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Abstract 

In this paper, we consider a distributed dynamic state estimation problem for time-varying systems. 
Based on the distributed maximum a posteriori (MAP) estimation algorithm proposed in our previous 
study, which studies the linear measurement models of each subsystem, and by weakening the constraint 
condition as that each time-varying subsystem is observable, this paper proves that the error covariances 
of state estimation and prediction obtained from the improved algorithm are respectively positive definite 
and have upper bounds, which verifies the feasibility of this algorithm. We also use new weighting 
functions and time-varying exponential smoothing method to ensure the robustness and improve the 
forecast accuracy of the distributed state estimation method. At last, an example is used to demonstrate 
the effectiveness of the proposed algorithm together with the parameter identification. 
© 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
1. Introduction 

In recent years, large-scale complex systems, such as power systems, traffic networks 
and multi-agent systems, have received significant attention from researchers in different 
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ractical domains. The emergence of sensor networks calls for the development of dis-
ributed algorithms to replace the centralized methods [1] . This problem is motivated by many
pplications [2,3] , which involve large-scale networked systems. We take the state estimation
roblem in power systems as an example, where local state of each subsystem is estimated
y using measurements provided by Supervisory Control and Data Acquisition (SCADA) sys-
ems [4] and Phasor Measurement Units (PMUs) [5] . For large power systems, it is unrealistic
nd unnecessary for each subsystem to estimate the global state of systems [6] . On the other
and, considering the location problem for sensor networks, the locations of all sensors are
stimated by utilizing relative position measurements between neighboring sensors [7] . For a
mall sensor network with a few sensors, it is possible to aggregate all measurements at the
usion center to calculate a whole location estimate for all sensors. However, this requires
 great deal of computing resources with the increase of network size, and it is needless
or each sensor to localize other sensors [8] . All this naturally promotes the development of
istributed estimation algorithms. 

State estimation methods can be mainly divided into two categories: centralized and dis-
ributed algorithms. In the centralized state estimation [9–12] , all measured data are commu-
icated to the fusion or control center for processing. It can provide the optimal state estimate
or the entire network, due to the smallest information loss. But the computational burden
t the fusion or control center increases exponentially when the system becomes large [13] .
he distributed estimation methods, which are attractively alternative, can be classified into

he static and dynamic estimation. At present, there have been much research activity focused
n the distributed methods to static state estimation for many practical domains [8,13–16] . In
articular, these methods are widely used in power systems to implement security monitoring
f the current operating status [8,13,14] . In distributed static estimation, local state or a set
f parameters of each subsystem is estimated by using the measurements at a fixed time.
arelli and Fu [8] studied a distributed weighted least square (WLS) estimation problem for

 large-scale system. For the network with loops, this method was used for each subsystem
o asymptotically compute the globally optimal estimate of parameters using its own mea-
urement and information transmitted from its neighbors, and a preconditioning method was
lso used to speed up the convergence rate. Distributed dynamic estimation [17–21] , which
s mainly related to the Kalman filter, uses current measurements and the predicted values
btained from the previous time to estimate system state. Furthermore, the ability of pre-
icting the future state, which is not captured by static estimation, plays an important role
n real-time control and security analysis. Sharma et al. [20] proposed a multi-agent-based
ulti-area dynamic state estimator for power systems utilizing the cubature Kalman filter,
hich was run for all the extended subsystems independently and in parallel to reduce the
verall execution time. But the partitioned power system was overlapping, and [20] needed
he constraint condition that the voltage magnitudes and phase angles of the same boundary
uses of the nearby subsystems must be equal. 

Based on the distributed MAP estimation algorithm proposed in [21] , this paper extends
nd generalizes this algorithm to nonlinear systems, and we will improve it in the following
ays: (1) the work [21] needs the assumption that the local measurement matrix C i has full

olumn rank, which is relaxed in this paper as that each subsystem is observable; (2) taking
nto account the bad data, we use new weighting functions for all subsystems to ensure the
obustness of the distributed algorithm, and we also use a modified exponential smoothing
ethod to compute model parameters. The main contributions of this paper are as below: 
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• Under the relaxed assumption, we prove that the error covariance matrices of state esti-
mation and prediction obtained from the proposed algorithm are positive definite by using 

the mathematical induction, and further prove that error covariance matrices have upper 
bounds by the rank criterion of the observability for time-varying system; 
• In order to online compute the state-space parameters, we extend the method proposed in

[22] to a time-varying model, which improves the precision of state prediction; 
• In the simulations, the centralized and distributed state estimators are tested through the 

IEEE 118-bus system under different scenarios, which include normal operating condition, 
sudden load change and bad measurements. 

Test results verify the validity of the distributed state estimation algorithm together with 

parameter identification, demonstrate the main results of this paper, and support the feasibility 

of the proposed algorithm for state estimation applications in large-scale systems. 
The rest of the paper is organized as follows. Section 2 presents some related graph nota-

tions, and describes the system model. Section 3 discusses the centralized state estimator and 

proves that its error covariance matrices are bounded. Section 4 introduces the distributed state
estimation algorithm together with the parameter identification, and gives the main results of 
this paper. Section 5 shows the simulation results. The conclusions are drawn in Section 6 . 

