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Robustness Bounds 
of Hurwitz and Schur Polynomials 

M. Y. Fu 1 

Communicated by G. Leitmann 

Abstract. In this paper, the problem of robustness bounds of Hurwitz 
and Schur polynomials is addressed. For weighted Lz-norm perturba- 
tions of a Hurwitz polynomial p(s) or a Schur polynomial p(z), a new 
method is developed for calculating the maximal perturbation bound 
under which stability is preserved. We show that such a robustness 
bound is related to the minimum of a rational function. The new method 
is superior to the previous one developed by Soh, Berger, and Dabke 
in Ref. 1. Our approach also provides solutions for the perturbation 
polynomial 3p(s) or 6p(z) with minimal coefficient norm which cause 
p(s)+6p(s) or p(z)+6p(z) to be unstable. 

Key Words. Robust stability, robustness, optimization, uncertain 
systems. 

1. Introduction 

Robustness considerations play an important  role in control system 
designs; see Refs. 1-5 and their bibliographies. A number  of  techniques 
have been developed recently for estimating robustness bounds of  Hurwitz 
and Schur polynomials. For a Hurwitz polynomial,  Barmish (Ref. 2), using 
a theorem of Khari tonov (Ref. 3), showed that the maximal weighted 
intervals of  the coefficients which can be perturbed while preserving the 
Hurwitz property are determined by the maximal  stability bounds of  four 
extreme polynomials  with unidirectional perturbations in the coefficients. 
A closed-form solution of the maximal allowable perturbations for these 
polynomials  is given recently by Fu and Barmish (Ref. 4). The type of' 
perturbations considered in Ref. 2 is referred to as L l -norm perturbations. 
However,  the result in Ref. 2 is not applicable to Schur polynomials. In 
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order to handle both continuous-time and discrete-time systems, Soh, 
Berger, and Dabke (Ref. 1) introduced L2-norm perturbations. They showed 
that the maximal L2-norm perturbation bound of a Hurwitz or Schur 
polynomial is associated with the minimum value of a function in a quadratic 
form. However, the evaluation of such a function involves numerical compu- 
tation of  the pseudo-inverse of a matrix function. In the case of continuous 
polynomials, a simpler solution is provided by Chapellat and Bhattacharyya 
in their recent paper (Ref. 5). It is shown in Ref. 5 that the maximal L2-norm 
perturbation bound of  a Hurwitz polynomial can be calculated by minimiz- 
ing a rational function associated with the coefficients of the polynomial. 

From the point of view of robust control design, we may not only be 
interested in how to calculate robustness bounds, but also want to see 
whether the technique used can give indications of  how to improve the 
robustness. In particular, we would like to know the direction(s) of  
perturbation which easily lead to instability. 

Based on the motivations above, we reformulate the problem studied 
in Ref. 1 and show that the same robustness bound of a given stable 
polynomial can be related to the minimum value of a rational function. 
Consequently, the computation is much simplified. For continuous poly- 
nomials, our result is similar to the one in Ref. 5, except that we use a 
monic polynomial while in Ref. 5 the leading coefficient of  the polynomial 
is forced to have perturbations. Noticing that the coefficients of the poly- 
nomial may be unevenly perturbed in practical applications, we allow a 
weighted L2-norm in order to reduce conservatism. Moreover, we also 
describe the minimal destabilizing polynomial(s) to the nominal stable 
polynomial. These minimal destabilizing polynomials may be useful in 
adjusting the feedback controller to improve the robustness of the system. 
After introducting notation and preliminaries in Section 2, we provide the 
main results in Section 3 and an illustrating example in Section 4. 

2. Notation and Preliminaries 

In this section, we first define the maximal weighted L2-norm perturba- 
tion bound and the associated minimal destabilizing polynomial(s) for a 
stable polynomial. Then, the problems of finding the maximal perturbation 
bound and the minimal destabilizing perturbation polynomials will be 
converted to a set of  quadratic minimization problems with linear con- 
straints. These reformulated problems will be solved in Section 3. 

