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Abstract— When measurements are subject to random losses,
the covariance of the estimation error of a state estimator
becomes a random variable. In this paper we present bounds
on the cumulative distribution function of the covariance of
the estimation error for a discrete time linear system. We
also show that the bounds can be arbitrarily tight if sufficient
computational power is available. Numerical simulations show
that the proposed method provides tighter bounds than the ones
available in the literature.

I. INTRODUCTION

The fast development of network (particularly wireless)
technology has encouraged its use in control and signal pro-
cessing applications. From the control systems’ perspective,
this new technology has imposed new challenges concerning
how to deal with the effects of quantisation, delays and loss
of packets, leading to the development of a new networked
control theory [1]. The study of state estimators, when
measurements are subject to random delays and losses, finds
applications in both control and signal processing. Most
estimators are based on the well-known Kalman filter [2].
In order to cope with network induced effects, the standard
Kalman filter paradigm needs to undergo certain modifica-
tions.

In the case of missing measurements, the update equation
of the Kalman filter depends on whether a measurement
arrives or not. When a measurement is available, the filter
performs the standard update equation. On the other hand,
if the measurement is missing, it must produce open loop
estimation, which as pointed out in [3], can be interpreted as
the standard update equation when the measurement noise
is infinite. If the measurement arrival event is modeled as a
binary random variable, the estimator’s error covariance (EC)
becomes a random matrix. Studying the statistical properties
of the EC is important to assess the estimator’s performance.
Additionally, a clear understanding of how the system’s
parameters and network delivery rates affect the EC permits
a better system design, and the trade-off between conflicting
interests must be evaluated.

Studies on the computation of the expected error covari-
ance (EEC) can be dated back at least to [4], where upper and
lower bounds for the EEC were obtained using a constant
gain on the estimator. In [3], the same upper bound was
derived as the limiting value of a recursive equation that
computes a weighted average of the next possible error
covariances. A similar result which allows partial observation
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losses was presented in [5]. In [6], it is shown that a system
in which the sensor transmits state estimates instead of raw
measurements will provide a better error covariance. Most of
the available research work is concerned with the expected
value of the EC, neglecting higher order statistics. In [7], the
present authors introduce tighter lower and upper bounds for
the EEC as well introduce the discussion on second order
moments. The critical measurement arrival probability for
boundedness of general order moments was addressed in [8],
where non-degenerate systems are considered.

The study of the complete probability distribution function
of the EC is a current research topic. In [9], [10], [11],
the authors discuss the existence of a stationary distribution
of the EC for Kalman filters with intermittent observations.
Using Random Matrix Theory, the authors of [12] present
the probability density function for stable systems. In [13],
[14], the authors assume that the sensors have the ability to
send multiple measurements in a packet. As a consequence,
whenever a packet is received, the Kalman filter produces a
bounded error covariance. This was used in [13] to provide
an upper bound for the CDF for unstable systems and later
on extended to any system in [14]. A geometric approach
was used by [15] to derive the CDF for a restrictive class of
systems. In the present paper, we present upper and lower
bounds for the CDF for any system and we assume that only
the most recent measurement is sent at each sampling time.

This paper investigates the behavior of the Kalman filter
for discrete-time linear systems whose output is intermit-
tently sampled. To this end, we model the measurement
arrival event as a binary random variable. In order to keep
the approach as general as possible, no assumption is made
about the packet dropping model. We derive the solution
for the two most popular network packet dropout models:
independent and identically distributed (i.i.d.) and Gilbert-
Elliott, although the proposed method can be easily extended
to more complex models. We assume that the sensor sends
only the most recent measurement at each sampling time.
The main contribution of this paper is the introduction of a
method to obtain lower and upper bounds for the cumulative
distribution function (CDF). These bounds can be made
arbitrarily tight, at the expense of increased computational
complexity. We also present numerical examples in which the
performance of the proposed method is compared to existing
ones. In particular, we show that the bounds presented here
are tighter than the ones in [14].

