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Abstract 

In this paper, a novel distributed Kalman filter consisting of a bank of interlaced filters is proposed for 
a signal model whose dynamic equation and measurement equation are coupled. Each of the interlaced 
filters estimates a part of state rather than the global state using its and its neighbor information, which is 
different from other distributed filters already existed (e.g., distributed Kalman filter based on diffusion 
strategy or consensus strategy, distributed fuzzy filter and distributed particle filter with Gaussian mixer 
approximation, etc). This relieves the calculation and communication burden in networks. In addition, 
the proposed distributed Kalman filtering contains no consensus strategies, which is useful in some cases 
since consensus usually requires an infinite number of iterations. 
© 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

 

1. Introduction 

Rapid advances in the areas of sensor design, information technologies, and wireless net- 
works have paved the way for the proliferation of wireless sensor networks. More and more
network applications require hundreds or thousands of sensor nodes, often deployed in remote 
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nd inaccessible areas. With the increasing of demands of people, a wireless sensor has not
nly a sensing component, but also on-board processing, communication, and storage capa-
ilities. With these enhancements, a sensor node is often responsible for data collection, as
ell as for in-network analysis, correlation, and fusion of its own sensor data and data from
ther sensor nodes [1] . 

In response to rapid development and vast deployment of low-cost sensors and sensor
etworks, distributed filter design has been an extremely active research topic for over a
ecade. Up to now, there are so many distributed filters for both the linear systems and non-
inear systems. For the case of linear systems, such as: A cluster-based distributed Kalman
ltering technique is proposed for target tracking in [2] . Nodes which can detect the target at
 given time instant forms a cluster. However, the cluster-based processing is still not fully
istributed because a node is chosen as a cluster head which collects measurements from
ther nodes and updates the state estimate collectively in this cluster. 

Instead of doing full average consensus, the diffusion technique (e.g., [3,4] ) approximates a
lobal average with an average among the neighboring nodes. In addition, in [5] , a distributed
led estimation algorithm is given based on the so-called Kriging interpolation technique. The
lgorithm employs the well-known Jacobi over-relaxation method and a dynamic average con-
ensus method, both requiring an infinite number of iterations in theory. It is not clear how
o choose the right number of iterations in practice, especially for large networks. Lately,
ne common approach to DKF is to use an average consensus strategy as introduced in [6] ,
ee [7–9] for examples of this approach. Different from the method employing a consensus
trategy to design distributed filter, in [10] , author designed a kind of distributed filter, which
onsists of a bank of interlaced Kalman filters. Each of interlaced Kalman filters only esti-
ates a part of the state and consider the remaining parts as known time-varying parameters
hose values are evaluated by the other filters at the previous step. Moreover, in [11] , authors

oncerned with a problem of distributed fuzzy filter design for a class of sensor networks
escribed by discrete-time T-S fuzzy systems with time-varying delays and multiple proba-
ilistic packet losses. For the case of non-linear systems, in [10] , authors gave an interlaced
xtended Kalman filter based on the idea of adaptive estimation, reference [12,13] , etc. In
14] , authors addressed a consensus-based networked estimation of the state of a nonlinear
ynamical system. A family of distributed state estimation algorithms which relies on the ex-
ended Kalman filter linearization paradigm is given in. In [15] , authors investigated a target
racking problem using a distributed particle filter (DPF) over sensor networks. To approximate
he posterior distribution of weighted particles, the parameters exchange of Gaussian mixture
odel is implemented by the consensus strategy there. In addition, in [16] , authors gave

wo novel distributed particle filters with Gaussian Mixer approximation based on signalling
mong neighbors and information fusion respectively. More relevant works see references
herein. 

Before state our writing motivation, we first give an example. 

(t + 1) = F (t ) x(t ) + ω(t ) , (1a)

(t ) = Ā (t ) x(t ) + v(t ) , t ∈ N , (1b)

here x(t ) ∈ R 

n , F (t ) ∈ R 

n×n , Ā (t ) ∈ R 

m×n . { ω(t ) } , { v(t ) } are individually zero mean, Gaus-
ian processes with known covariances, the initial state x (0) is an independent Gaussian vari-
ble with mean x 0 and covariance �0 . The signal model Eqs. (1) are the compact form of
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the following sub-systems: 

x i (t + 1) = F i (t ) x(t ) + ω i (t ) , i = 1 , . . . , N, (2a) 

z j (t ) = Ā j (t ) x(t ) + v j (t ) , j = 1 , . . . , M, t ∈ N , (2b) 

where x i (t ) ∈ R 

n i , z j (t ) ∈ R 

m i , F i (t ) ∈ R 

n i ×n is the time-varying transition matrix, Ā j (t ) ∈
R 

m i ×n is the time-varying measurement vector. ω i ( t ) is the system noise which is a
zero-mean i.i.d. Gaussian noise with covariance Q i ( t ) ≥0, and v j (t ) is the measurement
noise which is a zero-mean i.i.d. Gaussian noise with covariance R j ( t ) > 0. i.e., x(t ) =
(x 

′ 
1 (t ) , . . . , x 

′ 
N (t )) 

′ 
, z(t ) = (z 

′ 
1 (t ) , . . . , z 

′ 
M 

(t )) 
′ 
, F ( t ) and Ā (t ) are given similarly. In addition,

the covariance of ω( t ), v(t ) are Q(t ) = diag { Q i (t ) } , R(t ) = diag { R j (t ) } respectively. Finally,
x 0 = ( ̄x 

′ 
1 (0) , . . . , x̄ 

′ 
N (0)) 

′ 
, and the principal block of �0 is diag (�1 (0) , . . . , �N (0)) . 

