(A4) hold, then there exists a constant Cy independent N such that
the strategies (16) and the corresponding closed-loop systems (17) satisfy

1 T
sup max lim sup ~E / 1P + 1 @) 21de < €.
N>115isN 7500 T Jp

Proof. From Eq. (7), it follows that

My,

g} Olloo < | D_UDMIET IR + 17 QI V] oo / Il exp{=G;(t — )}lds
j=1 !

A

My,

Z(”D'i””Ej”MP)+|V|||Q||”V||oo / rexp{—a(s —t)}ds = M,,
Jj=1 !

IA

where r, o are positive constants and Mp = sup,q [1Fll. O
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Letting V (x) = x’P,x, Dynkin formula yields

EVCTD) _ iy (4 o)
dt
= E[—x] (1) Nix} (1) — 257 (1) Ai()] + Y E'PE/,

J

5247

(18)

where £’ is the infinitesimal generator of the diffusion process x;(-). N; £ Q + P,.BR'B'P;,

Ai(t) = PBR™'B'g; (1) — 3°; D REY.
By Young’s inequality, and for any A >0, we have

A 2 1
2E[x; (1) Ai(1)] < EE[X?(I)’R')C[(I)] + XIIP,» NI

From Egs. (18) and (19), it follows that

dEV (x} (1)) _

1 2
R = —EAEV(XZ‘(I))+F+ZMPIIE’|| ;

J

Lo ) _1 _1
where ' 2 2Mp||BR™'B'|My/L+ Y, Mp|D/E/|| and A = infoee An(P, *NoP, *).

denotes the smallest eigenvalue of symmetric matrices.
From the comparison principle [28], we have

EV (x}(t)) < exp {—%&}EV(X?(O)) + %F(l — exp {—%t}),

which together with the definition of EV (x7(¢)) result in

EV (xf(@))
¢

1 JEV(x(0) 2 A
—er{ = (o))

where ¢ = infyee An(Py).
Then, from Eq. (20), we obtain

Ellx ()]* <

luf O = | = R™'B' (P} (1) + g} ()
< IRPIBIP @Ml ()] + 2My).

The conclusion is thus given by Eqgs. (20) and (21).

19)

(20)

21

Lemma 2. Suppose (Al)—(A4) hold, then under the strategies Eq. (16), the closed-loop system

(17) satisfies

1 T 1
lim sup —]E/ £ (1) —v* (@) |1*dt = O €3 + — ).
T T Jo N

where N (t) = (1/N) Yo x¥(t) and limy_, o ey = 0.

Proof. See Appendix. [
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4.2. Analysis of optimality

In this section, we discuss the asymptotic equilibrium property of the associated decen-
tralized control. To start, let us first introduce the definition of €-Nash equilibrium. Let

Ustoi = {uilui(t) € o (x(0), w(s); s <1), Elxi(T)| = o(~/T),

T
IE/ lx:()112dt = O(T), T — oo}.
0

Definition. Given a series of strategies {u; € Ujo;, 1 < i < N}, if there exists € >0 such that
for any i, 1 <i<N,

Ji(wi,u_y) < 1_iIlf Jiul usy) + e,

Ll; eugl,,,,»
where u_; = (uy, ..., Uj—1, Uiy1, ..., Uy), then we call this series of strategies an e€-Nash
equilibrium with respect to the series of cost functions {J;, 1 <i<N}.
Let

1 T
Ji(u?,u*;) = limsup —E f
T Lo

T—o00

[l @) =y )13 + ||u:‘<r>||i]dr],

1 T
Ji(uf, yv*) = lim sup TE / llx7 () — yv*(t)||2Q + ||uf(t)||,2e]dti|,
T—o0 LJO *+

LT (Tt o
i) = timsup | [ _||x,-<t)—]%(Zx;f(r>+x,-<t>)||§+||ui(t)||,%]dt}, 22)

T—o0 .
- J#i

where V) = ]lvzyzlx;‘f and x; refers to the closed-loop solution corresponding to some
control u; € Ug,,;.