Throughout  this paper, every polynomial is assumed to be real and its 
order is at least one. The coefficient vector of  nth order polynomial 

p(~) = a0+ al~:+ • • • + a,- l~ m- l+  ~:n (1) 



JOTA: VOL. 62, NO. 3, SEPTEMBER 1989 407 

is denoted by 

a =[ao ,  a l , . . . ,  a~-,] T. (2) 

The perturbed polynomial takes the form p(~:)+ 6p(~:), where 

6p( ( )  = 6ao + 6a1~ + . . • + (3a,_1~ "- l ,  (3) 

with its coefficient vector given by 

6a = [6ao, 6 a l , . . . ,  6a,_1] T (4) 

Definition 2.1. Consider a given nth order strictly Hurwitz polynomial 

p ( s )  = ao + ats  +" " " + a ,_ i s  "-~ + s" (5) 

and a weighting matrix 

F = diag{yo, y l , . . . ,  %_~}, y~>0, i = 0 ,  t , . . . ,  n - 1 .  (6) 

The maximal weighted L2-norm perturbation bound for p( s )  is defined by 

dc =" min{~/(6a rF3a) :  p( s )  + 6p(s)  is not strictly Hurwitz}. (7) 

Furthermore, 6p(s)  is called a minimal destabilizing polynomial (MDP) if 

~a TF~a = d~ (8) 

and p ( s ) + 6 p ( s )  is not strictly Hurwitx. 2 

Definition 2.2. Consider a given nth order strictly Schur polynomial 

p ( z )  = ao+ a l Z  + "  • • + a , _ l z  "-1 + z" (9) 

and a weighted matrix F as in (6). The maximal weighted L2-norm 
perturbation bound for p ( z )  is defined by 

d~ ~-min{~/ (6arF6a):  p ( z )  + 6p(z)  is not strictly Schur}. (10) 

Furthermore, 8p(z)  is called a minimal destabilizing polynomial (MDP) if 

~ a r F 6 a  = d~a (11) 

and p ( z ) +  6p(z)  is not strictly Schur. 

In order to calculate the maximal perturbation bounds for p( s )  and 
p ( z )  and their associated MDPs, we first notice the following property of  
an MDP: if 3p(s)  is an MDP of p(s) ,  then p ( s ) + S p ( s )  has at least one 
zero on the imaginary axis; i.e., there exists some oJ __ 0 such that 

p ( j w  ) + ~p( jw ) =0.  

2 It should be noted that there may be more than one MDP. 
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Similarly, if  6p(z) is an M D P  of  p(z) ,  then there exists some 0--- 0 - ~- such 
that  

p( e s°) + 8p( e s°) = O. 

Therefore,  we conclude  that  

de-- min {x/(6arF6a):p(jto)+6p(jto)=O}, (12) 
8 a ~ R ' , t o ~ 0  

dd = min {x/(6arF6a): p(e n) + 6p(e s°) = 0}. (13) 

Taking (12) one step further  by separating to = 0 and to > 0 ,  we obtain 

2 min{d2  2 dc = , dcz}, (14) 

where 

d 2 = min.{6arF6a: ao+  6ao = 0}, (15) 
cl 8 a e R  

2 __ d e 2 -  inf {aarraa:p(jto)+@(jto)=O}. (16) 
~ a ~ R  , ~ > 0  

Not ice  that,  for  any nth  order  polynomial  p(s) in the form o f  (5), we have 

p(jto)=(fio)"+ i a2,(-to2)i+J to i a2i+l(--to2) i, (17) 
i = 0  i = 0  

where r and s are the integer parts o f  (n - 1)/2 and (n - 2 ) / 2 ,  respectively; 
i . e ,~  

r = , s = . ( 1 8 )  

Now,  let [; 2 
a ~ ( t o ) =  - t o  to - . .  ( - t o y  0 0 0 . - -  

0 0 " "  0 1 - t o  to2 . . .  

