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Abstract: The paper introduces the localization problem of sensor networks using relative
position measurements. It is assumed that relative positions are measured in local coordinate
frames of individual sensors, for which different sensors may have different orientations of their
local frames and the orientation errors with respect to the global coordinate frame are not
known. A new necessary and sufficient condition is developed for localizability of such sensor
networks that are modeled as directed graphs. That is, every sensor node should be 2-reachable
from the anchor nodes. Moreover, for a localizable sensor network, a distributed, linear, and
iterative scheme based on the graph Laplacian of the sensor network is developed to solve the
coordinates of the sensor network in the global coordinate frame.

1. INTRODUCTION

Many existing localization schemes for sensor networks uti-
lize pairwise distance measurements between sensor nodes
to compute the position of each node in a global coordinate
frame. With the development of micro-electromechanical
systems (MEMS), more and more meanings are given
to the terminology sensor in variable networks such as
robotic networks, aircraft networks etc. Thus, it is possible
for a sensor to easily and also necessarily get additional
useful measurements such as bearing angles [3][5], which
together with relative distance measurements lead to the
availability of relative positions in local coordinate frames.

On the other hand, depending on whether a central station
or a central node exists or not, localization schemes can
be divided into centralized schemes [10] and distributed
schemes [6]. The former asks every sensor node to transmit
its information to a central station or a central node and
then computes the positions of the entire senor network
centrally, while the latter lets every node only exchange
information with its neighbors and conduct the compu-
tation of its own position locally. The distributed one is
more preferable since it is obviously energy efficient. This
paper aims at solving the distributed localization problem
using relative position measurements on local coordinate
frames.

A fundamental and important issue in sensor network
localization is called localizability [9]. It checks whether
a sensor network is localizable based on available mea-
surements. Typically, it counts on two aspects: the total
number of measurements and where to place these mea-
surements between sensor nodes in the sensor network. For
range-based localization, a sensor network is usually char-
acterized by a distance graph [1] and then graph rigidity
theory is applied for the localizability problem. That is,
for a sensor network in the 2D plane, it can be uniquely
localized if and only if it contains at least three location-
known anchor nodes and its distance graph is globally rigid
[4].

However, there is no known result for localizability of a
sensor network based on relative position measurements.
This paper develops a fundamental result to answer this
question. Necessary and sufficient conditions are obtained
to characterize the localizability of a sensor network with
relative position measurements. It is shown that a sensor
network in the 2D plane with relative position measure-
ments is localizable for almost all distribution of sensor
nodes if and only if it contains at least two location-
known anchor nodes and its sensing graph holds a 2-
reachability property. Additionally, the algebraic necessary
and sufficient conditions are characterized by the rank of
graph Laplacians.
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In addition to provide a complete answer for the local-
izability problem, this paper also provides a distributed
localization scheme to calculate the position of each sen-
sor node by itself based on its own local measurements
and a few information exchanged from its neighbors. The
proposed localization algorithm is in an iterative and linear
form with guaranteed global convergence. This is more
attractive compared with those distance-based localization
algorithms that usually cannot avoid being trapped into
local optima.

In the paper, we assume that each sensor node can measure
the relative positions of only two neighbors (the least
number required) to simplify the analysis in obtaining the
localizability conditions as well as the distributed local-
ization algorithms. However, the localizability conditions
also hold for a more general case where each sensor node
may access relative position information of more than two
neighbors. The distributed localization algorithms work
for the more general case as well.

Notations: C denotes the set of complex numbers. ι =√
−1 denotes the imaginary unit. I denotes the identity

matrix of appropriate order.

2. PRELIMINARY AND PROBLEM FORMULATION

2.1 Graph Theory

First, we are going to introduce some notions from graph
theory and algebraic graph theory. A directed graph
G = (V , E) consists of a non-empty node set V and an edge
set E ⊆ V × V . We define Ni as the neighbor set of node
i, i.e., Ni = {j ∈ V : (j, i) ∈ E . As defined in [8], for
a directed graph G = (V , E), a node v ∈ V , is said to be
2-reachable from a non-singleton set U of nodes if there
exists a path from a node in U to v after removing any
one node except node v.