The following notations will be used throughout this paper. N 0 denotes the set of non-
negative integers, while N is the set of positive integers. R 

l denotes the set of l−dimensional
real column vectors and R 

l×q denotes the set of l ×q real matrices. I denotes the identity
matrix with appropriate dimension. For a given vector or matrix M , M 

T denotes its transpose.
For square symmetric matrices X and Y , X < Y means that the matrix Y − X is positive definite.
The shorthand diag { A 1 , A 2 , . . . , A n } denotes a block diagonal matrix with diagonal blocks
being matrices A 1 , . . . , A n . 

2. System model and problem description 

In this section, we first present some preliminary notations on graph theory, which will be
used in this paper. An undirected graph G contains a node set V = { 1 , . . . , N } and an edge
set of unordered pairs E = { (i , j) , i , j ∈ V} . If there exists an edge between nodes i and j ,
then nodes i and j are called adjacent. A path from node i 1 to i k is a sequence of edges
(i 1 , i 2 ) , (i 2 , i 3 ) , . . . , (i k−1 , i k ) . If there exists a path between any two nodes of G, then graph
G is connected. The radium �i of node i denotes the maximum length of a path between node
i and any other node in G, and the diameter � of graph G is the maximum radium of all nodes,
i.e., � = max { �i , i ∈ V} . We assume that the considered graph G in this paper is undirected
and connected, which is void of self-loops and multiple edges. N i = { j ∈ V : (i, j) ∈ E}
denotes the neighbor set of node i , and N i / { j} denotes that node j is removed from N i . 

Consider a network formed by N nonoverlapping subsystems (called nodes). From the local 
viewpoint of node i , we consider the linear dynamic system as follows 

x i (k + 1) = A i (k) x i (k) + G i (k) + ω i (k) , (1)

where k ∈ N 0 is the time sample, x i (k) ∈ R 

s i is the local state of node i , A i (k) ∈ R 

s i ×s i is the
system matrix which is usually assumed diagonal (see [9] and [11] ), G i (k) ∈ R 

s i describes
the trend behavior of the state trajectory, and ω i (k) ∼ N (0, R i (k)) is the model noise with
R i ( k ) ≥0. It is also assumed that the initial state x i (0) ∼ N ( ̄x i (0) , P i (0)) is irrelevant to the
model and measurement noises, and P i (0) is a positive definite matrix. 
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The measurements of each node can be classified into two types, i.e., the local mea-
urement which is only functions of the state of every node, and the edge measurement
epresenting the tie-line measurements related to the neighboring nodes. Therefore, the two
ypes of measurement equations of node i can be represented respectively as follows 

 i,i (k) = f i (x i (k)) + νi,i (k) , (2)

 i, j (k) = h i, j (x i (k) , x j (k)) + νi, j (k) , (3)

here z i,i (k) ∈ R 

q i,i is the local measurement vector of node i , z i, j (k) ∈ R 

q i, j describes the
nteraction between nodes i and j , ν i , i ( k ) and ν i , j ( k ) are the associated measurement noises,
ssumed to be independent white Gaussian with zero mean and covariances S i ( k ) > 0 and
 i , j ( k ) > 0. f i ( · ) and h i , j ( · ) are vectors consisting of nonlinear functions. Furthermore, we
ssume that the model and measurement noises are mutually independent. 

Linearizing around the operating points x 0 i (k) and x 0 j (k) , the Jacobian matrices of f i ( · ) and
 i , j ( · ) are derived as 

C i (x 
0 
i ) = 

∂ f i (x i ) 

∂x i 

∣∣∣
x i = x 0 i 

, 

 i, j (x 
0 
i ) = 

∂h i, j (x i , x j ) 

∂x i 

∣∣∣
x i = x 0 i 

, 

B j,i (x 
0 
j ) = 

∂h i, j (x i , x j ) 

∂x j 

∣∣∣
x j = x 0 j 

. 

n the rest of the paper, we choose the state prediction ˜ x i (k) of each node i as x 0 i (k) at
ach time k , and we express the above mentioned matrices as C i ( k ), B i , j ( k ) and B j , i ( k ) for
implicity. 

. Centralized state estimation process 

In order to propose the centralized state estimator, we firstly describe the state and mea-
urement models for the whole system. Aggregating the states and measurements in Eqs.
1) –(3) , the stacked state and measurement equations can be written as 

(k + 1) = A (k) x(k) + G (k) + ω(k) , (4)

(k) = f (x(k)) + ν(k) , (5)

here 

x(k) = 

(
x T 1 (k) , . . . , x T N (k) 

)T 

∈ R 

p , 

z(k) = 

(
· · · , z T i,i (k) , . . . , z T i, j (k) , . . . 

)T 

, 

A (k) = diag 

{
A 1 (k) , . . . , A N (k) 

}
, 
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T 
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)T 

, 

f (x(k)) = 

(
· · · , f T i (x i (k)) , . . . , h 

T 
i, j (x i (k) , x j (k)) , . . . 

)T 

, 

and �N 
i=1 s i = p. The noises are ω(k) ∼ N (0, R(k)) and ν(k) ∼ N (0, R ∗(k)) with 

R(k) = diag 

{
R 1 (k) , . . . , R N (k) 

}
, 

R ∗(k) = diag 

{
· · · , S i (k) , . . . , T i, j (k) , . . . 