[ ( _ t o ) . / 2 ] ,  if n is even, 
O~(to) = L 0 J [ o ]  

(_to)(,-1)/2 , if  n is odd,  

a = [ao, az , .  • • , a2r, a l ,  a : ,  . . . , a2,+l] r, 

63 = [6ao, 6 a 2 , . . . ,  8a2r, (5al, 6a3, .  • . ,  8a2s+~] r. 

I t  is s t ra ightforward to verify that, for  w # O, 

p(jto ) + ap(jto ) =0 

o] 
( _ t o ) ,  , (19)  

( 2 0 )  

(21) 

(22) 
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if and only if 

f~(wz)(a  + 6a) + O~(to 2) = 0. (23) 

In fact, the first row of the vector in (23) corresponds to the real part of 
p(jto)+6p(jto), and the second part corresponds to the imaginary part 
divided by w. Now, substituting (23) and (21) into (16) and replacing o) z 
by to, we have 

d~2= inf {6a'r['6a: ~(w)(a+Sa)+tb~(w)=O}, (24) 
~5~ c Rn,to > 0  

where 

F = diag{yo, y2 , . - - ,  y2r, yl ,  y 3 , - . . ,  3'2s+~}- (25) 

Similar analysis for (13) yields 

d~ = min{d]l, d]2, d]~}, (26) 

where ddl, dd2, dd~ are obtained from (13) by considering three cases: 0 = 0, 
0 < 0 < 7r, and 0 = 7r. That is, 

d 2 - rain 8arF6a:l+ ~ ai+ ~ 8ai=O (27) d 1 - -  
~a~Rn i=0  i=0  

n - I  n--1 } 
d22 = min ~aTF6a: (--1)"+ ~ (--1)~a,+ ~ (--1)~Sa~=0 (28) 

cSacRn I. i=O i=0  

d]~ = inf {6aTF6a: p(e j°) + 8p(e j°) = 0). (29) 
~Sa~ R ' , 0 <  0 <  7r 

Defining 

[10 cos0 cos(20). . .cos((n-1)O)] 
f~d(O)= sin 0 sin(20) .s in((n--1)0) j '  (30) 

r os(.0)] 
0a(0) = L sin(n0) J '  (31) 

it is straightforward to verify that 

p( e j°) + 6p( e j° ) = 0 

if and only if 

l)d( O)( a + 6a) + q'd( O) = 0. (32) 

Therefore, we can rewrite (29) as follows: 

d~3= inf {6aTF6a: ~d(O)(a+6a)+Od(O)=O}. (33) 
cSa c R n , 0 < O <  7r 
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3. Main Results 

In this section, we provide the main results of this paper by solving 
the problems associated with (15), (24), (27), (28), and (33). Theorems 3.2 
and 3.3 give solutions for dc and dd and the associated MDPs, respectively. 
Notice that the problems mentioned above all have the same form: minimize 
a quadratic function with linear constraints (for fixed to and 0). Based on 
this observation, we first mention a well-known result for the classical 
quadratic minimization problem (see, for example Ref. 6, for proof). 

Lemma 3.1. Consider the following problem: 

minimize J(x) = xrFx, (34a) 

s.t. x ~ R n, A x + b  =0, (34b) 

where F ~ R "×" is a positive-definite symmetric matrix, A ~ R m×", with m < n 
and rank(A) = m. Then, the minimum J* and the unique minimizer x* are 
given by 

J* = b r(AF-~A r)-lb, (35) 

x* = -F-1A T(AF-~A r)-lb. (36) 

The application of Lemma 3.1 to the problems associated with (15), 
(24), (27), (28), and (33) is central to the main results of this paper (Theorems 
3.1 and 3.2). 

