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Abstract A newly proposed distributed dynamic state estimation algorithm based on the maximum

a posteriori (MAP) technique is generalised and studied for power systems. The system model involves

linear time-varying load dynamics and nonlinear measurements. The main contribution of this paper is

to compare the performance and feasibility of this distributed algorithm with several existing distributed

state estimation algorithms in the literature. Simulations are tested on the IEEE 39-bus and 118-bus

systems under various operating conditions. The results show that this distributed algorithm performs

better than distributed quasi-steady state estimation algorithms which do not use the load dynamic

model. The results also show that the performance of this distributed method is very close to that by

the centralized state estimation method. The merits of this algorithm over the centralized method lie

in its low computational complexity and low communication load. Hence, the analysis supports the

efficiency and benefits of the distributed algorithm in applications to large-scale power systems.

Keywords Distributed MAP estimation, distributed state estimation, extended Kalman filter, power

systems.

1 Introduction

State estimation is a fundamental and vital part of the energy management system (EMS)
in power system operation and control[1], which has remained an attractive and contentious

SUN Yibing

School of Control Science and Engineering, Shandong University, Jinan 250061, China.

Email: sun yibing@126.com.

FU Minyue

School of Electrical Engineering and Computer Science, University of Newcastle, NSW 2308, Australia; School

of Automation, Guangdong University of Technology, Guangzhou 510006, China.

Email: minyue.fu@newcastle.edu.au.

ZHANG Huanshui

School of Control Science and Engineering, Shandong University, Jinan 250061, China.

Email: hszhang@sdu.edu.cn.
∗This research was supported by the National Natural Science Foundation of China under Grant Nos.

61120106011, 61573221, 61633014 and National Key Technology Support Program of China under Grant No.

2014BAF07B03.
�This paper was recommended for publication by Editor HONG Yiguang.



596 SUN YIBING · FU MINYUE · ZHANG HUANSHUI

research field in recent years. From redundant noisy measurements, state estimators are broadly
utilized to estimate state variables including voltage magnitudes and phase angles of the buses
in power systems, which are not directly monitored for economical and computational reasons.
The accuracy of state estimation depends on measurements gathered from the network. Then
the development of fast measuring and processing devices, such as Phasor Measurement Units
(PMUs) are extremely crucial for state estimation techniques[2]. With growing system sizes and
wide usage of PMUs, the need for faster state estimation becomes urgent, which promotes the
development of distributed estimation and control in wide-area power systems. Furthermore,
distributed state estimation algorithms are also necessary for many other types of large-sized
networked systems, such as sensor networks, which have been developed extensively; see [3–6].

State estimation in power systems has been classically performed by a static (or quasi-
steady state) approach, based on the weighted least square (WLS) method, where a single
set of measurements is used to estimate the system’s quasi-steady state. For the last few
decades, there has been much research activity focused on distributed methods to static state
estimation[7–14]. At present, static state estimators are widely used in power systems under the
reliable operation of the transmission and distribution systems. Pasqualetti, et al.[11] presented
a distributed static estimation method to estimate the state of power systems, in which the
proposed algorithm for each monitor returned an approximate estimate within a finite number
of iterations. Xie, et al.[12] presented a fully distributed state estimation algorithm, and all
control centers achieved an almost sure estimate as the centralized method. However, in [11]
and [12] each control center had to transmit its entire high-dimensional state estimate to its
neighbors, the communication load of which was heavy.

In fact, smart grids are typically dynamic systems due to the dynamic nature of system loads.
When the requirement of real-time and accurate monitoring in power systems becomes urgent,
dynamic features are considered to improve state estimation methods, but static state estimators
have no capacity for capturing dynamic behaviors efficiently and accurately. Furthermore,
the forecasting ability of dynamic state estimation techniques plays an important role in the
improvement of the overall EMS control and operation. In this case, dynamic state estimation
techniques have been the focus of attention in recent years[15–24]. These dynamic methods
obtained in literature mainly related to the extended Kalman filtering (EKF) technique, in
which state vectors are estimated based on a prediction-correction process; see [18–22]. Shih and
Huang[21] proposed a robust algorithm for dynamic state estimation by using the exponential
weighting function, and showed its immunity to polluted measurements. Actually, the above
mentioned algorithm is a typically centralized method, which is not well suited for applications
in wide-area power systems. At present, there are few results studying the distributed state
estimation for dynamic systems. Sun, et al.[23] presented a fully distributed state estimation
method for a linear dynamic system, which extended and improved some known results in
literature.

In this paper, we will investigate and generalize the distributed MAP estimation algorithm
proposed in [23] to a nonlinear system, which is improved by the following methods: (1) Based on
the exponential weighting function in [21], we incorporate new exponential weighting functions



DISTRIBUTED STATE ESTIMATION OF POWER SYSTEMS 597

to ensure the robustness of the distributed algorithm; (2) For improving the estimated precision,
we also use a exponential weighted method to identify model parameters. The main contribution
of this paper is to validate the effectiveness of the distributed MAP estimation algorithm by
comparing its performance with a centralized method, which can be seen as a combined method
of [21] and [22], and two distributed static state estimation approaches in [11] and [12]. In the
simulation results, the above mentioned methods are tested under various operating conditions,
including normal operation condition, sudden load change, bad measurements and topology
error condition. We can see that the distributed MAP estimation algorithm together with
parameter identification perform better than the algorithm in [23], when sudden load changes
and bad data are included in measurements. This verifies the robustness and estimated precision
of the distributed algorithm. From the simulation results, the state estimates and performance
indices obtained by the distributed MAP estimation algorithm are slightly worse than the
centralized method, especially for large-scale systems, and the performance of this method is
more accurate than the distributed static methods. Moreover, in this method each control
center transmits much lower dimensional data than the whole system state to its neighbors.
Hence, the communication load of the distributed MAP estimation algorithm is much less than
the centralized approach and distributed static methods shown in [11] and [12], and based on
the analysis of computational complexity, this algorithm is more scalable to wide-area power
systems.