}
. 

With respect to the operating point x 0 ( k ), the Jacobian matrix of f ( x ( k )) is H ( k ), which is an
aggregation of Jacobian matrices of local and edge functions, and can be written as 

H (k) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

· · ·
· · · 0 C i (k) 0 · · ·

· · ·
· · · 0 B i, j (k) 0 B j,i (k) 0 · · ·

· · ·

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (6) 

Also, the initial state x (0) has mean x̄ (0) = ( ̄x T 1 (0) , . . . , x̄ T N (0)) T and covariance P (0) =
diag { P 1 (0) , . . . , P N (0) } . 

3.1. Centralized state estimator 

The centralized state estimator used in this paper is the extended Kalman filter, where the
state estimation ˆ x (k) along with its covariance matrix �( k ) can be expressed as follows: 

ˆ x (k) = Q 

−1 (k) α(k) , 

�(k) = Q 

−1 (k) , (7) 

where 

α(k) = H 

T (k) R 

−1 
∗ (k) 

(
z(k) + H (k) ̃  x (k) − f ( ̃  x (k)) 

)
+ M 

−1 (k) ̃  x (k) , 

Q(k) = H 

T (k) R 

−1 
∗ (k) H (k) + M 

−1 (k) , (8) 

are initialized by ˜ x (0) = x̄ (0) and M(0) = P (0) . 
Executing the conditional expectation on Eq. (4) , we obtain 

˜ x (k + 1) = A (k) ̂  x (k) + G (k) , 

M(k + 1) = A (k)�(k) A 

T (k) + R(k) , (9) 

where ˜ x (k + 1) is the predicted state vector based on the measurements from time 0 to k ,
and M(k + 1) denoted its error covariance. 

3.2. Boundedness of the error covariances 

From the derivation of �( k ) and M(k + 1) , we can easily get that �( k ) and M(k + 1)

are positive definite by sequential. In what follows, we will present upper bounds for these
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ovariance matrices. Firstly, we introduce the state transition matrix of the centralized system
odel, which can be expressed as 

(k + 1 , k 0 ) = A (k )�(k , k 0 ) , k ≥ k 0 , �(k 0 , k 0 ) = I . (10)

he observability matrix O ( k 0 , d ) is defined dually as 

(k 0 , d ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

H (k 0 ) 
H (k 0 + 1)�(k 0 + 1 , k 0 ) 

. . . 
H (d − 1)�(d − 1 , k 0 ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (11)

here d > k 0 , k 0 ∈ N 0 . From Eq. (10) , we get that �(k + 1 , k 0 ) is invertible. Multiplying
−1 (d − 1 , k 0 ) on the right hand of Eq. (11) , we obtain 

˜ 
 (k 0 , d ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

H (k 0 )�−1 (d − 1 , k 0 ) 
H (k 0 + 1)�−1 (d − 1 , k 0 + 1) 

. . . 
H (d − 1) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

hich is called the modified observability matrix. 
Secondly, we will use the following lemma to prove Theorem 1 , which can be found

n [23] . 

emma 1. The pair ( A ( k ), H ( k )) is observable over [ k 0 , d ), if and only if the observability
atrix O ( k 0 , d ) as defined in Eq. (11) has the full column rank. 

heorem 1. If ( A ( k ), H ( k )) is observable over [ k 0 , d ), and A ( k ) is invertible, then there exists a
onstant γ > 0, such that the covariance matrices �( k ) and M(k + 1) , k ≥ d − 1 are bounded
y 

(k) < (1 + γ ) k−(d−1) 
−1 (k 0 , d ) , (12)

(k + 1) < (1 + γ ) k−(d−1) A (k )
−1 (k 0 , d ) A 

T (k ) + R(k) , (13)

here 

(k 0 , d ) = 

d−1 ∑ 

l= k 0 

(1 + γ ) −(d−1 −l ) 
(

H (l )�−1 (d − 1 , l ) 
)T 

R 

−1 
∗ (l ) H (l )�−1 (d − 1 , l ) . 

roof. At each time instant k , since �( k ) > 0, R ( k ) ≥0 and A ( k ) is invertible, A ( k ) �( k ) A 

T ( k )
s positive definite, and there exists a constant γ > 0, such that 

(k) < γ A (k )�(k ) A 

T (k ) . (14)

rom Eqs. (9) and (14) , we have 

(k + 1) < (1 + γ ) A (k )�(k ) A 

T (k ) , (15)

or each k . Based on Eqs. (7), (8) and (15) , we get 

−1 (k) > �(k) + 

(
(1 + γ ) A (k − 1)�(k − 1) A 

T (k − 1) 
)−1 

, (16)
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where 

�(k) = H 

T (k ) R 

−1 
∗ (k ) H (k ) . 

Multiplying A 

T (k − 1) and A (k − 1) on the left and right hands of Eq. (16) , respectively, we
obtain 

A 

T (k − 1)�−1 (k) A (k − 1) > A 

T (k − 1)�(k) A (k − 1) + ((1 + γ )�(k − 1)) −1 . (17)

Similarly, for the time instant k − 1 , we get 

A 

T (k − 2)�−1 (k − 1) A (k − 2) > A 

T (k − 2)�(k − 1) A (k − 2) 

+((1 + γ )�(k − 2)) −1 . (18) 

It follows from Eqs. (17) and (18) that 

�T (k, k − 2)�−1 (k)�(k, k − 2) > �T (k, k − 2)�(k)�(k, k − 2) 

+(1 + γ ) −1 A 

T (k − 2)�(k − 1) A (k − 2) + (1 + γ ) −2 �−1 (k − 2) . 

