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C7 and substituting for y, AE from (37b) and (37c) gives
CaY = CaHry = CiAu — CoHrAw + Crp

= ¥ =04 [CoAu+p] (38)

!

p =—CyHrAw + Crp+ CaHry.

This is exactly the same as (5) except that p has been replaced by
p’. From this point on the treatment is identical to that presented in
the main text of the paper.

APPENDIX B

Here we discuss the general set-point trajectory 7¢1,«**, Ptdny ~1»

r,r,-- whose z-transform is
. _ —n rz T Y
7'(‘2’ 1) =T+l + Pig2 ! + - +7't+nyﬁ12 yt! + 7_ —
© (39
In this case (7) must be replaced by
_ T — —
ez )= = —u DA
_alz) =b(zHAu(zTh) i (40)
= A6 +p(z7)
4" = a(="r - p(z7h)
where p(z7") = (reqa — 1) 4 (rege — 1)z A (Pegny, o1 —

7)z""v*L The definitions of ¢(z7*) and ¥(z"") are exactly the
same, but now (16) becomes

e=T_[-Tyct+Pg+p

Au=T_4 [T +c+ Paq] (41
= =

pP= [(THrl - 7‘)! e (7;t+ny—1 - 7')905 e ']T'

The optimal solution for the future values of ¢ given in (26) must
be replaced by

¢c=-r""[Rq- 20T pl. 42)
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A Revisit to the Gain and Phase Margins
of Linear Quadratic Regulators

Cishen Zhang and Minyue Fu

Abstract—In this paper, we revisit the well-known robustness properties
of the linear quadratic regulator (LQR), namely, the guaranteed gain
margin of —6 to +0o dB and phase margin of —60° to 4+-60° for single-
input systems. We caution that these guaranteed margins need to be
carefully interpreted. More specifically, we show via examples that an
LQR may have a very small margin with respect to the variations of the
gain and/or phase of the open-loop plant. Such a situation occurs in most
practical systems, where the set of measurable state variables cannot be
arbitrarily selected. Therefore the lack of robustness of the LQR can be
very popular and deserves attention.

I. INTRODUCTION

The robustness properties of the linear quadratic regulators (LQR)
have been known for many years. That is, an LQR for a single-input
plant possesses a guaranteed gain margin of —6 to +oc dB and phase
margin of —60° to 60°; see [6], [1], and [2]. This result is extended
in [9] and [7] to the multivariable case, where the weighting matrix
for the control is diagonal.

In this paper, we point out that the aforementioned robustness
properties of LQR’s should be carefully interpreted.

Consider the following single-input/single-output (SISO) plant

G(s) = KGo(s) M

where Go(s) is a fixed transfer function, and A’, having a nominal
value of one, is a complex parameter representing gain and phase
variations of the plant. Suppose a set of state variables is measurable
and an LQR is designed.

The basic robustness question is: do the guaranteed gain and phase
margins apply to the gain and phase variations of the open-loop plant?
We show via examples that the answer is negative, in general. It turns
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Fig. 1. Inverted pendulum system.

out that the gain and phase margins for A can be arbitrarily small
for specially constructed examples of (1).

On the surface, the conclusion above appears contradictory to the
well-known robustness properties of the LQR. However, as we will
show, the guaranteed margins hold only when a very unique set of
state variables is available for the feedback control. When this set
of state variables is not used, the guaranteed gain and phase margins
cannot adequately account for the variations of A" in (1).

A related question arises: can we achieve the guaranteed gain and
phase margins by suitably choosing the weighting matrices in the
cost function? Our example shows that if the set of measurable state
variables cannot be arbitrarily chosen, it may even be impossible
to find any weighting matrices for the LQR to have the guaranteed
margins.

We further ask the following question: given a system in (1), is it
practical to find a unique set of state variables for the feedback control
such that the guaranteed gain and phase margins can be achieved?
Unfortunately, we argue that the answer is usually negative, due to
the physical constraints of the system.

The robustness of LQR is also compared with linear quadratic
gaussian regulators (LQG’s) which use the observed state variables
for the feedback control. We provide an example for which an LQR
fails to have the guaranteed margins with respect to Xy, yet an LQG
regulator surpasses it.