The rest of the paper is organized as follows. Section 2 describes some preliminaries and
problem setup. The centralized algorithm for multi-area state estimation and identification of
model parameters are presented in Section 3. In Section 4, we introduce two existing distributed
algorithms for static systems in literature and the distributed MAP estimation algorithm for
dynamic and nonlinear systems. In Section 5, illustrative studies are performed on the IEEE
39-bus and 118-bus systems. The concluding remarks are discussed in Section 6.

2 System Modeling and Problem Setup

In this section, we will introduce the system model in power systems, an example of which
is shown here to depict the partition of the system model. Then the state and measurement
models of each subsystem are described. Before giving the system model for state estimation,
we first present some notations and preliminaries, which will be used in this paper.

Notation R
l denotes the set of l-dimensional real column vectors and R

l×q denotes the set
of l × q real matrices. N0 is the set of non-negative integers, while N is the set of positive
integers. We denote the transpose of M by MT, in which M is a column vector or a matrix.
The shorthand diag[A1, A2, · · · , An] denotes a block diagonal matrix with diagonal blocks being
matrices A1, A2, · · · , An.

We use a communication graph G = (V , E) to represent a multi-area power system, where
V = {1, 2, · · · , N} is the set of nodes and E ⊂ V × V is the set of edges with an unordered
pair (i, j) ∈ E expressing that there exists an edge between nodes i and j. We also assume
that the graph G is connected and undirected, and the graph is void of self-loops and multiple
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edges. For node i, we denote the set of its neighbors as Ni = {j ∈ V : (i, j) ∈ E}. The notion
N i = Ni

⋃{i} denotes the set of node i and its neighbors, and Ni/{j} denotes the set which
does not include node j.

Definition 2.1 For a graph without loops, a path is known as a concatenation of adjacent
edges and its length is the number of edges forming it. The diameter Γ of the graph is defined
as the maximum length of a path between any two nodes.

2.1 Model Building in Power Systems

The operating state of a power system can be uniquely defined by a multidimensional vector
including voltage magnitudes and phase angles. The state space representation of discrete time-
varying systems is usually shown as

x(k + 1) = A(k)x(k) + G(k) + ω(k), (1)

z(k) = f(x(k)) + ν(k), (2)

where k ∈ N0 is the time sample, x(k) is the state vector, z(k) is the measurement vector;
A(k) is the state transition matrix which is usually assumed diagonal (see [20] and [21]), G(k)
describes the trend behavior of the state trajectory, f represents the load-flow function for the
current network configuration; ω(k) ∼ N (0, R(k)) is the process noise, and ν(k) ∼ N (0, R∗(k))
is the measurement noise. Voltage magnitudes, phase angles as well as active/reactive power
flows form the measurement vector.

2.2 Partition of Power Systems

Throughout this paper, we require the following assumption:
Assumption 2.1 The considered graph G is acyclic.

Figure 1 Topological structure of the IEEE 118-bus system
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The graph G of Figure 2 is generally used to describe the partition of the IEEE 118-bus
system as shown in Figure 1, where each node corresponds to a subsystem in Figure 1. That is to
say, all buses within a subsystem are treated as a whole to measure its local state and exchange
information with its neighboring nodes. Obviously, Figure 2 is acyclic, which corresponds to
Assumption 2.1. The state and measurement vectors of each node are stacked by that of all
buses within the corresponding subsystem. Since there exist power flows between neighboring
buses, it is natural to use edge measurements to describe physical interactions in power systems.

Figure 2 The graph G depicting the partition of the 118-bus system

From the local viewpoint of node i, which contains si buses, we consider the linear dynamic
system as follows

xi(k + 1) = Ai(k)xi(k) + Gi(k) + ωi(k), (3)

where xi(k) ∈ R
2si is the local state of node i, and ωi(k) is assumed to be independent white

Gaussian with zero mean and covariance Ri(k). It is also assumed that the initial state xi(0)
is an independent Gaussian variable with mean xi(0) and covariance Σi(0).

The measurements of each node can be classified into two types, i.e., local measurements
which are only functions of the state of every node, and edge measurements representing the tie-
line measurements related to the neighboring nodes. Therefore, the two types of measurement
equations of node i can be represented respectively as follows

zi,i(k)= fi(xi(k)) + νi,i(k), (4)

zi,j(k)=hi,j(xi(k), xj(k)) + νi,j(k), (5)

where zi,i(k) is the measurement vector of node i, zi,j(k) describes the interaction between nodes
i and j, νi,i(k) and νi,j(k) are the associated measurement noises, assumed to be independent
white Gaussian with zero mean and covariances Si(k) and Ti,j(k). fi(·) represents a nonlinear
vector, and hi,j(·) is the stacked power flow equations.

Remark 2.2 Notice that the edge measurement (5) is shared by both neighboring nodes
i and j. Then we assume that zi,j(k) and zj,i(k) represent the same measurement and the same
goes to νi,j(k) and νj,i(k).

Linearizing around the operating points x0
i (k) and x0

j (k), the Jacobian matrices of fi(·) and
hi,j(·) are derived as

Hi(x0
i ) =

∂fi(xi)
∂xi

∣
∣
∣
∣
xi=x0

i

,

Bi,j(x0
i ) =

∂hi,j(xi, xj)
∂xi

∣
∣
∣
∣
xi=x0

i

, Bj,i(x0
j) =

∂hi,j(xi, xj)
∂xj

∣
∣
∣
∣
xj=x0

j

.
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Dynamic state estimation of power systems is mainly built on the EKF theory, which utilize
the measurements and the predicted values of state variables for the filtering operation. We
will propose the centralized state estimation method in the next section.