Sequentially, 

�T (k, k 0 )�
−1 (k)�(k, k 0 ) > �T (k, k 0 )�(k)�(k, k 0 ) 

+(1 + γ ) −1 �T (k − 1 , k 0 )�(k − 1)�(k − 1 , k 0 ) 

+ · · · + (1 + γ ) −(k−k 0 −1) �T (k 0 + 1 , k 0 )�(k 0 + 1) 

×�(k 0 + 1 , k 0 ) + (1 + γ ) −(k−k 0 ) �−1 (k 0 ) . 

Since 

�−1 (k 0 ) = H 

T (k 0 ) R 

−1 
∗ (k 0 ) H (k 0 ) + M 

−1 (k 0 ) , 

and M ( k 0 ) > 0, k 0 ∈ N 0 , we obtain 

�T (k, k 0 )�
−1 (k)�(k, k 0 ) > 

k ∑ 

l= k 0 

(1 + γ ) −(k−l ) 
(

H (l )�(l , k 0 ) 
)T 

R 

−1 
∗ (l ) H (l )�(l , k 0 ) . 

Multiplying (�−1 (k, k 0 )) T and �−1 (k, k 0 ) on the left and right hands of the above inequality,
respectively, we have 

�−1 (k) > 

k ∑ 

l= k 0 

(1 + γ ) −(k−l ) 
(

H (l )�−1 (k, l ) 
)T 

R 

−1 
∗ (l ) H (l )�−1 (k, l ) . 

Since k ≥ d − 1 and R 

∗ ( k ) is positive definite, we get 

�−1 (k) > 

d−1 ∑ 

l= k 0 

(1 + γ ) −(k−l ) 
(

H (l )�−1 (d − 1 , l ) 
)T 

R 

−1 
∗ (l ) H (l )�−1 (d − 1 , l ) 

= (1 + γ ) −(k−(d−1)) 
(k 0 , d ) . 

Based on Lemma 1 and A ( k ) is invertible, we can see that the modified observability matrix
˜ O (k 0 , d ) also has the full column rank. As a result, 
( k 0 , d ) > 0. Then we obtain Eq. (12) .

From Eqs. (9) and (12) , one has 

M(k + 1) < A (k) 
(
(1 + γ ) −(k−(d−1)) 
(k 0 , d ) 

)−1 
A 

T (k) + R(k) , 

which leads to Eq. (13) . This completes the proof. �



Y. Sun et al. / Journal of the Franklin Institute 354 (2017) 6200–6216 6207 

 

b

4

 

e

4

 

i

Z

 

a

�

I

ϒ  

 

i

D  

w

Z

�

w

α  
In the next section, we will use the demonstration method of Theorem 1 to prove the
oundedness of the distributed state estimator. 

. Distributed state estimation process 

In this section, we will investigate the distributed state estimator, which generalizes and
xtends the algorithm proposed in [21] . 

.1. Distributed state estimator 

Notations ˜ x ∗i (k) and M 

∗
i (k) are the state prediction and its error covariance matrix of node

 for time instant k . Define 

ᾱi (k) = C 

T 
i (k) S 

−1 
i (k) Z i,i (k) + (M 

∗
i (k)) −1 ˜ x ∗i (k) , 

Q̄ i (k) = C 

T 
i (k) S 

−1 
i (k) C i (k) + (M 

∗
i (k)) −1 , 

 i,i (k) = z i,i (k) + C i (k ) ̃  x ∗i (k ) − f i ( ̃  x ∗i (k)) . 

Algorithm 1. Distributed state estimation algorithm 

Initialization: (1) At time instant k ∈ N 0 , each node i computes the local state estimation
nd its error covariance: 

x̆ j i (k, 0) = Q̄ 

−1 
i (k) ̄αi (k) , 

˘ j 
i (k, 0) = Q̄ 

−1 
i (k) . 

f k = 0, then ˜ x ∗i (k) and M 

∗
i (k) are replaced by x̄ i (0) and P i (0), respectively. 

(2) Node i transmits the following information to node j ∈ N i : 

η
j 
i (k, 0) = B i, j (k) ̆x j i (k, 0) , 

j 
i (k, 0) = B i, j (k) ̆�

j 
i (k, 0) B 

T 
i, j (k) . (19)

Main loop: At iteration h ∈ N , and for each node i : 
(1) Using the information ηi 

j (k, h − 1) and ϒ i 
j (k, h − 1) received from node j ∈ N i , node

 updates the edge information as follows: 

y i j (k, h) = Z i, j (k) − ηi 
j (k, h − 1) , 

 

i 
j (k, h) = T i, j (k) + ϒ i 

j (k, h − 1) , (20)

here 

 i, j (k) = z i, j (k) + B i, j (k) ̃  x ∗i (k) + B j,i (k) ̃  x ∗j (k) − h i, j ( ̃  x ∗i (k) , ˜ x ∗j (k)) . 