The comparison between LQR and LQG leads us to question the
theory of loop-transfer recovery (LTR). As we know, the original
motivation of LTR is to recover the guaranteed margins of the LOR or
of a similar state feedback controller [5], [12]. Because these margins
may be very small in practice, the question is how to reinterpret LTR.
We point out that the use of LTR is to transfer a nice robustness
property in the state feedback loop to the output feedback loop for
which the LQR does not have the guaranteed margins. In other words,
LTR is used not to “recover” the margins of LQR (because there
may be none with respect to the open-loop variations), but to design
a dynamic output feedback controller which is more robust to the
gain and phase variations of the plant than a state feedback one. So,
it is “loop transfer,” not “recovery.” Indeed, LTR does provide the
guaranteed margins, provided that the so-called asymptotic LTR is
achievable.

In summary, the guaranteed margins of the LQR cannot be assumed
in practical applications, and its robustness deserves careful analysis.

II. GAIN AND PHASE MARGINS OF LQR

In this section, we consider the SISO plant (1) and show via an
example that an LQR may not provide the guaranteed margins with
respect to the gain and phase variations of the open-loop plant.

A. Example 1: Smaller Margins than Expected

To best understand this phenomenon, we consider the control
problem of an inverted pendulum, depicted in Fig. 1. The system
is controlled through a DC drive. There are three sensors for the
field current i(t) of the drive, angular position 6(¢), and angular
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Fig. 2. Cascaded plant.

velocity w(t) of the pendulum, respectively. The control input (%)
is the field voltage of the drive, and the controlled output is 8(¢).
In this example, we assume that the input disturbance w(t) and the
output measurement noise v(¢) are zero. The transfer function of a
linearized model from u(t) to #(t) is given by
Ly A7

(s5+5) (2~ 1)
where G1(s) is the transfer functions of the DC drive from u(t) to
i7(t), and G2(s) of the inverted pendulum from i(¢) to 6(t). The
current gain A’; and torque gain I{r are normalized so that their
nominal values are equal to one. Defining ' = A ;K7, we can
rewrite G(s) as

G(s) = Ga(s)G1(s) = @

. K

A V) @
The measured state of the plant is naturally chosen to be

B(t)
2(t) = |wlt) |. @

ir(t)

Let the LQ performance index be
J= /w (267 +10w° + «*) dt. )
0

A straightforward LQ design yields the optimal control as follows:
u(t) = —fe(t) = —(12.28180(t) + 12.6033w(t)
+ 2.0857i;(t)). ©

Suppose that the gain and/or phase of K are perturbed due to
parametric uncertainty or unmodeled dynamics in the plant. We
would like to examine the corresponding robustness of the closed-
loop system. It turns out that the gain and phase margins depend on
whether the perturbation comes from the DC drive or the pendulum.
In the former case, the closed-loop system indeed has the guaranteed
margins. In the latter case, however, the gain margin is found to be
from 0.576 (—4.76 dB) to +oc, and the phase margin, £44.5° only!

B. Example 2: Arbitrarily Small Margins

The purpose here is to show via an example a stronger fact, i.e., that
an LQR may not guarantee any gain margin for XA’ in the plant (1).
Consider the plant depicted in Fig. 2. The open-loop input—output
transfer function is given by
1

5

G(s) = G1(s)Ga(s) = K N

52
and the nominal value of L' is equal to one.
Let the state + = (x1,22)" be chosen as in Fig. 2 and the LQ

performance index be

7= / (x'q'qe +u®)dt (8)
JO
where
q= [\/Z —r 7] 9

and 7 >0 is a tuning parameter to be specified later.
The state-space realization of (7) at k' = 1 is given by

_(1) (1)}417(2‘) + B}u(t)
1]z (t).

2(t) = Az(t) + bu(t) = {

y(t) =cx(t) =[0 (10)
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The solution of the LQR
u(t) = — fa(t)
is obtained by solving [6]
T4 b (s =AY g q(sT— 4) b
= (140" (=sI — A7) Y1+ F(sT— A)7'8). (12)
Its analytical solution for the nominal K& is given by
w(t) = —(2y/r + ), (t) + raa(t). (13)
The corresponding closed-loop characteristic polynomial is written by
pls) =56 4+ (2Vr+r—Kr)s+ Kr. (14)
At K = 1, we have

(n

p(s) =" +2/rs+r
which means that the nominal closed-loop system is stable for all
r >0
When A = 1 + ¢, the closed-loop system will lose stability at
N 2

€=c¢€ :7%[), as r — oo,
-
So the conclusion is that the LQR has no guaranteed gain margin
with respect to open-loop variations.
In fact, there is no LQR which can provide the guaranteed margins
for the plant (7). To show this, we write

w(t) = —fa(t) = — frwer (1) = fowa(t).
Then the closed-loop characteristic polynomial is given by
p(s)=s" 4+ (fr + Kfs)s — K fo.
Obviously, for any given f..p(s) becomes unstable when A is

sufficiently large. Therefore +oc gain margin cannot be guaranteed
by choosing LQ performance index.