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-801-3/11/$26.00 ©2011 IEEE 2416



II. PROBLEM STATEMENT

Consider the discrete-time linear system:{
xt+1 = Axt + wt

yt = Cxt + vt
(1)

where the state vector xt ∈ Rn has initial condition x0 ∼
N(0, P0), yt ∈ Rp is the measurement, wt ∼ N(0, Q) is the
process noise and vt ∼ N(0, R) is the measurement noise.
The goal of the Kalman filter is to obtain the best estimate
x̂t of the state xt, in the sense that the trace of the a priori
covariance matrix Pt of the error x̃t = xt− x̂t is minimized.

We assume that the measurements yt are sent to the
Kalman estimator through a network subject to random
packet losses. The scheme proposed in [6] can be used
to deal with delayed measurements. Hence, without loss
of generality, we assume that there is no delay in the
transmission. Let γt be a binary random variable describing
the arrival of a measurement at time t. We define that γt = 1
when yt was received at the estimator and γt = 0 otherwise.

Notice that the update equation of the error covariance
is now dependent on the availability of the measurements.
When a measurement is available, both measurement and
time updates are performed. When a measurement is not
available, only the time update can be computed. The update
equation of Pt can be written as follows:

Pt+1 =

{
Φ1(Pt), γt = 1
Φ0(Pt), γt = 0

(2)

with

Φ1(Pt) = APtA
′ +Q+

−APtC
′(CPtC

′ +R)−1CPtA
′ (3)

Φ0(Pt) = APtA
′ +Q. (4)

Refer to [3] for the state update equations.
We point out that when all the measurements are available

and the Kalman filter reaches its steady state, the EC is given
by the solution of the following algebraic Riccati equation

P = APA′ +Q−APC ′(CPC ′ +R)−1CPA′. (5)

We use the following notation. For given T ∈ N and 0 ≤
m ≤ 2T − 1, the symbol ST

m denotes the binary sequence
of length T formed by the binary representation of m. We
also use ST

m(i), i = 1, · · · , T , to denote the i-th entry of the
sequence, i.e.,

ST
m = {ST

m(1), ST
m(2), . . . , ST

m(T )} (6)

and

m =
T∑

k=1

2k−1ST
m(k). (7)

For a given sequence ST
m, and a matrix P ∈ Rn×n, we define

the map

ϕ(P, ST
m) = ΦST

m(T ) ◦ ΦST
m(T−1) ◦ . . .ΦST

m(1)(P ) (8)

where ◦ denotes the composition of functions (i.e. f ◦g(x) =
f(g(x))).

Also, for given T > 0 ∈ N, ΓT denotes the (random)
binary sequence containing the availability of measurements
between time 0 and T − 1, i.e.

ΓT = {γT−1, γT−2, . . . , γ0}. (9)

Notice that if m is chosen so that

ST
m = ΓT , (10)

then ϕ(P0, S
T
m) updates P0 according to the measurement

arrivals in the last T sampling times, i.e.,

PT = ϕ(P0, S
T
m) = ΦγT−1

◦ ΦγT−1
◦ . . .Φγ0(P0). (11)

The next lemma states the monotonicity of ϕ(·, ·) with
respect to its first argument.

Lemma 2.1: Consider the function ϕ(·, ·) defined in (8).
If X ≤ Y , then

ϕ(X,ST
m) ≤ ϕ(Y, ST

m) (12)

for any sequence ST
m.

Proof: The proof follows the argument in [3]. Suppose
X ≤ Y . Since Φ0(·) is affine, we have that

Φ0(X) ≤ Φ0(Y ). (13)

Recall that the optimal Kalman gain is

KX = argmin
K

(A+KC)X(A+KC)′ +Q+KRK ′

= −AXC ′(CXC ′ +R)−1. (14)

We have that

Φ1(X)

= (A+KXC)X(A+KXC)′ +Q+KXRK ′
X

≤ (A+KY C)X(A+KY C)′ +Q+KY RK ′
Y

≤ (A+KY C)Y (A+KY C)′ +Q+KY RK ′
Y

= Φ1(Y ). (15)

The proof is completed by observing that ϕ(·, ·) is formed
by the composition of Φ0(·) and Φ1(·).