As is well known, (centralized) Kalman filter can be used to estimate the state of the signal
model Eq. (1) . However, in some cases (e.g, a smart grid network), it is sufficient for each
node to estimate state itself rather than the global one in a distributed way. Motivated by
this, our interest in this paper is to design a distributed estimation method, such that each of
nodes estimates state itself rather than the global one using its and its neighbor information. 

Secondly, to meet the needs of some cases, we change the dynamic system model Eq.
(1a) to 

x(t + 1) = f (t , x(t )) + ω(t ) , (3) 

where f : N × R 

n → R 

n , satisfies some mild conditions which will be given below. The Eq.
(3) is the compact form of 

x i (t + 1) = f i (t, x i 1 , . . . , x i p i ) + ω i (t ) , i = 1 , . . . N, (4)

where f (t, x(t )) = ( f 
′ 
1 (t, x 1 1 , . . . , x 1 p 1 ) , . . . , f 

′ 
N (t, x N 1 , . . . , x N p N )) 

′ 
, others are the same with

the description about Eq. (2a) . For each i = 1 , . . . , N, each element of the subscript
set { i 1 , . . . , i p i } of the coupled states x i 1 (t ) , . . . , x i p i (t ) with x i (t + 1) , presented in
f i (t, x i 1 , . . . , x i p i ) , lies in { 1 , . . . , N } . 

The reason for dealing with the signal model Eqs. (3) and (1b) contains two aspects: For
one thing, in [17] , authors discussed a dynamic estimation problem in the power systems.
Writing their dynamic and measure equations into a compact form respectively, it is easy
to see their model is a special case of ours; For another, in [18] , authors investigated a
sensor localization problem using minimal number of anchor nodes (to obtain the locations 
of each node in a network based on the knowledge of the locations of a few anchor nodes as
well as the mutual distances between neighbor nodes). Due to the inaccuracy in the distance
measurement, the measure can be written as Eq. (2b) with the invariable time instant, see
also [19] . Our measurement Eq. (2b) is given to deal with the dynamic estimation problem
with a more general dynamic system (4) . 

Because both the dynamic system Eq. (4) and the measure Eq. (2b) are coupled in state
variable, it is hard to design a distributed filter such that each node to estimate the state
coordinate itself only using its and its neighborhoods’ information. To overcome this diffi- 
culty, we firstly give the filtering equations for our signal model Eqs. (4) and (2b) based on
the extended Kalman filtering (EKF), then use the method of undetermined coefficients to 

calculate the unknown parameters presented in the filter equations given initially. A particular 
advantage of this method is its guaranteed stability, i.e., the error covariance is guaranteed 

to be bounded. This method was proposed originally in [20] to solve the state estimation
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roblem for a kind of continuous-time nonlinear signal model, the discrete version may ref-
rence [21] , in which the authors called this kind of filter the bound optimal filter. The idea
f this method is: Firstly, designing the filter based on the EKF (the filter equations are the
ame with the EKF’s, but the gain is unknown). Secondly, using the method of undetermined
oefficients under some assumptions called cone bound conditions to calculate the unknown
ain based on the principle of minimal upper bound for the state estimation error covariance.
e remark there that different from their work, we calculate an unknown parameter appeared

n our measure update equation instead of the gain to obtain the distributed filter and it makes
he calculation more complex. In addition, they deal with the problem of centralized dynamic
stimation, while we design a distributed estimation method to deal with the problem of
istributed dynamic estimation. 

In this paper, a novel distributed Kalman filter consisting of a bank of interlaced filters is
roposed for a signal model whose dynamic and measurement equation are coupled. Each of
he interlaced filters estimates a part of state rather than the global state using its and its neigh-
or information (neighbor state estimation and measurement), which is different from other
istributed filters already existed (e.g., distributed Kalman filter based on diffusion strategy or
onsensus strategy, distributed fuzzy filter and distributed particle filter with Gaussian mixer
pproximation. etc). This relieves the calculation and communication burden in networks. In
ddition, compared with the interlaced extended Kalman filter [10] , the signal model equa-
ions and the filter equations are decoupled in our filter designed which needs less amount of
alculation than the former one that depends on the Taylor expansion. In fact, in the case of
on-linear systems, Taylor expansion leads the linearization equations and the interlaced ex-
ended Kalman filter equations to be coupled. Compared with consensus-based distributed EKF
r consensus-based DPF, the proposed DKF contains no consensus strategy and it is applied to
olve some estimation problems appearing in power systems and sensor networks, see [17,22] .

The paper is organized as follow. Section 2 describes the system model. Section 3 gives our
ain results. Section 4 designs an algorithm to implement the DKF constructed in Section 3 .
ection 5 illustrates its effectiveness by simulations. Section 6 summarizes our paper and
ppendix contains proofs of our theorems. 

In this paper, we use the following notations. For vectors and matrices, the superscript ′

enotes their transpose. I denotes the unit matrix, tr M denotes the trace of matrix M and
iag(.) denotes the block diagonal matrix. For a column x , ‖ x ‖ denotes the Euclidean norm
 x‖ = (x 

′ 
x) 

1 
2 . For two sets A and B , A ×B denotes their Cartesian product and ( A ) � denotes

he cardinal number of set A. Inequalities between square symmetric scalar matrices are taken
n the following sense: A ≥B means that A − B is nonnegative definite. 