3 Centralized MAP Estimation Method

The dynamic state estimation process can be divided into the following stages: State es-
timation, state prediction and parameter identification. In order to propose the centralized
MAP estimator, we firstly describe the state and measurement models by aggregating the state
and measurement equations of the nodes included in the whole system. This also explains the
derivation of (1) and (2) in this paper. For (3), (4) and (5), combining states and measurements,
the stacked state and measurement equations can be written as (1) and (2), where

x(k) = (xT
1 (k), xT

2 (k), · · · , xT
N (k))T,

z(k) = (· · · , zT
i,i(k), · · · , zT

i,j(k), · · · )T,

R(k) = diag[R1(k), R2(k), · · · , RN (k)],

R∗(k) = diag[· · · , Si(k), · · · , Ti,j(k), · · · ].

The Jacobian matrix of f(x(k)) is H(x0(k)), which is an aggregation of Jacobian matrices of
local and edge functions. In the below, we choose the state prediction x̃(k) as x0(k) at each
time k, and we express H(x̃(k)) as H(k) for simplicity. Hi(k), Bi,j(k) and Bj,i(k) can be
similarly described. x(0) is the initial state with mean x(0) = (xT

1 (0), xT
2 (0), · · · , xT

N (0))T and
covariance Σ(0) = diag[Σ1(0),Σ2(0), · · · , ΣN (0)]. Also, we make the following assumption:

Assumption 3.1 The matrix H(k) has full column rank and covariances of noises R(k) ≥ 0,
R∗(k) and the initial state Σ(0) are positive definite.

3.1 Centralized MAP Estimation Process

When the measurements from time 0 to k are known, the state estimate x̂(k) and the
prediction x̃(k) can be obtained by the centralized MAP estimation process.

1) State estimation.
In the filtering process, the predicted state vector x̃(k) together with its covariance matrix

M(k) can be filtered to obtain x̂(k), if the measurement z(k) is available. At time instant k,
an objective function can be formulated as

J(x) = [z − f(x)]TR−1
∗ [z − f(x)] + [x − x̃]M−1[x − x̃],

where the time index k is omitted from all variables in the above equation. Minimizing J(x) with
respect to the state vector as shown in [21], the filtering state vector and the error covariance
matrix can be expressed as

x̂(k)= x̃(k) + K(k)e(k), (6)

P (k)=M(k) − K(k)H(k)M(k), (7)
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where the innovation vector e(k) and the gain matrix K(k) are formulated as follows:

e(k) = z(k) − f(x̃(k)),

K(k) = M(k)HT(k)Ω−1(k),

Ω(k) = H(k)M(k)HT(k) + R∗(k).

In fact, the centralized state estimator used in this paper is the above mentioned EKF.
Rewriting (6) and (7), we have

x̂(k)=Q−1(k)α(k), (8)

P (k)=Q−1(k), (9)

where

α(k)=HT(k)R−1
∗ (k)

(
z(k) + H(k)x̃(k) − f(x̃(k))

)
+ M−1(k)x̃(k),

Q(k)=HT(k)R−1
∗ (k)H(k) + M−1(k).

2) State prediction.
Based on the past data observed until time k, the system state can be forecasted for time

instant k + 1. Executing the conditional expectation on (1), we obtain

x̃(k + 1) = A(k)x̂(k) + G(k), (10)

M(k + 1) = A(k)P (k)AT(k) + R(k), (11)

which will become the prior statistical information to compute the state estimate x̂(k + 1),
while the measurement at time k + 1 is available.

3.2 Parameter Identification

Parameters A(k) and G(k) can be identified on-line by using the Holt’s 2-parameter linear
exponential smoothing method of forecasting[25]. Let x̃m(k + 1) and x̂m(k) be the m-th com-
ponents of the centralized state prediction x̃(k + 1) and state estimate x̂(k), respectively. The
following equations are given by Holt’s method

x̃m(k + 1) = am(k) + bm(k),

am(k) = αmx̂m(k) + (1 − αm)x̃m(k),

bm(k) = βm(am(k) − am(k − 1)) + (1 − βm)bm(k − 1),

where αm and βm are constant parameters with the arbitrary values between 0 and 1. A(k) is
a diagonal matrix and G(k) is a vector, the elements of which are written as

Am(k) = αm(1 + βm),

Gm(k) = (1 + βm)(1 − αm)x̃m(k) − βmam(k − 1) + (1 − βm)bm(k − 1).

In the centralized state prediction step, A(k) and G(k) are composed by Am(k) and Gm(k).
Furthermore, Ai(k) and Gi(k) of each node i are also composed by them in Subsection 4.4.
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In the state estimation step, the measurement error covariance R∗(k) is defined as[21]

R∗(k) = W−1
∗ (k),

W∗(k) = W (k) exp(−|e(k)|),
where W (k) is a weighting function and exp(−|e(k)|) is the absolute residual vector. The el-
ements of W (k) are composed by the standard deviation of each measurement. When some
measured values are considerably distorted at time instant k, the measurement z(k) will sig-
nificantly change. The variable R∗(k) is used to restrain inaccurate measurements. Since the
state prediction x̃(k) does not detect the abnormal measurement, f(x̃(k)) is still in a normal
state, which can add the absolute value of e(k). Yet the value of the exponential function will
then decrease. Therefore, it can reduce the weighting function and mitigate the measurement
error. Since this method can adjust the weighting function at each time step according to the
change in measurements, it is more efficient than the standard EKF, due to all the unchanged
weighting functions throughout the estimation process.