Theorem 3.1. Suppose that p(s) is a strictly Hurwitz polynomial as 
in (5) and F is a weighting matrix as in (6). Then, the maximal weighted 
L2-norm perturbation bound for p(s) defined in (7) is given by 

where 

d 2 = min{d2, d~:}, (37) 

d 2 - -  2 
c t ~ 0 a 0 ,  

a~ , ( - to) '  

d~ = rain 
co>O [(n-- l) /2]  

2 3,2-ixto2, 
i=O 

(38) 

t(,-2)/21 (39) 

i=O 

Furthermore, if d~ = de,, then 6p*(s), with 

aa* = [ - a o ,  o, o . . . .  , o] ~, (40) 
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is a minimal destabilizing polynomial. I f  dc= d~, then 6p*(s), with 

I n ~ 2 ]  

E a~A-oo*) j 
6a*~ - ~=o ]/2il (_  (.o , )  i, 

[ ( n - I ) / 2 ]  

j=O 

i=O, 1, . . . , (n-1)/2,  

(41) 

[(n--1)/2] 

E a2j+,(-w*)' 
~az*i+l = j=o -1 , 

[(n--2)/2] - -  "~2 i+ 1 ( - -  ( ' 0 ) '  

2 ~h~+,(,o*) ~i 
j = 0  

i=0,1,. . . ,(n-2)/2,  

(42) 

is a minimal destabilizing polynomial for any w* minimizing (39). 

Proof. Equations (38) and (40) are obtained simply by applying 
Lemma 3.1 to (15) with 

x = ga, m = 1, A = [ 1, 0, 0 , . . . ,  0], b = ao. 

The detailed manipulation is straightforward and therefore omitted. To 
show (39) and (41)-(42), we first rewrite (24) as 

2 de2 = inf min Jc(oJ) 
~o>0 xE R n 

= inf min{xrFx:  O~c(~o)(a + x) + tpc(oJ) = 0}. 
~o>O x ~ R  n 

Now, for each fixed ~o, we apply Lemma 3.1 to J~(~o) with 

m = 2 ,  A =  f~c(w), b = ~bc(o)) + flc(o))c~. 

Notice that 

rank fie(o)) = 2, for any ~o. 

It turns out that 

J*  = (0~(o~) + a~(o~)a)~(ac(o~)~-lac(oJ))-1(Od~o) + ac(~o)a),  
(43) 

x* = -fTl~(w)(f~(w)f'-~f~r(o)))-~(O~(w)+12~(a,)a). (44) 
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In the remain ing  part o f  the proof ,  the reader m a y  assume  n = even or 
n = odd,  for  simplicity.  From (19), (25), and (18),  we  have  

f~o(to)~-'a[(o,,) 

= r l - t o  . . .  ( - , o ;  o o 
Lo 0 ' ' '  0 1 - t o  

x d i a g { y o ' , . . . ,  34-~, " / ( ' , .  • •,  ~/2sl+,} 

[ ( n - l ) / 2 ]  
E ~/2i ltozi 0 

[(n--2)/2]  -1 2, 0 2, "Y2i+l to 
i=0  

and, f rom (19),  (20), and (21),  

~oc(to) + g~o(a,)~ = ¢,Ato) + 

::: 

1 0 

- t o  0 

- t o y  0 
0 1 

0 - t o  

o (-to)* 

[ ( n - I ) / 2 ]  

a2i(--to ) i 
i=O 

[(n--2)/2] 
~, a21+l(--to) i 

i=o  

In /2]  
2 a2i(--to) i 

i=0  

i(n-1)/2] 
2 a2i+l(--to) i 

i=o  

Substitut ing (45) and (46) into (43),  we  conc lude  that 

J*(to)- t~,,-,/23 

/ )2 
[(, ,~)/2] a 2 i + l ( - w )  ~ 

\ i =0  ÷ 
[(n--2)/2]  

Z Y25 it°21 Z Y251+, to2~ 
i=0  i = o  

(45) 

(46) 