. Problem statement 

Consider a network formed by N nodes. For each time t ∈ N , node i has an associated
arameter vector x i ( t ), which complies with Eq. (4) . i.e., 

 i (t + 1) = f i (t, x i 1 (t ) , .., x i p i (t )) + ω i (t ) , i = 1 , .., N (4)

nd the measurement equations are given by Eq. (2b) . i.e., 

 j (t ) = Ā j (t ) x(t ) + v j (t ) , 

= 

N ∑ 

l=1 

Ā j,l (t ) x l (t ) + v j (t ) , j = 1 , . . . , M, (2b)
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where Ā j (t ) = ( ̄A j, 1 (t ) , . . . , Ā j,N (t )) , and the describe about the states, measurements, etc.
are the same as above. Stacking up all the states and the measurements respectively give a
compact form Eqs. (3) and (1b) , i.e., 

x(t + 1) = f (t, x(t )) + ω(t ) , (3) 

z(t ) = Ā (t ) x(t ) + v(t ) (1b) 

For the coupling both in dynamic Eq. (4) and the measurement Eq. (2b) , we introduce the
following notations. It is convenient to express the distributed filtering constructed later. With 

respect to the dynamic Eq. (4) , we denote I t ime 
i (t ) = { j : x j (t + 1) = f j (t , . . . , x i (t ) , . . . ) } ,

i.e., the set of nodes whose states at time t + 1 involve the state x i ( t ) of node i at time t .
And we denote O 

t ime 
i (t ) = { i 1 , . . . , i p i } , i.e., the set of nodes whose states are involved in

the state x i (t + 1) of node i . Furthermore, Let N 

t ime 
i (t ) = I t ime 

i (t ) 
⋃ 

O 

t ime 
i (t ) be the system

neighborhood of node i at time t . In parallel, with respect to the measurement Eq. (2b) ,
we denote I meas 

i (t ) = { j : Ā j,i (t ) � = 0} , i.e., the set of nodes whose measurements involve
the state of node i at time t , and denote O 

meas 
i (t ) = { j : Ā i, j (t ) � = 0} , i.e., the set of nodes

whose states are involved in the measurement of node i at time t . Moreover, Let N 

meas 
i (t ) =

I meas 
i (t ) 

⋃ 

O 

meas 
i (t ) be the measurement neighborhood of node i at time t in the process of 

measurement. 

Remark 1. In Eq. (2b) , some Ā i, j (t ) , i = 1 , . . . , N, j = 1 , . . . , M, may be zero, which depend
on the measure z i ( t ). In addition, to simplify the notation, we drop time index t appearing in
I t ime 

i (t ) and O 

t ime 
i (t ) , etc. in the following description. 

Let ˆ x (t | t ) = E { x(t ) | z (1) , . . . , z (t ) } and �( t | t ) be the associated estimation error covariance
matrix. Similarly, ˆ x (t | t − 1) = E { x(t ) | z (1) , . . . , z (t − 1) } and its error covariance matrix is
�(t | t − 1) . For the signal model Eqs. (3) and (1b) , suppose f ( · ) satisfies some well conditions,
then the iteration equations for the state estimation of the EKF are given as follow, reference
such as [21] 

ˆ x (t | t ) = ˆ x (t | t − 1) + K (t ) 
(

z(t ) − H (t ) ̂  x (t | t − 1) 
)
, (5a) 

ˆ x (t + 1 | t ) = f (t, ˆ x (t | t )) , (5b) 

where K (t ) = �(t | t − 1) H 

′ 
(t ) 

(
H (t )�(t | t − 1) H 

′ 
(t ) + R(t ) 

)−1 
, and initialization is provided

by ˆ x (0| − 1) = x 0 = ( ̄x 
′ 
1 (0) , . . . , x̄ 

′ 
N (0)) 

′ 
. Via the well-known matrix inversion lemma [23] , we

have 

�(t | t − 1) H 

′ 
(t ) 

(
H (t )�(t | t − 1) H 

′ 
(t ) + R(t ) 

)−1 

= 

(
�−1 (t | t − 1) + H 

′ 
(t )�(t | t − 1) H (t ) 

)−1 
H 

′ 
(t ) R 

−1 (t ) 

= �(t | t ) H 

′ 
(t ) R 

−1 (t ) . 

Thus, Eq. (5a) can be rewritten as: 

ˆ x (t | t ) = ˆ x (t | t − 1) + �(t | t ) H 

′ 
(t ) R 

−1 (t ) 
(

z(t ) − H (t ) ̂  x (t | t − 1) 
)
. (6)
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ecause the covariance matrix �( t | t ) is not block diagonal, it is hard to obtain a distributed
ltering. If we use only the principal block of �( t | t ) to obtain a distributed filter, obviously,

here will be some data loss. Our method is to assume the covariance matrix �( t | t ) to be
 block diagonal parameter matrix diag{ L i ( t )}, we don’t know what each L i ∈ R 

n i ×n i , i =
 , . . . , N is, but we will use the method of undetermined coefficients to pin them down based
n the principle of minimal upper bound for the state estimation error covariance. 