(15)

(16)

C. Analysis

To gain more insight into the problem of the gain and phase
margins of LQR as demonstrated in the examples above, we consider
a state-space realization of (1) given as

(t) = Ax(t) + bu(t) 17
y(t) = cx(t). (18)

Suppose that for a given LQ performance index the optimal state
feedback control is

w(t) = —fa(t). (19)

It is known that the return difference of the LQR is 1+ f(sI—4)~'b
which satisfies

|1+ f(sT — 4)7'b] > 1.

This inequality implies that the Nyquist plot of the transfer function
flsI—A4)"'his away from the —1 + j0 point in the complex plane
by at least a unity. Following from this, the guaranteed gain and phase
margins can be derived which allow a —6 to +oc dB change in the
gain and —60° to +60° change in the phase of the loop transfer
function f(sI — A)~'h.

However, an apparent point is that the variations in the gain and
phase of the loop-transfer function f(sI — A)~'b are, in general, not
the same things as that of the plant transfer function KGo(s) =
¢(sI — A)7'0. This is the reason that the guaranteed gain and
phase margins cannot appropriately account for the gain and phase
variations of the plant. In fact, the guaranteed gain and phase margins
for the loop-transfer function f(sI — A)~"b are meaningful for
all possible variations of K in the transfer function of the plant
(1) only when the measured set of state variables is very unique.
Namely, the state matrix 4 must be independent of &A™ and the input
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vector b proportional to K. Such a set of state variables is given
by [y,9.---,y" '] and those transformable from it by a constant
(I -independent) transformation matrix. Here we assume that K is
nondynamic for simplicity.

In light of the above analysis, the reduction of margins in the
inverted pendulum example can be simply understood by considering
the state-space realization of the plant (2)

01 0 0
Ft)y= {1 0 Krlz)+ |0 [u®. (20)
00 -5 Ky

Note that Ay is in the input matrix and thus attracts the guaranteed
margins. However, Ky appears in the system matrix!

Of course, it is possible to measure a different set of state variables
so that both K7 and A’y are lumped together in the input matrix. It
is easy to see that the only sets of such state variables are given by
[6,w.&]" and those transformable from it by a constant transformation
matrix.

Since a direct measurement of @ is usually not available due to
noise problems, guaranteed margins cannot be achieved by an LQR
in reality.

Indeed, the nonrobustness problem of the LQR has been known
for a long time in some different context. In particular, we refer to
an example given in [13] where the following system is considered:

x'i'l _ -1 0 ) 1+El

=00 kR
A particular quadratic cost function can be chosen such that an LQR
designed at €, = e, = 0 has an arbitrarily small gain margin with
respect to the variation in either ¢, (with e2 = 0) or €3 (with ¢ = 0).
A similar example is given in [11]. An interesting point involving

our example in (7) is that it reveals the nonrobustness of LQR with
respect to the phase and gain variations of the open-loop plant.

2D

III. MARGINS OF LQG REGULATORS

It is also well known that linear-quadratic Gaussian (LQG) regu-
lators do not have guaranteed margins, in general [3]. This gives the
general belief that LQG regulators are not as robust as LQR’s. This is
actually the original motivation for the LTR theory; see [4], [12], and
[ 10]. More specifically, an LTR design involves two steps. First, an
LQR controller is designed to achieve the required performance and
robustness margins. Then, a dynamic output feedback controller takes
over, and it is so designed that the guaranteed margins are recovered.
In this section, we point out that it is misleading to conclude that
LQR is more robust than LQG. In particular, we demonstrate via an
example that it is possible an LQG regulator offers gain and phase
margins larger than the “guaranteed” values, but an LQR for the
same LQ performance index cannot.