The parameter R(k) can be determined by either historical records of state variable changes
or a series of off-line simulations. Actually, the noise statistics are not known accurately be-
forehand, which would deprive the optimality of the state estimation algorithm, even leading to
filtering divergence. In this paper, we use the time-varying noise estimator to identify R(k). In
this method, different weights are assigned to the new data and the old data, which make the
new data more important and the bad data will be forgotten gradually. This is the so-called
exponential weighted method. In order to maintain the stability of the state estimator and
suppress the filtering divergence, we use the biased estimator[22] as follows:

R̂(k) = (1 − d(k − 1))R̂(k − 1) + d(k − 1)
(
P (k) + K(k)e(k)eT(k)KT(k)

)
,

where d(k − 1) = 1−b
1−bk , and b is the forgetting factor in the range of 0.95 and 0.99, when the

process noise is changed slowly. Since R(k) is a diagonal matrix, we use the diagonal elements
of R̂(k) to compose the new R̂#(k), which will be used in the state prediction step.

Remark 3.1 We can see that the centralized state estimation method presented in this
section is a combination of algorithms in [21] and [22]. When the power system encounters
anomaly conditions, the robustness of the centralized method is better than the classical EKF.

It is obvious that the centralized state estimator for computing x̂(k) requires the complete
knowledge of the Jacobian matrix H(k), the covariance matrix R∗(k) and measurement vector
z(k), and it also needs to compute the inversion of the matrix Q(k) at the single control center.
For a large-scale power system, such estimator imposes a limitation on processing the real-
time state estimate efficiently. In the next section, we will introduce some distributed state
estimation algorithms, which can solve this complex problem.

4 Distributed State Estimation Methods

In this section, we will introduce some distributed state estimation algorithms as follows.
Subsections 4.1 and 4.2 propose two distributed algorithms for static state estimation problems
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in [11] and [12]. In Subsection 4.3, we present a distributed MAP estimation algorithm obtained
from the algorithm in [23], and analyze the computational complexity of this algorithm. In
Subsection 4.4, we will identify parameters for the distributed MAP estimation algorithm.

4.1 The Distributed Static State Estimator in [11]

Pasqualetti, et al.[11] considered a linear measurement model as follows

z = Cx + ν,

where z = (zT
1 , zT

2 , · · · , zT
N)T and C = (CT

1 , CT
2 , · · · , CT

N )T. Then the measurement vector of
node i can be written as

zi = Cix + νi, (12)

which is obtained by combining the local measurement and edge measurements of node i into
a single vector, i.e.,

zi =
(

Hi +
∑

j∈Ni

Bi,j

)

xi +
∑

j∈Ni

Bj,ixj + νi.

Denote † as the pseudo-inverse operation. Given a subspace V , Basis(V ) is denoted as any
full rank matrix, whose columns span V . Im(H) denotes the range space spanned by the matrix
H , and Ker(H) denotes the null space of H .

Since the measurement noises of all nodes are independent, the covariance matrix R∗ of ν is
diagonal. Then we choose B = R

1
2∗ satisfying the condition in [11], which proposes the diffusive

state estimation algorithm. Denote x̂i(0) = [Ci εBi]†zi, Ki(0) = Basis(Ker([Ci εBi])), where
ε is a positive integer and B = (BT

1 , BT
2 , · · · , BT

N )T. At the h-th iteration, using the exchanged
data from node j ∈ Ni, node i updates its local state estimate:

x̂i(h + 1) = x̂i(h) + [Ki(h) 0][−Ki(h) Kj(h)]†(x̂i(h) − x̂j(h)),

Ki(h + 1) = Basis(Im(Ki(h)) ∩ Im(Kj(h))),

and then transmits x̂i(h + 1) and Ki(h + 1) to its neighbors.
Based on this algorithm, the estimate x̂i(ε) of system state x is computed within a finite

number of iterations. But [11] has proven that x̂i(ε) is an approximate estimate, i.e., when the
parameter ε is fixed, x̂i(ε) differs from the minimum variance estimate x̂wls and only in the
limit for ε → 0+, x̂i(ε) coincides with x̂wls.

4.2 The Distributed Static State Estimator in [12]

Xie, et al.[12] also studied the linear measurement model (12) of each node i. Under the
assumption that the matrix G =

∑N
i=1 CT

i Ci is full-rank, and based on the current state
estimate x̂i(h) at the h-th iteration, the exchanged data {x̂j(h)}j∈Ni and the measurement
vector zi, this paper proposes the following distributed iterative algorithm to update the state
estimate of node i:

x̂i(h + 1) = x̂i(h) −
[

β(h)
∑

j∈Ni

(x̂i(h) − x̂j(h)) − α(h)CT
i (zi − Cix̂i(h))

]

,
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where {α(h)} and {β(h)} are appropriately chosen time-varying weight sequences and time
implies iteration here.

Under the assumption that the inter-area communication network is connected, the estimate
sequence {x̂i(h)} converges almost surely to the centralized least square estimate as h → ∞.
Specially, when the considered network is acyclic, {x̂i(h)} converges within a finite number of
iterations. However, each node i has to estimate the state vector of entire system, which contains
some elements unrelated to node i. Hence, this will increase the computational burden at each
node, and transmitting such estimate to neighboring nodes will make the communication load
very heavy.

4.3 Distributed MAP Estimation Algorithm

In this section, we will introduce a distributed state estimation algorithm, which generalizes
the algorithm in [23] for a linear system to the nonlinear case. Based on the idea of [23], we
firstly treat the edge measurement zi,j(k) as the local measurement of node i to estimate its
local state. Then following by the local MAP estimator as (8) and (9), it is clear to get that

ᾰi(k)=HT
i (k)S−1

i (k)Zi,i(k) +
∑

j∈Ni

BT
i,j(k)T−1

i,j (k)Zi,j(k) + M−1
i (k)x̃i(k), (13)

Q̆i(k)=HT
i (k)S−1

i (k)Hi(k) +
∑

j∈Ni

BT
i,j(k)T−1

i,j (k)Bi,j(k) + M−1
i (k), (14)

where

Zi,i(k)= zi,i(k) + Hi(k)x̃i(k) − fi(x̃i(k)),

Zi,j(k)= zi,j(k) + Bi,j(k)x̃i(k) + Bj,i(k)x̃j(k) − hi,j(x̃i(k), x̃j(k)).