Considering the i th state variable ˆ x i (t | t ) of Eq. (6) , with the aid of the notations I meas 
i ,

 

meas 
i and via a simple calculation, we have 

ˆ  i (t | t ) = ˆ x i (t | t − 1) + L i (t ) 
∑ 

k∈I meas 
i 

Ā 

′ 
k,i (t ) R 

−1 
k (t ) 

×
[

z k (t ) −
∑ 

j∈O 

meas 
k 

Ā k, j (t ) ̂  x j (t | t − 1) 

]
. (7a)

imilarly, considering the i th state variable ˆ x i (t + 1 | t ) of Eq. (5b) , we have 

ˆ  i (t + 1 | t ) = f i (t, ˆ x i 1 (t | t ) , . . . , ˆ x i p i (t | t )) . (7b)

Based on the discuss above, for each i = 1 , . . . , N, we consider distributed filters Eq.
7) given above. In Eq. (7a) , { L i (t ) | t ∈ N } is to be a fixed sequence, and in the rest of this
aper, our main goal is to calculate them. To start, let us first give the following assumptions.

ssumption 1. There exists a coefficient F i (t ) for the nonlinear function f i (.) to satisfy the
one bound for each i = 1 , . . . , N . About the cone bound conditions, reference for example
20,21] 

 f i (t, x i 1 + δi 1 , . . . , x i p i + δi p i 
) − f i (t, x i 1 , . . . , x i p i ) − F i (t ) · δ‖ ≤ φi (t ) ‖ δ‖ , (8)

here F i (t ) = ( ̄F i,i 1 (t ) , . . . , F̄ i p i 
(t )) , δ = (δ

′ 
i 1 , . . . , δ

′ 
i p i 

) 
′ 

and φi ( t ) ≥0 is a real-value function.

or all x i j , δi l , F i (t ) and φi ( t ) are independent of x i j , δi l . 

emark 2. Regarding Assumption 1 , it holds if the nonlinear function satisfies the hypotheses
f the finite-increment theorem [24] . With respective to Eq. (8) , evidently, if x is a scalar and
 i (.) is differentiable, its slope lies between F i (t ) − φi (t ) and F i (t ) + φi (t ) . Similarly, the
roperty about the slope holds for the case of x a vector, just change φi ( t ) into a vector each
f whose coordinate is a copy of φi ( t ). Moreover, it is easy to verify that the linear dynamic
ystem considered in [17,22] satisfies this cone bound conditions. 

Without this assumption, to our knowledge, the interlaced extended Kalman filter [10] still
orks. It is an interesting problem that how to design the distributed particle filter, distributed
nscented filter, etc., under the constraint that each of filter of them only estimates a part
f the global state (e.g. in power grid, each of node estimates the state itself rather than the
lobal one). 

ssumption 2. For each i = 1 , . . . , N, the node i can send/receive information to/from all its
eighbors. Also, F̄ i, j (t ) for all j ∈ O 

t ime 
i , Ā i, j (t ) for all j ∈ O 

meas 
i , and R i ( t ) are available at

ode i . 

emark 3. Regarding with Assumption 2 , Marelli and Fu [19] has taken the same assumption.
e remark here that without this assumption, an estimate problem with packet losses should

e considered. For example, see [4,25] for the relevant works. 
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3. Main results 

In this section, we give our main theorem, and put their proofs into appendix. In Theorem 1 ,
we calculate upper bounds for the state estimation covariances. It is well to keep in mind that
the looseness of the sector bound Eq. (8) and the relevant coupling presented in Eq. (4) , Eq.
(2b) determine the looseness of the performance bounds to be derived. In Theorem 2 , based
on the upper bounds obtained from Theorem 1 , we derive the optimal parameter L i such that
the upper bounds, which relies on the parameter L i , to be minimal. 

Theorem 1. Let ˜ x i (t | t ) = x i (t ) − ˆ x i (t | t ) , �i (t | t ) = E { ̃  x i (t | t ) ̃  x 
′ 
i (t | t ) } , ˜ x i (t | t − 1) = x i (t ) −

ˆ x i (t | t − 1) and �i (t | t − 1) = E { ̃  x i (t | t − 1) ̃  x 
′ 
i (t | t − 1) } . With the signal model Eqs. (4) and

(2b) , the filter Eq. (7) , the filter error covariances are bounded as �i (t | t ) ≤ �̄i (t | t ) and
�i (t + 1 | t ) ≤ �̄i (t + 1 | t ) , for each i = 1 , . . . , N, where �̄i (t | t ) and �̄i (t + 1 | t ) be given by
the following iterative Eq. (9) : 

�̄i (t | t ) = (1 + αi (t )) 
(

I − L i (t )�i,i (t ) 
)
�̄i (t | t − 1) 

(
I − L i (t )�i,i (t ) 

)′ 

+ (1 + 1 /αi (t )) 

( ∑ 

k∈I i 
(O 

meas,o 
k ) � 

)
L i (t ) 

×
[∑ 

k∈I i 

∑ 

j∈O 

meas,o 
k 

�
(k) 
i, j (t ) ̄� j (t | t − 1)�

(k) 
i, j (t ) 

′ 
]

L 

′ 
i (t ) 

+ L i (t )�i,i (t ) L 

′ 
i (t ) , (9a) 

�̄i (t + 1 | t ) = (1 + βi (t ))(O 

t ime 
i ) � 

∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̄� j (t | t ) ̄F 

′ 
i, j (t ) 

+ (1 + 1 /βi (t )) φ
2 
i (t ) 

∑ 

j∈O 

t ime 
i 

t r 
(
�̄ j (t | t ) 

)
I n i 

+ Q i (t ) , (9b) 

which is initialized by �̄i (0| − 1) = �i (0) . Herein, we denote O 

meas,o 
k =: O 

meas 
k \ { i} , and

denote �(k) 
i, j (t ) = Ā 

′ 
k,i (t ) R 

−1 
k (t ) ̄A k, j (t ) . Similarly, �(k) 

i,i (t ) = Ā 

′ 
k,i (t ) R 

−1 
k (t ) ̄A k,i (t ) and �i,i (t ) =∑ 

k∈I i �
(k) 
i,i (t ) . 