We use P(ST
m) to denote the probability that the sequence

of available measurements in the last T sampling times
equals ST

m, i.e.,

P(ST
m) = P(ΓT = ST

m) (16)

We also use In to denote the identity matrix of size n × n
and, X > Y , (X ≥ Y ) to indicate that X − Y is a positive
definite (positive semi-definite) matrix.

III. MAIN RESULT

Our goal is to study the CDF of the EC PT , in the limit
when T tends to infinity. We define

F (x, P0) , lim
T→∞

FT (x, P0) (17)

with

FT (x, P0) = P
(
ϕ(P0,Γ

T ) ≤ xIn
)

(18)

=
2T−1∑
m=0

P
(
ST
m

)
H

(
xIn − ϕ(P0, S

T
m)

)
(19)
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where H(.) is a matrix version of the Heaviside step func-
tion, defined for X ∈ Rn×n as

H(X) =

{
1, X ≥ 0

0, otherwise.
(20)

The question of whether F (x, P0) is independent of the
initial EC value P0 is an open problem [9]. Nevertheless, we
can state bounds on all possible values of F (x, P0). To do
so, notice that, a direct consequence of Lemma 2.1 is that,
if X ≥ Y , then

F (x,X) ≤ F (x, Y ). (21)

Define,

F (x) , lim
T→∞

FT (x, P ) (22)

F (x) , lim
T→∞

FT (x,∞) (23)

where
FT (x,∞) = lim

α→∞
FT (x, αIn). (24)

Then, assuming that P0 ≥ P , we have that

F (x) ≥ F (x, P0) ≥ F (x). (25)

Notice that this assumption is reasonable, since in this
context PT ≥ P for some T and we can always shift the
time indexes in order to have P0 ≥ P .

Equation (25) states bounds on all possible values of
F (x, P0). However, their computation is impractical. To go
around this, we develop alternative bounds, which are looser
than those in (25), but are suitable for numeric computation.
The basic idea is to derive upper and lower bounds on
the error covariance, for each arrival sequence that can be
observed in the last T sampling instants, and associate each
bound with the probability of the observed sequence.

Define the ST
m-dependant matrix

ϕ(∞, ST
m) , lim

α→∞
ϕ(αIn, S

T
m). (26)

Notice that for any P0 we can always find an α such that
αIn ≥ P0. Then, from the monotonicity of ϕ(·, ST

m) (Lemma
2.1), it follows that

PT = ϕ(P0,Γ
T ) ≤ ϕ(∞,ΓT ). (27)

The following lemma provides an expression for comput-
ing ϕ(∞, ST

m).
Lemma 3.1: For a given T , let 0 ≤ t1, t2, · · · , tI ≤ T −1

denote the time indexes where γti = 1, i = 1, · · · , I . Define

O =


CAt1

CAt2

...
CAtI

 , ΣQ =



t1−1∑
j=0

CAjQA′T−t1+j

t2−1∑
j=0

CAjQA′T−t2+j

...
tI−1∑
j=0

CAjQA′T−tI+j



′

,

(28)

and the matrix ΣV ∈ RpI×pI , whose (i, j)-th submatrix
[ΣV ]i,j ∈ Rp×p is given by

[ΣV ]i,j =

min{ti,tj}∑
k=1

CAti−kQA′tj−kC ′ +Rδ(i, j) (29)

where

δ(i, j) =

{
1, i = j

0, i ̸= j.
(30)

Then, for any sequence ST
m, we have that

ϕ(∞, ST
m) =

{
∞In, if O(ST

m) is not FCR

ϕ(ST
m), if O(ST

m) is FCR
(31)

where FCR stands for Full Column Rank and

ϕ(ST
m) = AT

(
O′Σ−1

V O
)−1

A′T +
∑T−1

j=0 AjQA′j+

−AT (Σ
− 1

2

V O)†Σ
− 1

2

V Σ′
Q − ΣQΣ

− 1
2

V (Σ
− 1

2

V O)′†A′T+

−ΣQ

(
Σ−1

V − Σ−1
V O(O′Σ−1

V O)−1O′Σ−1
V

)
Σ′

Q
(32)

with (Σ
− 1

2

V O)† denoting the Moore-Penrose pseudo-inverse
of Σ− 1

2

V O [16].
Proof: Let YT be the vector formed by the available

measurements

YT =
[
y′t1 y′t2 · · · y′tI

]′
(33)