If k = 0, x̃i(k) and Mi(k) are replaced by xi(0) and Σi(0), respectively. So the initial state
estimate of node i at each time instant k can be expressed as

x̆i(k, 0) = Q̆−1
i (k)ᾰi(k), P̆i(k, 0) = Q̆−1

i (k).

Secondly, we update the state estimate of node i via the following distributed algorithm.
Algorithm 1 Distributed MAP estimation method
Initialization At time step k ∈ N0, each node i ∈ V computes x̆i(k, 0) and P̆i(k, 0), and

transmits the following data to node j ∈ Ni:

θj,i(k, 0)=Bi,j(k)x̆i(k, 0),

Θj,i(k, 0)=Bi,j(k)P̆i(k, 0)BT
i,j(k).

Main loop h ∈ N is the step number of iteration.
1) Let θi,j(k, h− 1) and Θi,j(k, h− 1) be the data transmitted from node j. Node i updates

the local estimation and the associated covariance as follows:

x̂i(k, h)=Pi(k, h)
(

ᾰi(k) −
∑

j∈Ni

βi,j(k, h − 1)
)

,

Pi(k, h)=
(

Q̆i(k) −
∑

j∈Ni

Φi,j(k, h − 1)
)−1

,
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where

βi,j(k, h − 1)=BT
i,j(k)T−1

i,j (k)θi,j(k, h − 1),

Φi,j(k, h − 1)=BT
i,j(k)T−1

i,j (k)Θi,j(k, h − 1)T−1
i,j (k)Bi,j(k).

2) Node i also computes

x̆j,i(k, h)= P̆j,i(k, h)
(

ᾰi(k) −
∑

ni∈Ni/{j}
βi,ni(k, h − 1)

)

,

P̆j,i(k, h)=
(

Q̆i(k) −
∑

ni∈Ni/{j}
Φi,ni(k, h − 1)

)−1

,

and then transmits the following information to node j:

θj,i(k, h)=Bi,j(k)x̆j,i(k, h),

Θj,i(k, h)=Bi,j(k)P̆j,i(k, h)BT
i,j(k).

It is important to note that the information transmitted from node i to node j do not
include the information that node i previously receives from node j. Since the inter-area
communication graph considered in this paper is acyclic, Theorem 2 in [23] has proven that the
local state estimates on all nodes converge after Γ steps at each time instant.

Remark 4.1 The local state of node i can also be predicted, based on the past informa-
tion. With employment of the conditional expectation operator on (3), the local state prediction
x̃i(k+1) and its covariance matrix Mi(k+1) can be obtained, which are similar to (10) and (11).

Computational complexity The centralized state estimator requires O((
∑N

i=1 2si)3)
computation, whereas the computational complexity of the distributed MAP estimator of node
i is ñiO((2si)3) at each time stamp, where ñi denotes the cardinality of Ni. We can see that the
computational complexity of each distributed estimator relates to the number of its neighbors.
Due to the interconnection structure of power systems, each node only has a few neighbors,
i.e., ñi 
 N . Thus, the computational complexity of Algorithm 1 is much smaller than that of
the centralized method in Section 3.

4.4 Parameter Identification

In this section, we also use exponential weighting functions in the distributed form to
strengthen the robustness of the distributed state estimation algorithm. Since R∗(k) and W∗(k)
are diagonal matrices, we have

Si(k) = (W ∗
i,i(k))−1, Ti,j(k) = (W ∗

i,j(k))−1,

W ∗
i,i(k) = Wi,i(k) exp

( − |ei(k)|),
W ∗

i,j(k) = Wi,j(k) exp
( − |zi,j(k) − hi,j(x̃i(k), x̃j(k))|),

where ei(k) = zi,i(k) − fi(x̃i(k)), Wi,i(k) and Wi,j(k) are diagonal elements of W (k).
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The formula deduction of parameters Ai(k) and Gi(k) has been given in Section 3, but the
state estimate and prediction used in these equations are obtained by the distributed method
in Section 4.3.

Using the exponential weighted method in each node i, the estimating equation of Ri(k) is
as follows:

R̂i(k) = (1 − di(k − 1))R̂i(k − 1) + di(k − 1)
(
Pi(k) + Ki(k)ei(k)eT

i (k)KT
i (k)

)
,

where

di(k − 1) =
1 − bi

1 − bk
i

, Ki(k) = Mi(k)HT
i (k)(Hi(k)Mi(k)HT

i (k) + Si(k))−1,

and every bi has the arbitrary value between 0.95 and 0.99. We also use the diagonal elements
of R̂i(k) to compose the new R̂#

i (k).
The main purpose of this paper is to verify the effectiveness and robustness of Algorithm 1

together with the identification of model parameters. In the next section, numerical experiments
are used to illustrate our conclusions.

5 Simulations

In this section, we will show the effectiveness of Algorithm 1 with the identified parameters
(DSE), and compare its performance with the following algorithms: The centralized state esti-
mator (CSE) containing the methods in [21] and [22], the diffusive state estimator (DSSE1) in
Subsection 4.1 and the distributed state estimator (DSSE2) in Subsection 4.2. Test results are
made on the IEEE 39-bus and 118-bus systems. In Subsection 5.1, we describe the test systems
for simulation results. In Subsection 5.2, we introduce performance indices, which are used for
assessing the performance of these algorithms. In Subsection 5.3, detailed numerical simula-
tions are investigated under various operating conditions, which are constructed to explore the
effectiveness of DSE over other methods.