Remark 4. By searching the αi β i space to minimize t r( ̄�i (t | t )) and t r( ̄�i (t + 1 | t )) . Setting
the relevant partial derivatives to zero yields the optimal values: 

α∗
i (t ) = 

[ t r{ ∑ 

k∈I i 
∑ 

j∈O 

meas,o 
k 

L i (t )�
(k) 
i, j (t ) ̄� j (t | t − 1)�

(k) 
i, j (t ) 

′ 
L i (t ) 

′ } 
tr{ (I − L i (t )�i,i (t )) ̄�i (t | t − 1)(I − L i (t )�i,i (t )) 

′ } 

] 1 
2 

×
[ ∑ 

k∈I meas 
i 

(O 

meas,o 
k ) � 

] 1 
2 

, 

β∗
i (t ) = 

[ n i φi (t ) 
∑ 

j∈O 

t ime 
i 

t r(� j (t | t )) 
(O 

t ime 
i ) � 

∑ 

j∈O 

t ime 
i 

tr( ̄F i, j (t ) ̄� j (t | t ) ̄F 

′ 
i, j (t )) 

] 1 
2 

. 

For simplicity, we take αi ( t ) ≡β i ( t ) ≡1 for each i = 1 , . . . , N and t ∈ N . 
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emark 5. An interesting thing is that as the cone bounds collapse, i.e., the nonlinearities
ecomes more linear in the sense that the cone bound parameter φi ( t ) approaches zero, and
he signal model Eq. (4) , Eq. (2b) have no coupling, then the N filters Eq. (7) , Eq. (9) become
ll the standard Kalman filters. 

heorem 2. With notation as earlier, for each i = 1 , . . . , N and t ∈ N , let 

 

∗
i (t ) = arg min 

L i (t ) 
�̄i (t | t ) , 

hen the optimal sequence { L 

∗
i (t ) | t ∈ N } is given by: 

 

∗
i (t ) = (1 + αi (t )) ̄�

∗
i (t | t − 1)�i,i (t ) V 

∗
i (t ) 

−1 , (10)

here 

 

∗
i (t ) = (1 + αi (t ))�i,i (t ) ̄�

∗
i (t | t − 1)�i,i (t ) + (1 + 1 /αi (t )) 

×
( ∑ 

k∈I meas 
i 

(O 

meas,o 
k ) � 

) ∑ 

k∈I meas 
i 

∑ 

j∈O 

meas,o 
k 

�
(k) 
i, j (t ) ̄�

∗
j (t | t − 1)�

(k) 
i, j (t ) 

′ 

+ �i,i (t ) . (11)

nd the corresponding upper bounds are given by: 

¯ ∗
i (t | t ) = (1 + αi (t )) 

[ 
�̄∗

i (t | t − 1) − �̄∗
i (t | t − 1)�i,i (t ) L 

∗
i (t ) 

′ ] 
, (12a)

¯ ∗
i (t + 1 | t ) = (1 + βi (t ))(O 

t ime 
i ) � 

∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̄�
∗
j (t | t ) ̄F 

′ 
i, j (t ) 

+ (1 + 1 /βi (t )) φ
2 
i (t ) 

∑ 

j∈O 

t ime 
i 

t r 
(
�̄∗

j (t | t ) 
)

I n i + Q i (t ) , (12b)

which is initialized by �̄∗
i (0| − 1) = �i (0) . 

emark 6. For each i = 1 , . . . , N, Eqs. (7) , ( 10 )–( 12 ) give the DKF which is initialized by
ˆ  i (0| − 1) = x̄ i (0) and �̄∗

i (0| − 1) = �i (0) . Via the iterations of the upper bounds Eq. (12) ,
he optimal parameters L i ( t ) can be calculated, then the filter Eq. (7) runs. Based on Eqs.
7) , ( 10 )–( 12 ), each filter estimates its corresponding state variable x i , only using its and its
eighborhood’s measurements, estimations, etc. Furthermore, compared with DKF based on
he consensus strategies, this kind of DKF maybe useful in some cases, because consensus
equires an infinite number of iterations in theory. 

. Distributed algorithm reality 

In this section, we design a distributed algorithm to implement our filters Eqs. (7) , ( 10 )–
 12 ). To this end, we need the following observations. Based on Assumption 2 , for each time
 ∈ N , Ā k, j (t ) , R k ( t ) are only available at node k . That is, in the process of measurement
pdate, node k acts as an intermediary between node j , which transmits ˆ x j (t | t − 1) , and
ode i , which receives 

∑ 

j∈O 

meas 
k 

Ā 

′ 
k,i (t ) R 

−1 
k (t ) ̄A k, j (t ) ̂  x j (t | t − 1) . This means that node j should

ransmit ˆ x j (t | t − 1) to all node k with j ∈ O 

meas 
k , or equivalently, to all nodes in I meas 

j .
owever, node j doesn’t know which node are in I meas 

j . Thus, node j simply transmits ˆ x j (t | t −
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1) to all nodes in N 

meas 
j , and it is up to the receiving node k to detect whether node j ∈ O 

meas 
k 

or not. Now, we give the algorithm, in which each node i , i = 1 , . . . , N, just use its and its
neighborhoods’ information to estimate the state x i ( t ) itself, and all nodes finish their state
estimations via this kind of cooperation. 