= Ox0 + VT , (34)

where

VT =


∑t1−1

j=1 CAt1−jwj−1 + vt1∑t2−1
j=1 CAt2−jwj−1 + vt2

...∑tI−1
j=1 CAtI−jwj−1 + vtI

 . (35)

From the model (1), it follows that[
xT

YT

]
∼ N

([
0
0

]
,

[
Σx ΣxY

Σ′
xY ΣY

])
(36)

where

Σx = ATP0A
′T +

T−1∑
j=0

AjQA′j (37)

ΣxY = ATP0O
′ +ΣQ (38)

ΣY = OP0O
′ +ΣV . (39)

It follows from [2, pp. 39] that the covariance of the
estimation error is given by

ϕ(P0, S
T
m) = Σx − ΣxY Σ

−1
Y Σ′

xY . (40)

Substituting (37)-(39) in (40), we have

ϕ(P0, S
T
m) =

∑T−1
j=0 AjQA′j − ΣQ (OP0O

′ +ΣV )
−1

Σ′
Q+

AT
(
P0 − P0O

′ (OP0O
′ +ΣV )

−1
OP0

)
A′T+

−ATP0O
′ (OP0O

′ +ΣV )
−1

Σ′
Q+

−ΣQ (OP0O
′ +ΣV )

−1
OP0A

′T .
(41)

2418



Hence, from (26), we have that

ϕ(∞, ST
m) = PT,1 + PT,2 + PT,3 + P ′

T,3 + PT,4, (42)

with

PT,1 = lim
α→∞

AT
(
αIn − α2O′ (αOO′ +ΣV )

−1
O
)
A′T

PT,2 =
T−1∑
j=0

AjQA′j

PT,3 = − lim
α→∞

αATO′ (αOO′ +ΣV )
−1

Σ′
Q

PT,4 = − lim
α→∞

ΣQ (αOO′ +ΣV )
−1

Σ′
Q.

Using the matrix inversion lemma, we have that

PT,1 = AT lim
α→∞

(
α−1In +O′Σ−1

V O
)−1

A′T (43)

= AT
(
O′Σ−1

V O
)−1

A′T (44)

and

PT,4 = ΣQ

(
Σ−1

V − Σ−1
V O

(
O′Σ−1

V O
)−1

O′Σ−1
V

)
Σ′

Q.

(45)
By making X = Σ

− 1
2

V O, PT,3 can be written as

PT,3 = − lim
α→∞

ATO′ (OO′ +ΣV α
−1

)−1
Σ′

Q (46)

= −AT lim
α→∞

X ′ (XX ′ + α−1In
)−1

XΣ′
Q.(47)

From [16, pp. 115], it follows that
limα→∞ X ′ (XX ′ + α−1In

)
= X†, for any matrix

X .

PT,3 = −AT
(
Σ

− 1
2

V O
)†

Σ
− 1

2

V Σ′
Q. (48)

The result follows by substituting (44), (48) and (45) in (42).

The next theorem is the main result of this paper. It
states lower and upper bounds for the CDF F (x, P0), which
can be made arbitrarily tight at the expense of additional
computation efforts.

Theorem 3.1: Define

FT (x) ,
2T−1∑
m=0

P(ST
m)H(xIn − ϕ(∞, ST

m)) (49)

F
T
(x) ,

2T−1∑
m=0

P(ST
m)H(xIn − ϕ(P , ST

m)). (50)

The following properties hold:

lim
T→∞

FT (x) = F (x) (51)

lim
T→∞

F
T
(x) = F (x). (52)

Moreover, these bounds become monotonically tighter as T
is increased, i.e.,

FT+1(x) ≥ FT (x) (53)

F
T+1

(x) ≤ F
T
(x). (54)

Proof: Notice that (51) and (52) follow directly from
the definitions in (22) and (23). Hence, we only need to show
the monotonicity of F

T
(x) and FT (x) in T .