(2) Node i calculates the current state estimation and the associated covariance: 

ˆ x i (k, h) = Q 

−1 
i (k, h) αi (k, h) , 

i (k, h) = Q 

−1 
i (k, h) , 

here 

i (k, h) = ᾱi (k) + 

∑ 

j∈N i 

B 

T 
i, j (k ) 

(
D 

i 
j (k , h) 

)−1 

y i j (k , h) , (21)



6208 Y. Sun et al. / Journal of the Franklin Institute 354 (2017) 6200–6216 

 

 

 

 

 

 

Q i (k, h) = Q̄ i (k) + 

∑ 

j∈N i 

B 

T 
i, j (k ) 

(
D 

i 
j (k , h) 

)−1 

B i, j (k ) . (22) 

(3) Meanwhile, node i computes 

x̆ j i (k, h) = 

[
Q 

j 
i (k, h) 

]−1 

α
j 
i (k, h) , 

�̆
j 
i (k, h) = 

[
Q 

j 
i (k, h) 

]−1 

, 

where 

α
j 
i (k, h) = ᾱi (k) + 

∑ 

m∈N i / { j} 
B 

T 
i,m 

(k )(D 

i 
m 

(k , h)) −1 y i m 

(k , h) , 

Q 

j 
i (k, h) = Q̄ i (k) + 

∑ 

m∈N i / { j} 
B 

T 
i,m 

(k )(D 

i 
m 

(k , h)) −1 B i,m 

(k ) , (23) 

and transmits η j 
i (k, h) and ϒ

j 
i (k, h) to node j ∈ N i . 

Theorem 1 in [21] has proven that, if the partitioned network is acyclic, then the state
estimate of node i at each time instant k converges after a finite number of iterations, i.e., 

ˆ x i (k, h) = ˆ x ∗i (k) , 

�i (k, h) = �∗
i (k) , (24) 

for all h ≥�i . 
The prediction equations of node i can be written as 

˜ x ∗i (k + 1) = A i (k) ̂  x ∗i (k) + G i (k) , 

M 

∗
i (k + 1) = A i (k)�∗

i (k) A 

T 
i (k) + R i (k) . (25) 

4.2. Parameter identification 

1. Identification of state-space parameters 
It is shown in [22] that the Holt’s 2-parameter linear exponential smoothing method is

converted into Eq. (1) to compute A i ( k ) and G i ( k ), where the smoothing parameters are con-
stants. [10] has pointed out that when a significant load or power change happens, the method
proposed in [22] will lead to enormous prediction errors. So we employ the time-varying 

parameter model as follows: 

˜ x ∗q i (k + 1) = a q i (k) + b q i (k) , (26) 

a q i (k) = αq i (k) ̂  x ∗q i (k) + (1 − αq i (k )) ̃  x ∗q i (k ) , 

b q i (k) = βq i (k)(a q i (k) − a q i (k − 1)) + (1 − βq i (k)) b q i (k − 1) , 

where ˜ x ∗q i (k + 1) and ˆ x ∗q i (k) are the q i th components of the state prediction ˜ x ∗i (k + 1) and
state estimation ˆ x ∗i (k) with q i = 1 , . . . , s i . A i ( k ) is a diagonal matrix and G i ( k ) is a vector,
the elements of which can be written as 

A q i (k) = αq i (k)(1 + βq i (k)) , 
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 q i (k) = (1 + βq i (k))(1 − αq i (k )) ̃  x ∗q i (k ) − βq i (k) a q i (k − 1) 

+(1 − βq i (k)) b q i (k − 1) . 

arameters αq i (k) and βq i (k) are time-varying, which are designed by the following method.
irstly, at each time instant k , we choose three groups of values: central values (α0 

q i (k) , β0 
q i (k)) ,

ow values (αL 
q i (k) , βL 

q i (k)) and high values (αH 

q i (k) , βH 

q i (k)) . The relationship among these
alues can be described as 

αL 
q i (k) = α0 

q i (k) − �αq i (k) , αH 

q i (k) = α0 
q i (k) + �αq i (k) , 

βL 
q i (k) = β0 

q i (k) − �βq i (k) , βH 

q i (k) = β0 
q i (k) + �βq i (k) , 

here �αq i (k) and �βq i (k) are the given steps. Using these three groups of parameters, we
btain five combinations, which are 

 

1 
q i (k) = 

(
α0 

q i (k) , β0 
q i (k) 

)
, d 

2 
q i (k) = 

(
αL 

q i (k) , βL 
q i (k) 

)
, d 

3 
q i (k) = 

(
αH 

q i (k ) , β
H 

q i (k ) 

)

 

4 
q i (k) = 

(
αH 

q i (k) , βL 
q i (k) 

)
, d 

5 
q i (k) = 

(
αL 

q i (k) , βH 

q i (k) 

)
. 

econdly, based on each designed parameter d 

c 
q i (k) , c = 1 , . . . , 5 , Eq. (26) implies state

rediction ˜ x c q i (k + 1) , respectively. Meanwhile, we can compute the prediction error and mean
quare error as follows: 

e c q i (k + 1) = ˜ x c q i (k + 1) − ˆ x ∗q i (k) , (27)

c (k + 1) = 

1 

s i 

s i ∑ 

q i =1 

(e c q i (k + 1)) 2 , 

here q i = 1 , . . . , s i and c = 1 , . . . , 5 . Let 

min (k + 1) = min 

c 

{
�c (k + 1) 

}
. (28)

e choose ˜ x c q i (k + 1) which satisfies Eq. (28) as ˜ x ∗q i (k + 1) , and the corresponding d 

c 
q i (k)

s used to compute A q i (k) and G q i (k) . In order to verify the stability of state prediction,
arameters αq i (k) and βq i (k) are strictly in the range of 0.01 and 0.99. 