Algorithm 1. Initialization: 
For each i = 1 , . . . , N, node i sets ˆ x i (0| − 1) = x̄ i (0) and �̄∗

i (0| − 1) = �i (0) . 
Main Loop: At time t ∈ N 

Measurement update: 

(1) For each j = 1 , . . . , N and k ∈ N 

meas 
j , node j sends 

(
ˆ x j (t | t − 1) , �̄∗

j (t | t − 1) 
)

to node

k . 
(2) On reception, for each k = 1 , . . . , M and i ∈ O 

meas 
k , node k computes: 

�
(k) 
i, j (t ) = Ā 

′ 
k,i (t ) R 

−1 
k (t ) ̄A k, j (t ) , 

x̌ i,k (t ) = 

∑ 

j∈O 

meas 
k 

�
(k) 
i, j (t ) ̂  x j (t | t − 1) , 


i,k (t ) = 

∑ 

j∈O 

meas,o 
k 

�
(k) 
i, j (t ) , �̄

∗
j (t | t − 1)�

(k) 
i, j (t ) 

′ 
, 

together with γ
(k) 

i (t ) = Ā 

′ 
k,i (t ) R 

−1 
k (t ) z k (t ) , �

(k) 
i,i (t ) = Ā 

′ 
k,i (t ) R 

−1 
k (t ) ̄A k,i (t ) , then sends

(γ
(k) 

i (t ) , �(k) 
i,i (t ) , x̌ i,k (t ) , 
i,k (t ) , (O k ) 

� ) to node i . 
(3) On reception, for each i = 1 , . . . , N, node i computes: 

ˆ x i (t | t ) = ˆ x i (t | t − 1) + L 

∗
i (t ) 

( ∑ 

k∈I meas 
i 

γ
(k) 

i (t ) −
∑ 

k∈I meas 
i 

x̌ i,k (t ) 

)
, 

�̄∗
i (t | t ) = 2 ̄�∗

i (t | t − 1) − 2 ̄�∗
i (t | t − 1) 

∑ 

k∈I meas 
i 

�
(k) 
i,i (t ) L 

∗
i (t ) 

′ 
, 

where L 

∗
i (t ) and V 

∗
i are given by Eqs. (10) and (11) respectively just taking αi ( t ) one

there. 
(4) For each j = 1 , .., N, and l ∈ I t ime 

j , node j send ( ̂  x j (t | t ) , �̄∗
j (t | t ) to node l . 

Time update: For each i = 1 , . . . , N, node i computes: 

ˆ x i (t + 1 | t ) = f i (t, ˆ x i 1 (t | t ) , . . . , ˆ x i p i (t | t )) , 

�̄∗
i (t + 1 | t ) = 2(O 

t ime 
i ) � 

∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̄�
∗
j (t | t ) ̄F 

′ 
i, j (t ) 

+ 2φ2 
i (t ) 

∑ 

j∈O 

t ime 
i 

tr 
(
�∗

j (t | t ) 
)

I n i + Q i (t ) , 

where { i 1 , . . . , i p i } = O 

t ime 
i ⊆ { 1 , . . . , N } , then transmits 

(
ˆ x i (t + 1 | t ) , �̄∗

i (t + 1 | t ) 
)

to node

k , with k ∈ N 

meas 
i . 

5. Simulation results and discussions 

As is well known, the centralized Kalman filter (CKF) is optimal for the linear signal
system with additively white noise, in the sense of minimum variance estimate. In this section,
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e  
 sparse network and a linear signal system will be studied and the performance of the DKF
esigned with the CKF will be compared. We neglect the influence of the time-delay and
ropout, etc., in the process of information transmission. The following picture describes the
easurement neighborhood of six nodes, where each node corresponds with one state variable.

We take the system noise covariance σw 

= 1 

2 , and measurement noise covariance σv = 10 

2 .
he system matrix F̄ = diag { 0. 65 , 0. 65 , 0. 49 , 0. 72, 0. 61 , 0. 61 } , and the measurement matrix 

¯
 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0. 2 0 0 0 

0 10 0. 2 0 0 0 

5 6 6 5 0 0 

0 0 5 6 5 6 

0 0 0 0. 1 15 0. 1 

0 0 0 0. 1 0. 1 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

For each k = 1 , 2, 3 , 4, 5 , 6 , in Fig. 2 k -1, the red line denotes the real state x k , and the
reen line and the blue line denote the estimate for x k using the CKF and DKF respectively.
ach of the real state x k is initialized by 1, and all initial values of both filters are zeros. In
ig. 2 k , the green line, started from 0.5, denotes the covariance of estimate error x k using the
KF, the blue line, started from 0.5 as well, denotes the upper bound of the estimate error
ovariance of x k using the DKF. 

Fig. 1 shows that the filtering trajectory using DKF is very close to the one by using
KF and Fig. 2 shows that the upper bound of the covariance trajectory using DKF con-
erges more slowly than the covariance trajectory using CKF, this is reasonable since the
ata transformation process is needed in a distributed way. Fig. 3 and Fig. 4 show that the
stimate performance of x 2 . From Fig. 4 , it is easy to see that the estimate performance of
Fig. 1. State estimate of x 1 . 
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Fig. 2. Estimate error of x 1 . 

Fig. 3. State estimate of x 2 . 

Fig. 4. Estimate error of x 2 . 