To derive the asymptotic equilibrium,we need firstly to prove several lemmas, whose
proofs are left to Appendix.

Lemma 3. For the system (1) and the cost function (2), if (Al)—(A4) hold, then

sup max J;(u;,u;) < G,

N>1 1<i<N
T N 2
. 1 .
sup max lim sup —E/ (y/N) ij @) dt <Cs.
NzllsisN 700 T Jy P 0

Lemma 4. For the system (1) and the cost function (2), if (Al)—(A4) hold, then
1
Ji(ui,uy) < Jiuf, yv*) + 0<ﬁ + 6N>-
Lemma 5. For the system (1) and the cost function (2), if (Al)—(A4) hold, then
Ui €Uglo,i

1
Ji(ui, yv*) < inf Ji(”ivu*i)+0<ﬁ+€N>~

Now we give the result of asymptotic optimality of the strategies (16).
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Theorem 2. For the system (1) and the cost function (2), if (Al)—(A4) hold, then the series of
strategies {u; € Ujyei, | <i < N} is an e-Nash equilibrium with respect to the corresponding
series of cost functions {J;, | <i <N}, where € = 0(1lv + en).

Proof. From Lemma 2, it follows that limy_, ., €y = 0. By Lemmas 4 and 5, we have

1
Ji(uf,u;) < inf Ji(ui,u*_i)+0(ﬁ+6N>.

Ui €U, i

Then, this theorem holds by the definition of e-Nash equilibrium. [J
5. The scalar model

Suppose that a pharmaceutical company plans to cultivate a batch of bacteria (such as
penicillium) for drug production. For a large number of bacterial strains scattered randomly
in the culture medium, the position for each bacterial strain can be regarded as a realization
of a random variable with a uniform distribution. Besides, there exists a tiny difference of
nutrient profile in different place of the culture medium, and this will lead to a tiny difference
of the relative rates of growth among bacteria strains. Based on the statement above, let
6; = (0},60%) € ©® £[0,0] x [, ¥] € R2, which is a closed rectangle. For the ith bacteria

strain, its population growth model is described by @ksendal [18]
dxi(t) = [a(0)x;(t) + bu;(t)]dt + ox;(t)dw;(t), (23)

where x;(r), u;(f) are its size of the population and the control at time ¢ respectively.
a(6;) + ow;(t)dr is the relative rate of growth at time z, where @;(-) is the white noise
corresponding with the Brownian motion w;(-).

In order to achieve the average of overall population for each bacterial strain, the
performance target of the ith bacteria strain is given by

T
Ji(ui, u_;) = Tim sup %E / [ab @) = yx® O + rid @ ar,
0

T—o00

where g >0 is constant.
Following the notation in Section 3 and Eq. (16), we can get the optimal control and its
closed-loop system of the ith bacteria strain

b
uf (0) = =[P} () + 80
r
2
dxi(t) = [k,-x;“(t) - b—gj.‘(t)]dt + ox] (t)dw;(t),
r

where P; and g7 (t) are given by
b2
(2a; + 0*)P, — —P* 4+ q =0,
r
o0
g (1) = —J/CI/ explki(s — " (s)ds,
t

b2
ki =a; — —R
r
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From the closed-loop system of the ith bacteria strain, we see that for one thing, the optimal
control of the ith bacteria strain is used to adjust its relative rate of growth; for another, to
track a signal involving the average level of all bacteria strain population.

Next, we deal with the algebraic Riccati equation and the fixed point equation. Taking the
positive root of the Riccati equation above, we have

rQRa; + o2) + \/r2(2a,- + 02)2 + 4grb?

[)i =
2p?

Under the condition
4)/qb2
<1,
(r1262 + /4gb2)?

we can check that the contraction condition (15) holds, and v*(-) satisfies the following fixed
point integral-equation:

Vi) = / / /OO explks (t + 52 — 251)}v* (s2)dsrds dF (0) + / expikot }xodF (0), (24)
eJo J e

2
where k@ =dyg — bTPg.