Based on the prediction error Eq. (27) , this method adjusts the time-varying parameters
f the system model on-line, which improves the precision of state prediction at each time
nstant. 

2. Identification of measurement error covariances 
Bad data conditions affect the innovation vector, and then worsen the performance of

lgorithm. [11] proposed a robust algorithm for dynamic state estimation, by incorporating a
ew weighting function to inhibit the effect of anomaly conditions and ensure the robustness
f computation. In this paper, we also use this method on each control center in order to
trengthen the robustness of the distributed algorithm. By using the local and edge measure-
ents of each node i at each time instant k , 

W 

∗
i,i (k) = W i,i (k) exp 

(
− | z i,i (k) − f i ( ̃  x ∗i (k)) | 

)
, 

 

∗
i, j (k) = W i, j (k) exp 

(
− | z i, j (k) − h i, j ( ̃  x ∗i (k ) , ˜ x ∗j (k )) | 

)
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are constantly updated weighting functions. Furthermore, the measurement error covariances 
can be defined as 

S i (k) = 

(
W 

∗
i,i (k ) 

)−1 

, T i, j (k ) = 

(
W 

∗
i, j (k) 

)−1 

. (29)

When some measurements are considerably distorted at time k , z i , i ( k ) or z i , j ( k ) will signif-
icantly change. Eq. (29) can reduce the weighting functions and mitigate the measurement 
errors well, and the weighting functions will not diverge. 

4.3. Main results of boundedness 

We will prove �∗
i (k) and M 

∗
i (k + 1) are bounded in the following two theorems. Firstly,

Theorem 2 shows that �∗
i (k) and M 

∗
i (k + 1) are positive definite matrices, which also verifies

the feasibility of Algorithm 1. 

Theorem 2. At each time instant k , the error covariance matrices of state estimate and
prediction of node i are positive definite, i.e., 

�∗
i (k) > 0, M 

∗
i (k + 1) > 0. 

Proof. We will use the mathematical induction to prove this theorem. Based on the initial
conditions, we get that Q̄ i (0) > 0 and �̆

j 
i (0, 0) > 0 for each node i . From Eqs. (19) and

(20) , we have D 

i 
j (0, 1) > 0 and then we get that Q i (0, 1) and Q 

j 
i (0, 1) are positive definite

based on Eqs. (22) and (23) , which also lead to �i (0, 1) > 0 and �̆
j 
i (0, 1) > 0. Assume that

this result is valid for h > 1, i.e., for each node i , we have �i (0, h ) > 0 and �̆
j 
i (0, h) > 0,

h > 1. At the iteration h + 1 , Eqs. (19) and (20) imply D 

i 
j (0, h + 1) > 0. Following from Eqs.

(22) and (23) again, one has that �i (0, h + 1) and �̆
j 
i (0, h + 1) are positive definite. When

h ≥εi , Eq. (24) implies �∗
i (0) > 0, and then M 

∗
i (1) > 0 obtained from Eq. (25) , since A i ( k )

is invertible and R i ( k ) ≥0. 
Assume that this result is valid for the time instant k > 0, i.e., for each node i , we obtain

that �∗
i (k) and M 

∗
i (k + 1) are positive definite matrices for k > 0. At the time instant k + 1 ,

we can easily get Q̄ i (k + 1) > 0, which implies �̆ j 
i (k + 1 , 0) > 0 for each node i . By Eqs.

(19) and (20) , we obtain D 

i 
j (k + 1 , 1) is a positive definite matrix. Then from Eqs. (22) and

(23) , one has Q i (k + 1 , 1) > 0 and Q 

j 
i (k + 1 , 1) > 0, which imply that �i (k + 1 , 1) and

�̆
j 
i (k + 1 , 1) are positive definite. Following from the derivation in the above paragraph, we

can also get �∗
i (k + 1) > 0 and M 

∗
i (k + 2) > 0. This completes the proof. �

Theorem 2 also proves that for the iteration h , D 

i 
j (k, h) is positive definite at each time

instant k . 
Secondly, we will give upper bounds on the error covariance matrices. Eqs. (21) and 

(22) can be written as 

αi (k, h) = H̄ 

T 
i (k) ̄R 

−1 
i (k, h) Z i (k, h) + (M 

∗
i (k)) −1 ˜ x i (k) , 

Q i (k, h) = H̄ 

T 
i (k) ̄R 

−1 
i (k, h) H̄ i (k) + (M 

∗
i (k)) −1 , (30) 

which means that H̄ i (k) is composed by C i ( k ) and B i , j ( k ). The centralized matrix H ( k ) admits
a block partition of the form H (k) = 

[
H 1 (k ) . . . H N (k ) 

]
. Each node i ∈ V knows H i ( k ), which

can also be partitioned, and there exist some zero blocks in H i ( k ), which can be seen in Eq.
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t

M
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(
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i  

d

6) . Deleting zero blocks from H i ( k ), the obtained matrix is the above mentioned H̄ i (k) .
pecially, if N i = { 1 , . . . , m i } , then one has 

¯
 i (k) = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

C i (k) 

B i, 1 (k) 
. . . 