Notice that when the length of the sequence is increased
by one, with the binary variable γ included at the beginning
of the sequence, we have

ϕ(P , {ST
m, γ}) = ϕ(Φγ(P ), ST

m) ≥ ϕ(P , ST
m) (55)

where the equality holds only for γ = 1, since Φ1(P ) = P
and Φ0(P ) > P . This shows that the step functions in (50)
can only by shifted to the right when the sequence length is
increased by 1. Hence (54) follows.

Now, from the definition of ϕ(∞, ST
m), we have that

ϕ(∞, {ST
m, 0}) = ϕ(∞, ST

m). (56)

Also, since y0 and xT are correlated, the estimate x̂T given
the sequence ST

m have greater error covariance than the
estimate x̂T given ST

m, y0, that is

ϕ(∞, {ST
m, 1}) ≤ ϕ(∞, ST

m). (57)

Combining (56) and (57), we have

ϕ(∞, {ST
m, γ}) ≤ ϕ(∞, ST

m), (58)

which shows that the step functions in (49) can only be
shifted to the left, as we augment T , showing (53).

Corollary 3.1: For any integer T > 0, we have the
following bounds on the CDF

FT (x) ≤ F (x) (59)

F
T
(x) ≥ F (x). (60)

Proof: The relation in (59) follows from (51) and (53),
while (60) follows from (52) and (54).

IV. THE I.I.D. AND GILBERT-ELLIOTT NETWORK
MODELS

Theorem 3.1 requires the computation of the probability
P(ST

m) to observe a given sequence of available measure-
ments in the last T sampling times. The computation of such
probability is dependent on the network model considered.
We derive an expression for this probability for two popular
network models.

The i.i.d. model assumes that γt and γk are two indepen-
dent variables whenever t ̸= k. Let the probability that a
given measurement is available be given by P(γt = 1) = λ.
We have

P(ST
m) = λK(1− λ)T−K (61)

with K being the number of available measurements, i.e.,

K =
T∑

k=1

ST
m(k). (62)

The Gilbert-Elliott packet dropping model uses a two
state Markov chain to describe the probability that a given
measurement is available, according to the availability of the
previous one. I.e.,[

P(γk+1 = 0)
P(γk+1 = 1)

]
= M

[
P(γk = 0)
P(γk = 1)

]
(63)
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with

M =

[
α 1− β

1− α β

]
Let [π0 π1]

′ describe the steady-state distribution of the
resulting Markov chain, i.e.,[

π0

π1

]
= M

[
π0

π1

]
.

We point out that this distribution is given by the normalized
eigenvector associated with the eigenvalue 1 of the probabil-
ity transition matrix M . The next lemma gives a formula to
compute the probability to observe a given sequence.

Lemma 4.1: Suppose that in a networked control system
the measurements are randomly dropped according to (63)
and that the initial probability distribution is the steady-state
distribution of the Markov chain. The probability to observe
a sequence ST

m from time 0 to T − 1 is given by

P(ST
m) =

(
π0 + ST

m(1)(π1 − π0))
)

(64)
T∏

n=2

[
1− ST

m(k)
ST
m(k)

]′
M

[
1− ST

m(k − 1)
ST
m(k − 1)

]
.

Proof: Define

gn ,
{
0, ST

m(n) ̸= ΓT (n)

1, ST
m(n) = ΓT (n).