5.1 Simulation Description

The IEEE 39-bus and 118-bus systems are used to test the above mentioned methods. As
shown in Figure 3, the IEEE 39-bus system has four nonoverlapping control areas, which contain
10, 10, 10 and 9 buses, respectively. Combining all buses of each control area containing into
a single node, one can see that the obtained network is acyclic. It needs to be pointed out
that the IEEE 39-bus system is only monitored by SCADA measurements. Furthermore, the
IEEE 118-bus system is split into eight control areas as shown in Figure 1, and the resulting
network in Figure 2 is also acyclic. Hence, Assumption 2.1 is satisfied. In the IEEE 118-bus
system, the buses installed with PMU measurements are marked as blocks in Figure 1, and
these algorithms are based on the mixed SCADA and PMU measurements[24]. The values of
parameters in power flows are taken from [26].
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Figure 3 Topological structure of the IEEE 39-bus system

In the simulations, we consider the slow dynamics of power systems, i.e., the smooth load
changes over a period of time are obtained by running successful load flows. According to [21],
a linear trend between 1% and 3% along with a randomly distributed fluctuation of ±4% are
added to the load curve, where different values are used for different buses. For each time
sample, a load flow is carried out using the load and generation values obtained through load
curve and generation participation factor. The outcome of the load flow on each node i at
each time instant k is served as true state x+

i (k), true values of the local measurement z+
i,i(k)

and the edge measurement z+
i,j(k) including voltage magnitudes and phase angles, and power

flows. The actual measurements zi,i(k) and zi,j(k) of node i are obtained by adding z+
i,i(k)

with random normally distributed noise of 1% for SCADA voltage magnitude measurements,
0.2% for PMU voltage magnitude and phase angle measurements, and adding z+

i,j(k) with 2%
standard deviation for power flows, respectively. Additionally, the diagonal elements of Ri(0)
are set to 10−6.

5.2 Performance Indices

The performance of DSE and its comparison with CSE, DSSE1 and DSSE2 at time instant
k are assessed by the following indices.

1) Prediction Step: The forecasting performance is evaluated by using the relative error
between the predicted state vector x̃i(k) obtained respectively by CSE and DSE, and the true
state vector x+

i (k), which is the index

εp(k) =
ΣN

i=1|x̃i(k) − x+
i (k)|

ΣN
i=1|x+

i (k)| × 100%.

Since the static state estimator fails to predict the future state, the εp(k) values of DSSE1 and
DSSE2 are null.

2) Filtering Step: The filtering performance is evaluated by using the relative error between
the state estimation x̂i(k) obtained respectively by CSE, DSE, DSSE1 and DSSE2, and the
true state vector x+

i (k), which is

εf (k) =
ΣN

i=1|x̂i(k) − x+
i (k)|

ΣN
i=1|x+

i (k)| × 100%.
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3) Performance Index: The performance index is

J(k) =
Σ |ẑi,m(k) − z+

i,m(k)|
Σ |zi,m(k) − z+

i,m(k)| , m ∈ N i,

where ẑi,m(k) is the filtered measurement vector, and J(k) is the mean absolute ratio of esti-
mated and true error of measurements, computed to assess the entire measurement estimation
achievement.

We can see from [22] that, the smaller the indices εp(k) and εf(k) are, the better the effects of
state prediction and estimation are. The same conclusion is drawn with J(k). The uncertainty
level existing in the measurements is reduced and the effectiveness of state filtering is confirmed,
when J(k) is smaller than 1.

5.3 Test Results

In the simulations, the time step of tests is chosen as one second. DSE can be divided into
two types. The one is the DSE1, which means that we run one iteration of DSE per time step
and then predict the local state, and the other one is the DSE2, which denotes that at each
time instant DSE iterates two steps for the IEEE 39-bus system and four steps for the IEEE
118-bus system. The diameters of networks partitioned from the IEEE 39-bus and 118-bus
systems are 2 and 4, respectively, and Theorem 2 in [23] has proven that per instant of time
the local state estimate on each node converges after a finite number of iterations, which equal
to the diameters of the considered networks. Meanwhile, DSSE1 and DSSE2 iterate the same
steps as DSE2. We use Monte Carlo simulations to compute performance indices, and 1000
Monte Carlo runs are taken in these methods for comparison.

In order to verify the validity of Algorithm 1 with parameter identification in this paper,
four test scenarios including normal operating condition, sudden load change, presence of bad
data and topology error condition are investigated. Results are presented and discussed below.

Case 1 Normal Operation Condition: Table 1 shows the results of using CSE, DSSE1,
DSSE2 and DSE, when the IEEE 39-bus and 118-bus systems are operated at the normal
operating condition. The simulation results are carried out through 20 time samples. Figure 4
describes the time evolution of the corresponding performance indices of these methods, which
contain four parts corresponding to the four test conditions and simulations of each part are also
carried out through 20 time samples. The first parts of Figure 4 correspond to Table 1. One can
see from Table 1 and Figure 4 that the performance index of CSE is optimal, followed by the two
types of DSE, and the average prediction and filtering indices of DSE are marginally worse than
that of CSE. For example, when CSE, DSE1 and DSE2 are applied in the IEEE 118-bus system,
the average values of εf(k) are 0.329%, 0.547% and 0.486%, respectively. Furthermore, among
the considered methods, DSSE1 and DSSE2 have higher εf (k) and J(k) values than that of
DSE, because state estimation in static case does not base on the prediction-correction process.
From the index values in Table 1, the state estimate and prediction of DSE2 are more accurate
than that of DSE1, which means that the choice of iterations can affect the filter behavior, and
they also verify the benefits of DSE over the distributed static estimation methods.
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Table 1 Performance indices for normal operation condition

system Indices
εp(k)(%) εf (k)(%) J(k)

Max. Ave. Max. Ave. Max. Ave.

