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Abstract. This paper considers the problem of robust
stabilization for a class of time-delay systems which in-
volve affine parametric perturbations. We first provide a
result for testing the robust stability of such a system, and
subsequently apply it in the robust stabilization problem
for a family of interval plants with time-delays.

1. Introduction

In this paper, we consider a family of time-delay plants
whose transfer function coefficients are subject to affine
perturbations, i.e., the coefficients belong to a given poly-
tope. It is known that the exponential stability of the
family of plants can be determined from that of the edges
of the polytope [1]. We point out that the test usually
does not involve all edges, and the elimination of unneces-
sary edges is simple. In fact, this can be done by checking
whether a given edge is a so-called “convex dicrection”
[2). We devise a simple sufficient condition for determin-
ing the convex directions. This result is then applied to
the robust synthesis problem for a family of interval plants
with time-delays and a compensator of first order or with
a special structure.

2. Robust Stability Analysis

Consider a single-input-single-output time-delay system
with its transfer function described by
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where ax; and bx; are real constants, do(s) is 2 monic nth
order polynomial and 70 2 11 > -+ > 71 = 0. The
characteristic quasipolynomial of G(s) is given by
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f(s) = do(8)e™* + 33" anis™kem @
k=1 i=1

We consider the robust stability problem where the char-

acteristic quasipolynomial is contained in a polytope de-
fined as follows:
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P={f(s)= mifi(s)lu; 20,3 p; =1} (3)
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where f;(s) are quasipolynomials in form of (2). A subset
Py of P is called a testing set for P if the stability of
all the quasipolynomials in P, implies that in P. Then,
an important problem is how to reduce P to a minimal
testing set.

The first useful reduction was done in [1] which provides a
generalization of the Edge Theorem [3] to the quasipoly-
nomial case. The result of [1] shows that a polytope of
quasipolynomials P in (3) is robustly stable if and only
if all the edges of P are robustly stable. Therefore, the
key problem now is how to test the robust stability of an
edge. One possibility is to use a graphical test proposed
in [1]. Alternatively, one can first use a recent result in
[2] to test whether the robust stability of the edge can be
deduced from the stability of its vertices. Note that an
edge quasipolynomial takes the following general form:

£(s) = ufi(s)+(1-n)fi(s) = fi(s)+ng(s), u € [0, 1)(4)

where g(s) = fi(s) — f;j(s). Then, the result in [2] can be
stated as follows:

Lemma 1. Given any quasipolynomials fi(s) and f;(s)
in form of (2), suppose the following inequality holds for
all w > 0 where the derivative of arg g(jw) is well defined:

dargg(jw) _ m , |sin(2arg g(jw) — ow)
dw < 2 + 2w ) )

Then, the stability of fi(s) and f;(s) implies that of every
convezx combination of them.

The following theorem derived from Lemma 1 is impor-
tant in the robust synthesis problem to be studied later
(see [4] for proof).

Theorem 2. Suppose in Lemma 1, g(s) = go(s)e™,
where go(s) is a convez direction for polynomials, i.e.,
go(s) is a polynomial satisfying [5]

sin(2 arg go(jw))

darg go(ju) _
= 2w

dw

: (6)

for all w > G, where the derivative of arg go(jw) is well
defined. Then, g(s) satisfies (5) for all w > 0, where
the derivative of arg g(jw) is well defined, if and only if
r< /2. *



Remark 1. It is known that the condition (6) can be tested In the special case when m =1, i.e,,
using Routh-like tables [6]. In particular, all first order
polynomials are convex directions [5]. This point is impor-

n(s) Yy b
tant because the condition (5) cannot be tested as easily. G(s) = nk’ (14)

do(s)e* +d(s)  do(s)e™ + Yop_, s

3. Robust Synthesis where 7 > 0, then Theorem 3 reduces to a generalization
of an extreme point result in [7] (see {4] for proof):

Consider an “interval plant family” as follows:
¢ = {G(s):ap; < ami S afisby; S b S b,
1<i<ml1<k<n} ) G={G(s):af <ar <af;by <be <b},1<k<n}(15)
where G(s‘) is given in (1).and the bou'nds “:3': a;e-, b:‘-,‘ b with G(s) in (14), and compensator G.(s), suppose both
are prescribed. Our task is to find a linear time-invariant ne(s) and d(s) are convez directions for polynomials.

dynamic output feedback compensator Then, G.(s) robustly stadilizes the family G if and only
if it robuastly stabilizes the following sizteen plants:

Corollary 4. Given an interval plant faimily

n.(s
u(s) = Geloyw(e) = 25y(o) (®) |
() G--(..)—-—“('EL ij=1,2,3,4
i L3 - do(a)e"+d(-")(s)’ vJ=145,49,

such that the closed-loop system is robustly stable. Here,

nc(s) and d.(s) are coprime ;?olynomials‘ To this end, we where n")(s) and ) (s) are the estreme polynomials of
define four extreme polynomials: n(s) and d(s). Furthermore, if

as) = bu+ bin—1)i8 + b?n—?)i"z + b?n-&)i” +oee st+a

aM(s) = bmi+bliys+ b(+n-z)s-'2 + b('"_s)‘sa o Ge(s) = KF(.;TI’)’ K,a,b>0,k=0,1,---, (16)

(3) - - 23+ 3
mO(8) = bt Beyis + Baoayd F Haoayt with & < b (lead compensator) (resp. a > b (lag
e = b +b?;,_1),»s+b(',,_,),».~12-H)(',,_a),.s3 +--- compensator)), then G.(s) robustly stabilizes the fam-
3 ‘ . . ily G if and only if it robustly stabilizes the follow-
and d{(s),j =1,2,3,4, in a similar way. ing eight plants: G11,G13,Gn, G22,Gs33,G31,Ge2,Gue

Given the interval plant family in (7),let 1 < ¢ < m be (resp. Gu1,G12,G2, G, Ga1, Gass, Gz, Gua)-

the least integer with 27¢ < 7o and define
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