 

 

 

 

x 2 is better than x 1 ’s. To be specific, the maximal upper bound of the estimate deviation
of x 2 using DKF reaches about 2.1, which is less than the value 4.5 of x 1 ’s. We explain
the reason as follow. Because Agent 1 and Agent 2 have the same dynamic system pa-
rameters (0.65), the main difference are the weights of the measurement parameters of both
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Fig. 5. State estimate of x 3 . 

Fig. 6. Estimate error of x 3 . 

Fig. 7. State estimate of x 4 . 

a  

m  

i  

i  
gents. In measurement equation of Agent 1, the proportion of the state x 1 is 1/0.2, while in
easurement equation of Agent 2, the proportion of the state x 2 is 10/0.2. From intuition,

n the latter case, the measurement data of all coupled state variables (in this case, there
s only x 3 ) are likely to be negligible (for simplicity, we call this situation “ measure weak
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coupled” here). Based on this fact and Remark 5 , the estimate performance of x 2 is better than
x 1 ’s. 

From Figs. 5 –8 , it seems that the state estimate performance of x 3 is better than x 4 ’s.
Notice that both their measurement equations have the similar measure parameters, the main 
Fig. 8. Estimate error of x 4 . 

Fig. 9. State estimate of x 5 . 

Fig. 10. Estimate error of x 5 . 
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Fig. 11. State estimate of x 6 . 

Fig. 12. Estimate error of x 6 . 
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i  
eason is the system parameter (0.49) of Agent 3’s is less than the one (0.72) of Agent 4’s,
here we have neglected the effect caused by their respective neighbors. Finally, the same

eason for the comparison between Agent 1 and Agent 2 yields the estimate performance
f x 5 should be better than the case of x 6 . The simulation results, i.e., Figs. 9 –12 , are also
onsistent with this. 

From the simulation analysis above, we know that the state estimate performance of each
gent is affected by both its dynamic system parameter and the weight of the coupled state
ariables in its measurement equation. Generally, if the dynamic system parameter is small
nd the measure is weakly coupled (remember Remark 5 ), the state estimate performance will
e better, see Figs. 3, 4 , 9,10 . 

. Conclusion 

In this paper, a novel distributed Kalman filter consisting of a bank of interlaced filters
s proposed for a signal model whose dynamic system equation and measurement equation
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are coupled. Different from some distributed filters already existed, each of the interlaced 

filters estimates a part of state rather than the global state in the distributed way. This relieves
the calculation and communication burden in networks. This kind of DKF maybe have wide
application in power systems and sensor networks, for example, it can deal with the models
appeared in [17,22] . 

Appendix A 

A1. Proof of Theorem 1 

Let 

˜ f i (t ) = f i (t, x i 1 (t ) , . . . , x i p i (t )) − f i (t, ˆ x i 1 (t | t ) , . . . , ˆ x i p i (t | t )) , (13) 

q i (t ) = 

˜ f i (t ) −
∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) , (14) 

where we denote q i (t, x i 1 (t ) , . . . , x i p i (t ) , ˆ x i 1 (t | t ) , . . . , ˆ x i p i (t | t )) as p i ( t ) for short, so is the case

of ˜ f i (t ) ’s. 
Eqs. (4), (7b) and (13) yield 

˜ x i (t + 1 | t ) = 

˜ f i (t ) + ω i (t ) . 

Via Eq. (14) , we have 

�i (t + 1 | t ) = E { ̃  f i (t ) ̃  f 
′ 
i (t ) } + Q i (t ) 

= E 

∣∣∣∣q i (t ) + 

∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
∣∣∣∣
2 

+ Q i (t ) , 

= E | q i (t ) | 2 + E 

[
q i (t ) 

∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
]

+ E 

[ ∑ 

j∈O 

t ime 
i 

˜ x 
′ 
j (t | t ) ̄F 

′ 
i, j (t ) q 

′ 
i (t ) 

]
+ E 

∣∣∣∣
∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
∣∣∣∣
2 

+ Q i (t ) , (15) 

where for a column vector ξ , we denote | ξ | 2 = ξξ
′ 

and notice that it is a matrix. Since 

E | q i (t ) | 2 = E [ q i (t ) q 

′ 
i (t )] ≤ tr 

(
E [ q i (t ) q i (t ) 

′ 
] 
)

I n i 

= E ‖ q i (t ) ‖ 2 I n i ≤ φ2 
i (t ) E ‖ ( ̃  x 

′ 
i 1 (t | t ) , . . . , ˜ x 

′ 
i 1 (t | t )) 

′ ‖ 2 I n i 
= φ2 

i (t ) tr E 

(∣∣∣( ̃  x 
′ 
i 1 (t | t ) , . . . , ˜ x 

′ 
i 1 (t | t )) 

′ 
∣∣∣2 )

I n i 

= φ2 
i (t ) 

∑ 

j∈O 

t ime 
i 

tr 
(
� j (t | t ) 

)
I n i , (16) 

where the sense of | · | 2 is the same with above, and the second inequality holds because of
the Assumption 1 . 
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Now we estimate E 

∣∣∣∣ ∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
∣∣∣∣
2 

, for a vector y ∈ R 

n i , we have 

E { y ′ F̄ i, j (t ) ̃  x j (t | t ) }{ ̃  x 
′ 
l (t | t ) ̄F 

′ 
i,l (t ) y} 

≤ 1 

2 

[ 
y 

′ 
F̄ i, j (t )� j (t | t ) ̄F 

′ 
i, j (t ) y + y 

′ 
F̄ i,l (t )�l (t | t ) ̄F 

′ 
i,l (t ) y 

] 
. 