39
bus

CSE 1.126 0.645 0.752 0.513 0.535 0.467

DSE1 2.463 1.102 1.341 0.865 0.806 0.723

DSE2 1.871 0.894 1.132 0.740 0.721 0.647

DSSE1 / / 1.896 1.216 1.013 0.918

DSSE2 / / 2.303 1.322 1.052 0.983

118
bus

CSE 0.822 0.416 0.533 0.329 0.325 0.304

DSE1 1.587 0.709 0.873 0.547 0.483 0.445

DSE2 0.986 0.608 0.655 0.486 0.451 0.411

DSSE1 / / 1.146 0.694 0.621 0.552

DSSE2 / / 1.465 0.776 0.652 0.583
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Figure 4 Variations of J(k) for the presence of anomalies of different

methods at the IEEE 39-bus and 118-bus systems

Figure 5 depicts the time evolution of the real values and the corresponding estimates of
bus 23 in the IEEE 118-bus system filtered by CSE and DSE, when the system is operated at the
normal operating condition. We can see that the values obtained by DSE are probably correct
at each time instant, especially DSE2, the estimated values of which are close to that of CSE,
when we estimate voltage magnitudes and voltage phases. Furthermore, by using the MATLAB
(MathWorks, Inc., Natick, MA, USA), running times of CSE, DSE1 and DSE2 for processing
Figure 5 (a) are 0.02637s, 0.01592s and 0.01965s, respectively. This offers the computational
advantage of DSE over CSE for large-scale systems.
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Figure 5 Variations of real and estimated values of bus 23 in the IEEE 118-bus system

Case 2 Sudden Load Change Condition: In this case, all the state estimators are assessed
under sudden load change conditions. For the IEEE 39-bus system, the load change is assumed
to occur as follows: 50% loads are cut on buses 2, 5, 18, 23, 29 at the 20th time sample. While
for the IEEE 118-bus system, these methods are applied to the following scenario: 30% loads
are increased on buses 8, 11, 12, 15, 16, 21, 24, 30, 31, 34, 37, 40, 49, 50, 51, 54, 56, 65, 69, 70,
77, 85, 89, 92, 94, 95, 97, 100, 103, 106 at k = 20. The performance indices of these approaches
are shown in Table 2 and the second parts of Figure 4. We know that static state estimation
never needs to consider the previous state prediction, so DSSE1 and DSSE2 are not affected
by the sudden load change. From the simulation results, CSE and DSE are little impacted at
time k = 20, which means that the adjustment of parameters in our algorithm is effective. The
J(k) values of the two types of DSE reduce quickly after the sudden load change, which means
that DSE can come back to the normal level adaptively. From the index values in Table 2,
the performance comparisons of DSE1 and DSE2 with CSE, DSSE1 and DSSE2 are similar to
Case 1.

In order to demonstrate the effect of the parameter identification more clearly, we compare
the simulation results of DSE2 with that of the DSE3, which also iterates 4 steps per each
time k for the IEEE 118-bus system, but we do not revise parameters Ri(k), Si(k) and Ti,j(k)
in DSE3. Figure 6 shows the variations of εp(k) values obtained by DSE2 and DSE3. Since
the state prediction before the sudden load change is very different to the actual state value,
the index εp(k) of DSE3 becomes larger and the forecasting precision is depressed as soon as
the sudden load change occurs. In this figure, the maximal value of εp(k) obtained by DSE3
decreases from 2.3658% down to 0.9778% by DSE2, which still supports the feasibility of the
proposed algorithm with parameter identification. We can also see from Figure 6 that the εp(k)
values of DSE2 are more accurate than that of DSE3 at all time samples, even when the sudden
load is not changed.
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Table 2 Performance indices for sudden load change condition

system Indices
εp(k)(%) εf (k)(%) J(k)

Max. Ave. Max. Ave. Max. Ave.

39
bus

CSE 1.582 0.658 0.867 0.518 0.574 0.449

DSE1 3.125 1.144 1.685 0.879 0.966 0.731

DSE2 2.209 0.917 1.363 0.752 0.817 0.668

DSSE1 / / 1.845 1.213 0.980 0.907

DSSE2 / / 2.152 1.314 1.084 0.981

118
bus

CSE 0.913 0.418 0.591 0.331 0.334 0.292

DSE1 1.837 0.720 0.864 0.544 0.497 0.416

DSE2 1.124 0.606 0.743 0.491 0.467 0.384

DSSE1 / / 1.137 0.681 0.629 0.547

DSSE2 / / 1.448 0.762 0.670 0.575
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Figure 6 Variations of forecasting indices for the sudden load

change condition at the IEEE 118-bus system
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Table 3 Performance indices for bad data condition

system Indices
εp(k)(%) εf (k)(%) J(k)

Max. Ave. Max. Ave. Max. Ave.