Remark 4. In regard to the fixed point equation above, we ask the system-parameters to
satisfy some statistical properties. For detail, we consider the case of the continuum-parameters
and ask that the prior distributions weakly converge. Without this assumption, the mean field
state is hard to calculate. Recently, [29,30] discussed the mean filed games of finite number
of agents and provided other effective methods to avoid the fixed point problem. However,
the computational complexity is high, once the number of agents is large.

Remark 5. Notice that the mean field term satisfies an integral-equation above under some
contractive conditions. Comparing with the classic linear quadratic optimal tracking, the linear
quadratic mean field control needs solving a fixed point integral equation in advance. In
addition, the linear quadratic mean field control involves finding a decentralized control for
each agent, and the decentralized controls are proved having an e-Nash equilibrium property.
However, the classic optimal control involves finding a centralized control which is optimal.

6. Conclusion
This paper studies mean field LQ games for continuum-parameterized multi-agent systems.
The decentralized control problem for LPMS with coupled stochastic cost functions is inves-

tigated, including the control design and the closed-loop analysis. We show that the decentral-
ized control laws designed is asymptotically optimal with respect to the coupled cost function.

Appendix A

Al. Proof of Proposition 1

Proof. The proof of (a) can be found in [31] or [25], and (b) holds by Theorem 3.7 of [31].
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(c). The linear ordinary differential equation
ny,
(1) +G'g(t) + > DI'PE/ — yQh(r) = 0.
j=1

admits an explicit solution

g(t) = exp{—G't}g(0) + / exp{—G'(t — 5)} § D/'PE’ — yQh(s) |ds.
0 N
J

Since all the eigenvalues of G have negative real parts, there exist r, k>0 such that
|| exp{Gt}|| < rexp{—kt},t > 0. Taking

g(0) = / ” exp{G's} th(s)—ZDf’PEf ds,
0 X
J

and we get the formula of g(r). To show g(-) € Cf([O, 0); || - lleo) 18 not difficult, thus we
omit it. [J

(d). Define the cost index of finite horizon

T
I = [ 1) = yhOllg + ),

0
and we deal with the case of the 1-dimensional Brownian motion, the n,-dimensional

situation is similar.
By using 1t6’s formula, we have

T
X' (T)Px(T) —x' (0)Px(0) = / [x/A/Px + 'BPx + x' PAx + x'PBu
0
+x'D'PDx + 2x'D'PE + E’PE]dt,
T
(T)x(T) — ¢ (0)x(0) = / [ — ¢Ax + ¢BR'B'Px — E'PDx + yhQx + ¢/Ax + g’)Bu]dt.
0
Via the algebraic Riccati equation and the ordinary differential equation g(-), we can check
T
JT(w) = / lu+R'B (Px + )|z + y*H Qh — g/BRB/g]dt
0

+E'PE +2¢(0)x(0) — 2¢ (T)x(T) + x' (0)Px(0) — x'(T)Px(T).

The conclusion depends on the facts (whose proofs are similar with our Lemma 1)

T
Elx(T)| = o(v/T), ]E/ lx(@)|?dt = O(T), T — oo. (25)
0

Thus, (d) is proved.
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A2. Proof of Lemma 2

By the integral form of Egs. (10) and (11), we know
Ex; (1) = Exg, (1) = Exp (1) ]p=;- (26)

Via the definition of Fy(f) and Eq. (26), and substituting v with v*, we have

N
(1/N) Y B} (1) =[)]Ex;‘(t)dFN(9). (27)
i=1 ©
Thus
N 2 N N 2
E (1/N)Zx7—v* <2E (1/N)Zx7(r)-(1/N)ZEx7(:)
i=1 ljvl 2l:l
+2|(1/N) > Ba (1) — v*
i=1
2