(47) 

de2 = inf  J*(to) .  (48) 
to>O 
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In order to obtain (39), we need to replace the infimum by minimum by 
showing that the minimum of J*(~)  is attainable in (0, oc). This is established 
by noticing the fact that, for all sufficient small w > 0, 

J*(w) = yo(ao- 2a2~o) + y,(al - 2a3o~) < J*(O) 

and that 

lim J * ( t o )  -~ oo. 
¢o ---~ oo 

Hence, (39) follows. To show (41) and (42), we substitute (19), (25), (45), 
and (46) into (44) and we obtain 

x * = - [  y*]  

where 

In/2} yo 1 

y , _  j=o - y2-1w , 

L ~ f j  lO')2j " " " 
i=o ~ ; : ( - ~ ) '  

[ (n - - l ) / 2 ]  r ~ / l l  

2 a2j+l(--to) j [ _?/fifo 
Z *  ~--- j=O  

--1 2j " ' "  
'~2J +1('0 --1 

j=o  Ly~,+,(-~) 
Hence, (41) and (42) follow. [ ]  

Theorem 3.2. Suppose that p(z) is a strictly Schur polynomial in the 
form of (5) and F is a weighting matrix as in (6). Then, the maximal weighted 
L2-norm perturbation bound, for p(z) defined in (10), is given by 

d2d = min{ d2d,, d2 d~, d2d~}, (49) 

where 

1F +"-' ]= 
o_<mie_, % j [ ,  o, , (50) 

d]2= rain y; ( - 1 ) " +  (-1)~a~ , (51) 
O<--i<--n--1 i = 0  

d2d~ = inf 2 
0 < 0 < ~  

( f - g ( O ) ) R Z ( O ) + ( f  +g(O))I2(O) -2h(O)R(O)I(O) 
x f2_g2(O)_h2(O) .... , (52) 
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with 

n - I  n - 1  

f =  E 3'7 ~, g(0) = E 3'2 lcos(2i0),  
i=O i=0  

n - I  

h(O) = • 77, ~ sin(2i0), 
i = 0  

R(O) = ~ a, cos(i0), I(O) = ~ a, sin(i0). 
i =0 i =0 

Furthermore, if de = de~, then 8p*(z),  with 

Or n 1 

6a* = _ 1+ =~oaJ ' i = k, 

(53) 

(54) 

(55) 

is a minimal destabilizing polynomial for any k minimizing 3'k, k =  
0, 1 , . . . ,  n - 1. Similarly, if dd = da2, then ~p*(z),  with 

"-a (56) 
6a~*= - ( - 1 ) '  ( - 1 ) " +  E (-1) 'a j  , i = k ,  

j=O 

is a minimal destabilizing polynomial for any k minimizing 3"k, k =  
0, 1 , . . . ,  n - 1. Finally, if da = dd~, then 3p*(z) ,  with 

6a* = 3"7~(kR(O *) Cos(i0*) + k~ (0") sin(i0*)), (57) 

is a minimal destabilizing polynomial for any 0* minimizing (52), where 

( f  - g(  O) )R (  O ) - h( O)I( O ) 
kR(0)=- -2  f 2  ga(O)_hz(O)  , (58) 

( f  + g( O))I( O ) -  h (O)R(  O) 
k x ( 0 ) = - 2  f 2 _ g 2 ( O ) _ h 2 ( O )  ....... (59) 

Proof. Equations (50) and (55) are derived simply by applying 
Lemma 3.1 to (27) with 

x =  8a, m = 1, A = [ 1 ,  1 , . . . ,  1], 

b = a o + a l + "  • . + a , _ ~ + l .  

The detailed manipulation is trivial and therefore omitted. Similarly, (51) 
and (56) are derived by applying Lemma 3.1 to (28) with 

x = S a ,  r e = l ,  A = [1, - 1 , . . . ,  ( -1 ) ' -1 ] ,  

b = a0 - al +" • • + ( -  1) '-1a,-1 + ( -1 ) ' .  
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The details are omitted too. To show (52) and (57), we first rewrite (29) as 

d]3= inf minJd(O) 
0 ~ 0 < T r  x ~ R  n 

= inf min{xrFx:f~d(O)(a+x)+q~d(O)=O}. (60) 
O ~ O < . T r  x c R  n 

Now, for each fixed 0, we apply Lemma 3.1 to Jd(O), with 

A=I2a (0 )  and b=Od(O)+t)d(O)a. 