hen, considering y 
′ 
( 
∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ))( 
∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t )) ′ y, and via the inequality

a 1 + .. + a n ) 
2 ≤ n(a 

2 
1 + · · · + a 

2 
n ) , with a i being all real numbers, we can obtain the follow-

ng inequality: 

 

∣∣∣∣
∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
∣∣∣∣
2 

= E 

[ ∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
][ ∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
]′ 

≤ (O 

t ime 
i ) � 

∑ 

j∈O 

t ime 
i 

F̄ i, j (t )� j (t | t ) ̄F 

′ 
i, j (t ) . (17)

t last, we estimate the two cross-terms appeared in the right hand of Eq. (15) , since 

y 
′ 
q i (t ) 

[ ∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
]′ 

y 

≤ βi (t ) | y ′ q i (t ) | 
∣∣∣∣(1 /βi (t )) 

∑ 

j∈O 

t ime 
i 

˜ x 
′ 
j (t | t ) ̄F 

′ 
i, j (t ) y 

∣∣∣∣

≤ 1 

2 

βi (t ) 

[
y 

′ 
q i (t ) q 

′ 
i (t ) y + (1 /β2 

i (t )) y 
′ 
( ∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
)

×
( ∑ 

j∈O 

t ime 
i 

F̄ i, j (t ) ̃  x j (t | t ) 
)′ 

y 

]
. (18)

hus, Eqs. (15)–(18) yield 

i (t + 1 | t ) ≤ (1 + βi (t ))(O 

t ime 
i ) � 

∑ 

j∈O 

t ime 
i 

F̄ i, j (t )� j (t | t ) ̄F 

′ 
i, j (t ) 

+ (1 + 1 /βi (t )) φ
2 
i (t ) 

∑ 

j∈O 

t ime 
i 

tr 
(
� j (t | t ) 

)
I n i 

+ Q i (t ) . (19)

imilarly, via Eq. (7a) we may show 

i (t | t ) ≤ (1 + αi (t )) 
(

I − L i (t )�i,i (t ) 
)
�i (t | t − 1) 

(
I − L i (t )�i,i (t ) 

)′ 

+ (1 + 1 /αi (t )) 

( ∑ 

k∈I i 
(O 

meas,o 
k ) � 

)
L i (t ) 
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×
[ ∑ 

k∈I meas 
i 

∑ 

j∈O 

meas,o 
k 

�
(k) 
i, j (t )� j (t | t − 1)�

(k) 
i, j (t ) 

′ 
]

L 

′ 
i (t ) 

+ L i (t )�i,i (t ) L 

′ 
i (t ) , (20) 

just noticing that 

˜ x i (t | t ) 
= 

[ 
I − L i (t )�i,i (t ) 

] 
˜ x i (t | t − 1) − L i (t ) 

∑ 

k∈I meas 
i 

∑ 

j∈O 

meas,o 
k 

�
(k) 
i, j (t ) ̃  x j (t | t − 1) 

− L i (t ) 
∑ 

k∈I meas 
i 

Ā 

′ 
k,i (t ) R 

−1 
k (t ) v k (t ) . 

Subtracting Eq. (19) from Eq. (9b) and subtracting Eq. (20) from Eq. (9a) , the inequality
relation �i (t | t ) ≤ �̄i (t | t ) and �i (t + 1 | t ) ≤ �̄i (t + 1 | t ) be valid by mathematical induction
and the nonnegative definite initial values. 

A2. Proof of Theorem 2 

Taking the partial derivative of �̄i (t | t ) in Eq. (9a) , with respect to L i ( t ), and letting the
partial derivative zero yield 

L i (t ) = (1 + αi (t )) ̄�i (t | t − 1)�i,i (t ) V 

−1 
i (t ) , (21)

where 

 i (t ) = (1 + αi (t ))�i,i (t ) ̄�i (t | t − 1)�i,i (t ) + (1 + 1 /αi (t )) 

×
( ∑ 

k∈I meas 
i 

(O 

meas,o 
k ) � 

) ∑ 

k∈I meas 
i 

∑ 

j∈O 

meas,o 
k 

�
(k) 
i, j (t ) ̄� j (t | t − 1)�

(k) 
i, j (t ) 

′ 

+ �i,i (t ) . (22) 

Expand the first term of the right hand part of Eq. (9a) , we have 

�̄i (t | t ) = (1 + αi (t )) ̄�i (t | t − 1) − (1 + αi (t )) ̄�i (t | t − 1)�i,i (t ) L 

′ 
i (t ) + ς(t ) , 

where 

ς(t ) = −(1 + αi (t )) L i (t )�i,i (t ) ̄�i (t | t − 1) 

+ (1 + αi (t )) L i (t )�i,i (t ) ̄�i (t | t − 1)�i,i (t ) L 

′ 
i (t ) 

+ (1 + 1 /αi (t )) 

( ∑ 

k∈I meas 
i 

(O 

meas,o 
k ) � 

)
L i (t ) 

×
[ ∑ 

k∈I meas 
i 

∑ 

j∈O 

meas,o 
k 

�
(k) 
i, j (t ) ̄� j (t | t − 1)�

(k) 
i, j (t ) 

′ 
]

L 

′ 
i (t ) 

+ L i (t )�i,i (t ) L 

′ 
i (t ) , 

Via Eqs. (21–22) , it is easy to verify ς(t ) = 0. Thus we obtain Eqs. (12a) , and (12b) is
obtained from Eq. (9b) . 
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