(65)

We have that

P(ST
m) = P(ΓT = ST

m)

= P(g1 = 1 ∩ g2 = 1 ∩ . . . ∩ gT = 1)

= P(g1 = 1)
T∏

n=2

P(gn = 1|gn−1 = 1). (66)

Notice that

P(g1 = 1) =

{
π0, ST

m(1) = 0

π1, ST
m(1) = 1

= π0 + ST
m(1)(π1 − π0) (67)

and

P(gn = 1|gn−1 = 1) =
α, ST

m(n) = 0, ST
m(n− 1) = 0

1− α, ST
m(n) = 1, ST

m(n− 1) = 0

β, ST
m(n) = 1, ST

m(n− 1) = 1

1− β, ST
m(n) = 0, ST

m(n− 1) = 1

=

[
1− ST

m(n)
ST
m(n)

]′
M

[
1− ST

m(n− 1)
ST
m(n− 1)

]
.

(68)

Substituting (67) and (68) in (66), we obtain (64).
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Fig. 1. Example A: Monotonicity of the Bounds.

V. NUMERICAL EXAMPLES

In this section we present three simulation results aiming
to illustrate the proposed method, and to compare its per-
formance with the method in [14], when applicable. In each
case, an estimation of the true CDF F (x) is obtained using
Monte Carlo simulations. In each experiment, the initial EC
P0 is updated according to a sequence of 1000 random
binary variables, generating the EC P1000. After repeating
the experiment for 20, 000 times, we analyze the different
EC P1000 obtained and summarize the results plotting the
CDF.

A. Monotonicity of the bounds

Consider the system below, borrowed from [3],

A =

[
1.25 0
1 1.1

]
C =

[
1
1

]′
Q =

[
20 0
0 20

]
R = 2.5,

with λ = 0.3. In Figure 1 we show the upper bound F
T
(x)

and the lower bound FT (x), for T = 5, T = 10 and T = 15
and assuming the i.i.d. packet drop model. Notice that, as
T increases, the bounds become tighter, and for T = 15, it
is difficult to distinguish between the lower and the upper
bound. Note that the critical value (see [3]) of this system
is λc = 0.36. This means that with the chosen value λ =
0.3, the expected value of the error covariance is infinite.
Nevertheless, bounds for the CDF exist.

B. Performance comparison

We now compare our result with the one presented in [14].
Notice that in [14], in the case of sensors with limited
computational capabilities, the authors assume that each
packet contains enough measurements to make the error
covariance bounded by a constant matrix. Contrariwise, we
assume that only one measurement is sent in each packet,
therefore the error covariance is bounded by a constant

2420



0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

x

 

 

Simulation (F(x))

F 12(x), F
12

(x)

Shi et al.

λ = 0.5

λ = 0.8

Fig. 2. Example B: Comparison of the CDF bounds for two different
probabilities of measurement arrivals.

matrix when a packet is received, only when the matrix C
is invertible.

Consider the scalar system below, taken from [14].

A = 1.4, C = 1, Q = 0.2, R = 0.5 (69)

We consider the i.i.d. packet drop model for two different
measurement arrival probabilities (i.e., λ = 0.5 and λ =
0.8), and compute the upper and lower bounds for the CDF.
We do so using the expressions (50) and (49) with T =
12, as well those given in [14]. We see in Figure 2 how
our proposed bounds are significantly tighter. Indeed, it is
difficult to distinguish between the bounds and the actual
CDF obtained from the simulation.

C. Markov Packet Arrivals

The system below describes a vehicle moving in a two
dimensional space, according to the standard constant accel-
eration model. This example was considered in [14].

A =


1 0 0.5 0
0 1 0 0.5
0 0 1 0
0 0 0 1

 C =


1 0
0 1
0 0
0 0


′

Q = 0.01I4 R = 0.001I2,

The probability to receive a measurement is governed by
the Markov chain in (63), with α = 0.5 and β = 0.8.
Figure 3 shows the upper and lower bounds of the CDF.

VI. CONCLUSION

We studied the Kalman filter for a discrete-time linear
system, whose output is intermittently sampled, according
to a sequence of binary random variables. We derived lower
and upper bounds for the CDF of the EC. These bounds
can be made arbitrarily tight, at the expense of increased
computational complexity. We presented numerical examples
demonstrating that the proposed bounds are tighter than those
derived using other available methods.
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Fig. 3. Example C: CDF bounds for measurement arrivals following the
Gilbert-Elliott model.
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