Notice that 

rank l id(0) = 2, for any 0<  0 < ~r. 

It turns out that 

J * ( 0 )  = ( 4,~( o) + a . (  O)a) ~ ( a . (  o ) r - l a  ~( o) ) -1 

x (Oa(O)+fld(O)a), (61) 

x* = --F-la~(O)(tId(O)V-'Ut~(O))-~(Od(O)+f~d(O)a ). (62) 

On the other hand, 

ad  ( 0 ) r - ' a ~ ( 0 )  

= [ ;  c°s° ' "c°s ( (n-1)° ) l  
s i n o . . s i n ( ( n - 1 ) 0 ) J  

x diag{yo 1, y11 , . . . ,  y~1_1} 

1 

cos 0 
X 

cos((n - 1)0) 

o] 
sin 0 

• • o 

s i n ( ( n -  1)0) 

y/-I COS2(iO) 1 sin(iO) cos(iO) 
-~-  i = 0  i 

n - 1 

3': 1 cos(iO) sin(iO) ~, y}-l sin2(iO) ] 
i = 0  i = 0  

• [f+g(O) h(O) 1 
= ( 1 / 2 ) [  h(O) f-g(O)J" 

Therefore, 

( a , ( o ) r - ' a ~ ( o ) )  -1 

_ 2 [ f -g (O)  -h(O) ] 
f2-g2(O)-h2(O) k -h(O) f +g(O)J" (63) 
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Furthermore, it is easy to verify that 

r R ( 0 ) ]  (64) 
~ ( o ) + n ~ ( o ) a  = L I(o) J" 

Finally, we obtain (52) and (57) by substituting (63), (64), and (30) into 
(61) and (62). Detailed manipulation is omitted. [] 

4. Illustrative Example 

To illustrate the simplicity of our new method, we consider the maximal 
weighted L2-norm perturbation bound for the strictly Hurwitz polynomial 
studied in Refs. 1 and 2, 

p(s) = s4+5s2+8s2+8s+3, (65) 

with two different weighting matrices. 

Case 1. F=diag{1,  1, 1, 1}. Using Theorem 3.2, we find that 

d~ = ~/oa~ = 9, 

d2  = inf[(3 - 8to + o)2)2/(1 + 0)2)] + [(8 - 5o))2/(1 + o)2)] = 12.36. 

Therefore, the maximal weighted L2-norm perturbation bound is given by 

2 • 2 d~2}-9,  d~=rmn{d~,, 2 _ 

and 

3a* = [ -3 ,  0, 0, 0] T 

is an MDP (in this example, unique). 

Case 2. F = diag{1, 1/3, 1/3, 1/2}. Similarly, using (38) and (39), we 
find that 

d~, = 3/oa~ = 9, 

d~  = inf[(3 - 8o9 + to2)2/(1 + 3to2)] + [(8 - 5w)2/(3 + to2)] = 5.68, 

with the unique minimizer to*= 1.1775. Hence, from (37), (41), and (42), 
we have 

d~ = min{d2,, d~ 2} = 5.68, 
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and 

- (3 -8 t°*+t°*2) / (1+3w.2)  ] 

- 3 ( 8 -  5t°*)/(3 + 3t°'2) / 

-3 ( - to*) (3  - 8to* + w*2)/(1 + 3~o'2)[ 

- 2 ( - w * ) ( 8 - 5 w * ) / ( 3 + 3 t o  .2) J 

is an MDP (again, in this example, unique). 

0.9756" 

-1.0980 

-3.4461 

0.8618 
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