B i,m i (k) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, Z i (k, h) = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

Z i,i (k) 

y i 1 (k, h) 
. . . 

y i m i 
(k, h) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, 

¯
 i (k, h) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

S i (k) 0 · · · 0 

0 D 

i 
1 (k, h) · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · D 

i 
m i 

(k, h) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

ctually, when the estimation error covariance �i ( k , h ) converges to �∗
i (k) , �̆

j 
i (k, h) also

onverges, since there is no more information transmitted after h ≥�i steps at each time
nstant. This means that D 

j 
i (k, h) is convergence, based on Eqs. (19) and (20) . Define ˜ R i (k) =

¯
 i (k, h) , for h ≥�i . The state transition matrix of each node i can be described as 

i (k + 1 , k 0 ) = A i (k)�i (k, k 0 ) , k ≥ k 0 , �i (k 0 , k 0 ) = I . 

heorem 3. If ( A i ( k ), H i ( k )) is observable over [ k 0 , d i ), and A i ( k ) is invertible, then there exists
 constant γ i > 0, such that the error covariance matrices �∗

i (k) and M 

∗
i (k + 1) , k ≥ d i − 1

re bounded by 

∗
i (k) < (1 + γi ) 

k−(d i −1) 
−1 
i (k 0 , d i ) , (31)

 

∗
i (k + 1) < (1 + γi ) 

k−(d i −1) A i (k)
−1 
i (k 0 , d i ) A 

T 
i (k) + R i (k) , (32)

here 

i (k 0 , d i ) = 

d i −1 ∑ 

l= k 0 

(1 + γi ) 
−(d i −1 −l ) 

(
H̄ i (l )�

−1 
i (d i − 1 , l ) 

)T ˜ R 

−1 
i (l ) H̄ i (l )�

−1 
i (d i − 1 , l ) . 

roof. At each time instant k , when the iteration h ≥�i , one has 

�∗
i (k)) −1 = H̄ 

T 
i (k) ̃  R 

−1 
i (k) H̄ i (k) + (M 

∗
i (k)) −1 , 

or each node i , based on Algorithm 1. Since �∗
i (k) > 0, R i ( k ) ≥0 and A i ( k ) is invertible,

here exists a constant γ i > 0, such that 

 

∗
i (k + 1) ≤ (1 + γi ) A i (k )�

∗
i (k ) A 

T 
i (k ) . 

he rest of the proof is similar to that of Theorem 1 , and we can prove that Eqs. (31) and
32) are valid. So we omit it here. �

. Simulation results 

In this section, we will show the effectiveness of Algorithm 1 together with the parameter
dentification. In Section 5.1 , we will describe the test systems and performance indices. The
etailed simulation results are investigated in Section 5.2 . 
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Fig. 1. Topological structure of the IEEE 118-bus system. 

Fig. 2. The graph G depicting the partition of the 118-bus system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Test system and description 

The proposed algorithm of this paper is scalable to several large-scale networks in practice,
such as power systems, traffic networks and multi-agent systems. In this section, the IEEE
118-bus system, whose specifications are given in [24] , is used to test the performance of the
distributed state estimator and the boundedness of the state and prediction error covariances. 
As shown in Fig. 1 , the IEEE 118-bus system can be divided into 8 nonoverlapping subsys-
tems, and all buses within a subsystem are treated as a whole to measure its local state and
exchange information with its neighbors. Each node in Fig. 2 corresponds to a subsystem in
Fig. 1 , and we can see that this graph is acyclic. The placement of PMUs is designed by using
the method presented in [6] , and the buses installed with PMU measurements are marked as
blocks in Fig. 1 . 

In the simulations, the considered power system is treated as a quasi-static system, which 

means that the state vector is varied slowly and smoothly. A linear trend between 1 and 3%
along with a randomly distributed fluctuation of ±4% are added to the load curve, where we
use different values for different buses. With regard to the local measurements of each node
i , the actual measurement z i , i ( k ) is obtained by adding the true value with random normally
distributed noise of 1% for SCADA measurements, or 0.2% for PMU measurements, while 
the edge measurements are obtained by adding true values with normally distributed noise of
2% standard deviation for power injections. 
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In order to respectively show the boundedness of state estimation and prediction error co-
ariances, and the performance of the distributed state estimator compared with the centralized
tate estimator, the simulation results are divided into the following two parts: 

(1) Boundedness: for the distributed state estimator, the sums of the traces of estimation and
rediction error covariances are described as 

∑ N 
i=1 Tr { �∗

i (k) } (TEC) and 

∑ N 
i=1 Tr { M 

∗
i (k + 1) }

TPC). Furthermore, the upper bounds of TEC and TPC are respectively denoted by BEC
nd BPC. 