39
bus

CSE 1.826 0.714 0.948 0.537 0.560 0.451

DSE1 3.597 1.235 1.844 0.923 0.972 0.742

DSE2 2.488 0.978 1.659 0.796 0.839 0.670

DSSE1 / / 4.921 1.537 1.461 0.951

DSSE2 / / 5.360 1.661 1.496 1.030

118
bus

CSE 0.806 0.425 0.547 0.338 0.343 0.298

DSE1 1.671 0.734 0.826 0.553 0.488 0.406

DSE2 1.054 0.617 0.726 0.478 0.453 0.380

DSSE1 / / 3.540 0.924 0.813 0.552

DSSE2 / / 4.183 1.056 0.873 0.608

Case 3 Bad Data Condition: In this part, these methods are applied to the condition, where
bad data are included in power system measurements. The following scenarios are investigated
at the IEEE 39-bus and 118-bus systems:

(i) One raw measurement error of 30% at the 40th time sample;
(ii) One raw measurement is mistaken as zero at the 50th time sample.
Suppose that no measures are taken to identify these bad data. Results of performance

indices of these methods are shown in Table 3 and the third parts of Figure 4. From the
simulation results, the considered indices of all the methods are affected by bad data, the
impact of which on DSSE1 and DSSE2 is very serious. But the degree of variations of CSE and
the two types of DSE is not drastic, which means that our method restrains the influence of
polluted measurements. In Table 3, the average values of εp(k), εf (k) and J(k) for DSE1 and
DSE2 are smaller than that of two distributed static methods, but larger than the ones of CSE.
The two types of DSE take less time to run than CSE, the running times of which are similar
to that in Case 1. According to Figure 4, J(k) values of DSE2 are smaller than DSE1 and the
robustness of DSE is confirmed. When bad data comes, all indices of DSE are not drastically
changed and they can also reduce to the normal level at the next time sample, which reveals
that DSE owns excellent performance to the influence of polluted measurements.

Figure 7 plots the variations of the index εf (k) obtained by DSE2 and DSE3 for all time
samples considered. We can see that DSE3 is heavily affected by bad data, and the maximal
value obtained by DSE3 is enormously larger than that of DSE2. Meanwhile, the εf (k) values
obtained from DSE2 at each time instant are smaller than that of DSE3, due to the exponential
weighting functions. Figures 6 and 7 mean that the robustness of the proposed algorithm in
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this paper is strengthened better than the method in [23], and the state estimate obtained by
DSE at each time sample is also more accurate than Algorithm 1 in [23].
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Figure 7 Variations of filtering indices for bad data conditions at the IEEE 118-bus system

Case 4 Topology Error Condition: In this case, the performance of these methods are
evaluated when the topology is reported incorrectly. For the IEEE 39-bus system, the lines
2–3, 5–8, 13–14, 17–18 and 23–24 are assumed wrongly reported at the 60th time sample.
While for the IEEE 118-bus system, the following operation conditions are simulated: The
branches 14–15, 17–31, 37–38, 49–51, 54–56, 69–77, 70–71, 94–95, 92–100 and 100–104 are
disconnected at the 60th time sample but they are reported connected. Table 4 and the last
parts of Figure 4 describe the performance evaluation results of this case. We can see that
all the methods are seriously affected by the topology error condition, but the performance
of DSE1 and DSE2 is still more accurate than that of DSSE1 and DSSE2. Besides, Figure 4
shows that the performance indices of DSE can also reduce quickly after topological structures
of the considered systems return to normal. In Table 4, the maximal and average values of the
considered indices obtained by DSE in the IEEE 118-bus system are smaller than that in the
IEEE 39-bus system. This affirms that when the system size increases, the influence caused by
the topology error condition may be better restrained[21].

Summary of simulation results From the above mentioned analysis of simulations,
the performance of DSE is somewhat worse than CSE. As shown in Figure 5, DSE2 offers
marginally less accurate estimates than that of CSE, and the maximal and average values of
the prediction and filtering indices obtained by the two types of DSE are quite close to that
of CSE shown in these tables. Under different scenarios in the IEEE 118-bus system, running
times of CSE, DSE1, DSE2, DSSE1 and DSSE2 for processing J(k) are as follows: 0.11470s,
0.07265s, 0.08236s, 0.05463s and 0.05175s, which together with the analysis of computational
complexity in Subsection 4.3 indicate that DSE is more applicable than CSE to large-scale power
systems. Although running times of DSE are a few longer than that of DSSE1 and DSSE2, the
effectiveness of DSE is clearly better than the distributed static estimation methods, and more



614 SUN YIBING · FU MINYUE · ZHANG HUANSHUI

importantly, DSE has the forecasting ability which is essential for real-time state estimation.
Parameter identification is also effective to deal with abnormal conditions. Thus, DSE can be
a potential candidate for applications of dynamic state estimation.

Table 4 Performance indices for topology error condition

system Indices
εp(k)(%) εf (k)(%) J(k)

Max. Ave. Max. Ave. Max. Ave.

39
bus

CSE 2.478 0.711 1.207 0.533 0.697 0.459

DSE1 6.632 1.286 3.526 0.954 1.247 0.733

DSE2 5.246 1.047 2.914 0.829 1.086 0.654

DSSE1 / / 5.467 1.394 1.483 0.922

DSSE2 / / 6.025 1.518 1.527 0.988

118
bus

CSE 1.174 0.434 0.862 0.344 0.373 0.294

DSE1 3.106 0.785 2.387 0.603 0.627 0.411

DSE2 2.193 0.645 1.534 0.507 0.556 0.374

DSSE1 / / 4.122 0.843 0.771 0.525

DSSE2 / / 4.615 0.937 0.813 0.562

6 Conclusions

In this paper, we use a linear exponential smoothing technique and exponential weighting
functions to identify model parameters, which increase the robustness and enhance the precision
of the distributed MAP estimation algorithm. In order to validate the effectiveness of DSE,
two example power systems under different conditions are tested, where measurements are
composed by the conventional SCADA measurements and the limited PMU measurements.
Low computational complexity gives DES the merit over CSE, and flexibility and efficiency
in applications also support DSE, since in the simulation results, state estimates and values
of performance indices obtained by DSE are marginally worse than that of CSE. Compared
with DSSE1 and DSSE2, DSE is verified by the forecasting ability, accurate performance and
light communication load. All this leads up to the application value of the distributed MAP
estimation algorithm in wide-area power systems.
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