N N
= 2E|(1/N) Y_x(t) — (1/N) Y Ex](¢)

i=1 i=1

2
+2'/ ]Ex;‘(t)dFN(Q)—/Ex;‘(t)dF(Q) . (28)
© ©
Noticing that {x*,i=1,...,N} are independent with each other, which along with
Lemma 1, yield
| N | 2 | X
EHﬁZx;'m -5 LB = 55 Yl (o) —Exf o)l
i=1 i=1 i=1
1 o * 2
< 57 2B Ol
i=1
Cs
= 29
=5 (29)

Let
FN(t)é/]Exg(l)dFN(G),
o)

NGO f Ex} (t)dF (6),
(€]

ev £ sup [[ITy(t) =T @)l

te(0,00)
From Eq. (12), we can check the following statements hold:

sup sup |[|[Ex; ()] < oo,
1€[0,00) 0€®

sup  sup |[|Exg (1) — Exp ()]l < L|16h — 6],
1€[0,00) 0;,0,€0
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where L is a positive constant which is independent of the parameters ¢, 61, 6,.
Thus, under the basic Assumption (A2), we have
lim sup [[Cy()—T(@)] =0.

N—00¢[0,00)

So the lemma holds.
A3. Proof of Lemma 3

We only prove the first inequality, another is similar with the first one. From Eq. (20),
we have

1 T
Ji(u}, u*;) = lim sup —E/
T Jo

T—o0

170 = 2O + (t)IIR]df

, 1 T .
< lim sup TE/ ||Q|| Ix; @) — y£™M @1 + IRIu (t)llz]dt
0 L

T—o00

. L (r .
< lim sup ?E/ 2001 O + Iy 2™ @)1%) + IIRIIIIu?(t)IIZ]dt
0 L

T—o00

Then the first inequality of this lemma holds by Lemma 1.
A4. Proof of Lemma 4

Because

1 T
JiGuf, u* ;) = lim sup —E/ [||x7(t) — v () + v (@) — yEV O + ||u;‘(r)||§]dz

T—o0

T
= Ji(, yv*) + lim sup —Ef [nyv*(t) -y ONG + 25 @) — v (@)

T—o0
xQ(yv' (©) =y @) ]ar,

then the lemma holds by Lemmas 2 and 3.
AS. Proof of Lemma 5

Since inf ey, Ji (i, w*;) < Ji(uj, u*;), thus we only consider such u; € Uy, ; that satisfies
Ji(ui,u*;) < Ji(u?,u*;). From Lemma 3, together with noticing that

ll;n_)solip ;]E/ (1 — —)x,(t) - = Zx (t)

J;ﬁt
it follows that

lim 11@ B TR e
sup - = 2 ) r

T—o0
(1 - —>x,(t) -z Zx (t)

/#l

dt < Ji(u;j,ur;) <Cg,

dt

1 T
< lim sup ?]E/
0

T—o0
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+2E/ Zx )
0

J#l
From the following inequality,

1 T
lim sup —E/ (1 - Z>)c,-(t)
T—o0 T 0 N

dt<C7

2

2 T
dt (1 — Z) lim sup —E/ llxi (1)l pdt
0 N T—00 0

(1 ZN)II?LSCEJP ]E/ llx; () 14,

v

and letting N— oo, we have

1 T
lim sup - / i () 13dr < C. (30)
0

T—o00

Notice that

1 N
Jiug, )—hmsup—E/ [nxm—%(Zx}f(r)w(r))n&||ui<z)||%]dr

T—00 por
¥ % o1 r . ) -
> Jiu!, yv*) + liminf —E [ 2y |v¥(@) — 2™ @) + V()
T—oo T 0
1/
‘ﬁ(fo(f) +xi(t))i|,Q(xi(t) — yv*(t))dt
J#
=Ji;, yv) + I+ 1

where

1 T
N — lim inf ?]E/ 2y v (1) — M ()10 xi (1) — yv*(t))dt,
— 00 0

T—o0

1 r 1 !
I2 = liminf — ]E/ 2y|:ﬁ(x;f(t) —xj(t)} Qxi(t) — yv*(t))dt.
From Lemma 2, we may obtain

1
max{|I]|, |I)|} = 0(— + eN>.
N
Thus the lemma is true.
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