(2) Performance: the filtering index is evaluated by using the relative error between the
tate estimation ˆ x i (k) and the true state vector x + 

i (k) , which is the following index 

 

f (k) = 

�N 
i=1 | ̂  x i (k) − x + 

i (k) | 
�N 

i=1 | x + 

i ( k) | × 100% , 

here ˆ x i (k) is obtained by the centralized and distributed state estimators. 
The time step of tests is chosen as one second. We can see that the diameter � of the

raph in Fig. 2 is 4, and Theorem 1 in [21] has proven that the local state estimate of each
ode converges after 4 steps at each time instant. Therefore, we let each distributed state
stimator iterating 4 steps per time k . Here, we use Monte Carlo simulations to compute the
rror covariances of state estimation and prediction as well as the filtering index, and 1000
onte Carlo runs are taken. 

.2. Test results 

In order to validate the effectiveness of the distributed state estimation algorithm together
ith the parameter identification (IDSE) of this paper, we investigate it through the IEEE
18-bus system under the following test scenarios: normal operating condition, sudden load
hange and presence of bad data. Furthermore, the distributed state estimator (DSE), whose
arameters are not identified on-line as in Section 4.2 , is used here as a reference. Simulation
esults are presented and discussed as below. 

Case 1. Normal operation condition 

For the test system operated in this case, Fig. 3 describes the time evolutions of TEC,
PC and their upper bounds BEC and BPC for IDSE. Fig. 4 shows the results of filtering

ndices of the centralized state estimator (CSE), DSE and IDSE. We can see that Figs. 3 and 4
ontain three parts corresponding to the three test conditions and simulations of each part are
arried out through 20 time samples. The first parts of Figs. 3 and 4 are tested on the normal
perating condition. One can see from Fig. 3 that TEC and TPC are less strictly than BEC
nd BPC, respectively, which verifies the feasibility and stability of IDSE. Although the εf ( k )
alues of IDSE in Fig. 4 is larger than the ones of CSE at each time instant, the gap between
hem is not quite significant, and we compute that the average values of CSE and IDSE
re 0.403% and 0.612%, respectively, which mean that the estimated precision of IDSE is
arginally less than that of CSE. Furthermore, Fig. 4 also shows that the performance of

DSE is more accurate than DSE at all time samples, which supports the efficiency of the
arameter identification. 

Case 2. Sudden load change condition 

In this case, the estimation performance of CSE, DSE and IDSE is investigated under
udden load change conditions. For the IEEE-118 bus system, the following scenarios are
imulated: 
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Fig. 3. Comparison of the trace of error covariance and upper bound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. 30% loads are cut on buses 8, 11, 12, 16, 19, 21, 23, 24, 30, 31, 37, 40, 49, 70, 77 at the
20th time sample; 

2. 30% loads are increased on buses 51, 54, 56, 59, 65, 69, 89, 92, 94, 95, 100, 103, 106 at
the 30th time sample. 

We can see from the second part of Fig. 3 that although the state estimation and prediction
error covariances of IDSE are affected by the sudden load changes, the degrees of variations
are not drastic, and they are still positive definite and less than their upper bounds. The
filtering indices of these methods are shown in the second part of Fig. 4 . From the simulation
results, the performance comparison of IDSE with CSE and DSE is similar to Case 1, and all
the methods suffer the sudden load changes at the 20th and 30th time samples, the impact of
which on IDSE is smaller than DSE with a few improvement on the maximal value. Besides,
after sudden load occurs, the εf ( k ) values of IDSE reduce quickly to the normal level, which
also validate the feasibility of our proposed algorithm. 

Case 3. Bad data condition 

In this case, these methods are applied to the scenario where bad data is included in
measurements. Two different conditions are investigated, which contain 

1. one raw measurement error of 20% at the 40th time sample; 
2. one raw measurement is mistaken as zero at the 50th time sample. 

From the third part of Fig. 4 , we can see that DSE is heavily affected by bad data, and the
degree of variation of CSE is also drastic at the 40th and 50th time samples. Yet the maximal
value of IDSE is much smaller than that of DSE. Accurately the maximal value of εf ( k )
obtained by DSE decreases from 1.733% down to 0.742% by IDSE at the 50th time sample.
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Fig. 4. Variations of filtering indices for different scenarios of different methods. 
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hese mean that the overall influence caused by polluted measurements is well restrained
y new weighting functions. Furthermore, the estimation performance of IDSE is better than
SE due to the identification of state-space parameters. Fig. 3 also shows that new weighting

unctions help to ensure the robustness of IDSE, since at the 40th and 50th time samples,
EC and TPC are little impacted by polluted measurements. All this reveals that IDSE owns
xcellent performance to the influence of bad data. 

. Conclusions 

The distributed state estimation algorithm considered in this paper for large-scale complex
ystems can be applied to several practical domains, such as power systems, sensor networks
nd traffic networks. The main contribution of this paper is that the assumption that the
easurement matrix must have full column rank in our previous study is relaxed to that each

ubsystem is observable, which can also verify the feasibility of the distributed algorithm. New
eighting functions are used to restrain the influence of polluted measurements and model
arameters are identified on-line to enhance the predicted precision. In order to approve the
ffectiveness of the distributed state estimation algorithm, it is tested through the IEEE 118-
us system under various operating conditions, which support the feasibility and efficiency of
he proposed algorithm in applications to large-scale systems. 
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