Example 3: We return to Example 1 and add the input distur-
bance w(f) and measurement noise v(t#). It is assumed that w(¢t)
and () are zero mean white noises with intensities 10° and 1,
respectively. The corresponding LQG regulator (obtained using the
Control Toolbox on Matlab) u(s) = G.(s)y(s) is given by

2.0657s% + 12.4751s + 10.097
T 4.2475 x 107552 + 0.00025 +1°
It is verified that the gain and phase margins with respect to the open-
loop variations are (0.498, +-2¢) (or (—6.05, +o¢) dB), and £60.8°,
respectively, which slightly exceed the “guaranteed” margins.

It is known [8] that there are cases where an LQG regulator gives
better margins than its LQR counterpart. What is different in our
example is that the LQR counterpart fails to provide the guaranteed
margins as far as the gain and phase variations in the open-loop plant
are concerned.

Go(s) = (22)
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IV. IMPROVING MARGINS OF LQR

We have already seen in Section III that LQG regulators may be
more robust than their LQ counterparts. This is possible because in
the LQG case, dynamic (rather than static) feedback is used. Although
it is known that the optimal LQR is always achievable by static state
feedback [6], we emphasize that better robustness may be obtained
by using dynamic state feedback. This point is illustrated in the
following.

Let us return to Example 2 and consider the use of the dynamic
state feedback controller below

uls) = —@VF 4+ TR QN () + (4 Qe (29)

where (Q(s) is a stable transfer function to be determined. Note
that when Q(s) = 0, (23) reduces to (13). Also, adding (Q(s) in
the controller does not change the system return difference and the
closed-loop transfer function for the nominal plant.

We claim that an appropriate choice of ()(s) may greatly improve
the robust stability of the closed-loop system with respect to the
variations in A". Indeed, the new characteristic equation is given by

55 2V —e(r + Q(s))s + (L4 er +eQ(s) = 0. (24)
Choosing (Q(s) = —r + & with some 6 > 0, the above becomes
T2V —eb)s + (r+ed) = 0. (25)

Therefore, given any » >0 and bounding set [0, ¢"] for ¢, we can
choose 6 > 0 sufficiently small such that (25) is robustly Hurwitz.
Hence, the gain margin with respect to /A can be arbitrarily large.

Note that if 6 = 0. we have an infinite gain margin. In this situation,
x2(s) disappears from the feedback. Intuitively, we can expect to
have a poor robustness in LQ performance. In practice, a tradeoff
between robustness in LQ performance and gain/phase margins needs
to be considered.

Another approach to the improvement of the margins is to use
LTR. The good news about LTR is that the recovered system
indeed possesses the guaranteed margins with respect to open-loop
variations, provided that asymptotic LTR can be achievable. This is
an important property of LTR. As we mentioned in Section I, the
use of LTR is to transfer a nice robustness property in the state
feedback loop to the output feedback loop for which the LQR does not
guarantee margins. However, when asymptotic LTR is not achieved,
which is the case for most nonminimum-phase plants, one might
be better off with dynamic state feedback, provided a set of state
variables can be measured. We must also realize another possible
disadvantage of LTR, i.e., the use of high gain feedback (for achieving
asymptotic LTR or separation of time-scales; see [10]) in the presence
of measurement noise. This problem is illustrated in Example 4 when
the LQG controller is indeed designed using the LQG/LTR approach
suggested in [S5].

V. CONCLUSIONS

In this paper, we have analyzed the robustness properties of the
LOR and have shown that the guaranteed gain/phase margins of
LQR need to be carefully interpreted. We have demonstrated that
the guaranteed margins usually do not apply to practical systems due
to the constraints in the selection of measurable state.

We have also discussed the possible use of dynamic state feedback
for improving the robustness of LQR. In this regard, the LTR method
becomes handy because it can “transfer” the guaranteed margins in
the state feedback loop to the output feedback loop, provided that
asymptotic LTR is possible. A more general problem is how to use

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 10, OCTOBER 1996

dynamic state (or partial state) feedback to optimize performance
while goaranteeing a certain robustness margin. This issue deserves
further research.
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Continuous Least-Squares Observers with Applications
Alexander Medvedev

Abstract— A wide class of continuous least-squares (LS) observers
is treated in a common framework provided by the pseudodifferential
operator paradigm. It is shown that for the operators whose symbols
satisfy certain conditions, the continuous LS observer always exists,
provided observability of the plant. The general result is illustrated by
an LS observer stemmed from a sliding-window convolution operator.
Applications to state feedback control and fault detection are discussed.

I. MOTIVATION AND BACKGROUND

Traditionally, the deterministic state vector observation (recon-
struction) problem in linear systems is solved by means of the
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