Then, we introduce two notions called complex Laplacian
matrix and Dirichlet matrix. For a directed graph, associ-
ated each edge (j, i) ∈ E with a complex value wij called
the weight of the edge, its complex Laplacian matrix is
defined as

L =















−wij , if i 6= j and j ∈ Ni

0, if i 6= j and j /∈ Ni
∑

j∈Ni

wij , if i = j.
(1)

Similarly to the one defined in [2], the Dirichlet matrix
H is the matrix obtained from the Laplacian matrix L by
deleting all rows and columns that correspond to a subset
of specific nodes.

2.2 Problem Formulation

We consider a sensor network consisting of anchor nodes,
whose position are already known, and normal sensor
nodes, which are to be localized. In the rest of this
paper, we call normal sensor nodes as sensor nodes for
short. Suppose each sensor node is equipped with an on-
board sensor which can measure the relative distances and
bearing angles of some other nodes, called its neighbors.

We model such a sensor network as a directed graph, called
a sensing graph G = (V , E), in which an edge (j, i) ∈ E
indicates that node i can measure the relative distance
and bearing angle to node j as ρij and θij in its local
frame. To be more explicit, each sensor node i holds a
local coordinate system Σi, in which the origin is set on
the position of itself. Let pi denote the absolute position
of node i in a global coordinate system Σg. Then (pj − pi)
represents the relative position between node j and i in Σg

and (pj − pi)e
−ιαi is the relative position of node j in the

local coordinate system Σi, where αi is the offset angle
between Σi and Σg. Thus, the local measurement holds
the following formula:

ρije
ιθij = (pj − pi)e

−ιαi .

An illustrative example is given in Fig. 1. In the example,
the arrowed line pointing from j to i means node i can
measure the relative position of j in its local coordinate
system. We can understand this arrow as the direction of
information flow in the network. In the following, we will
treat sensor networks and sensing graphs interchangeably.

α

θ31

θ32

ρ31

ρ32

Σg

Σ

Re

Re

Im

Im

2

1

3

3

3

Fig. 1. An illustration of sensing graph and relative posi-
tion measurements.

For a sensor network G containing m location-known
anchors and n sensor nodes to be localized, the (m+ n)×
(m + n) Laplacian matrix and n × n Dirichlet matrix H
corresponding to the n sensor nodes are represented as

L =

[

0 0
B H

]

, (2)

where B is an appropriate dimensional matrix, indicating
the links of sensor nodes to the anchor nodes in the sensing
graph.

Note that, all local coordinate systems (Σi, i = 1, . . . , n)
are not required to have the same offset angle. This is in
agreement with the fact that distributed sensor nodes do
not have global knowledge of, or it is costly to achieve
agreement on, a common orientation.

In this paper, we introduce the following fundamental
problems for sensor network localization based on relative
position measurements.

(P-1) What are the necessary and sufficient graphical (al-
gebraic) conditions for the localizability of the whole
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sensor network by only using the measurements of
relative distances and bearing angles in local coor-
dinate systems?

(P-2) Find an efficient distributed localization algorithm
for the sensor network when it is entirely localizable.

3. NECESSARY AND SUFFICIENT CONDITION
FOR LOCALIZABILITY

3.1 A Necessary Localizable Condition

First, we provide a necessary condition for localizability in
terms of graph connectivity.

Theorem 1. If a sensor network G, consisting m anchor
nodes and n sensor nodes, is localizable, then

(NC-1): m ≥ 2, and
(NC-2): each sensor node is 2-reachable from the set of

anchor nodes.

Proof: First, we prove the necessity ofm ≥ 2. Whenm = 0,
the whole sensor network can freely rotate and translate
in the plane without any constraint and thus cannot be
localizable. Whenm = 1, the whole sensor network can not
translate, but can freely rotate around the unique anchor
node. So again it is not localizable.

Second, we show the necessary condition (NC-2). Suppose
by contrary that there is one node, say vi, that is not
2-reachable from the anchor set, denoted here as Sa. By
the definition, it is then known that there exists another
node v∗ such that when node v∗ is removed, node vi is
not reachable from Sa. Denote by S∗ the set of sensor
nodes that are not reachable from the anchor set Sa after
removing node v∗. That is, there is no edge connecting
any node in S∗ to any node not in S∗ ∪ {v∗}. Thus, look
at the sub network composed of nodes in S∗ and v∗. Then
by the necessary condition (NC-1), even in the case v∗ is
localizable, the sub network is still not localizable and it
can freely rotate around v∗. �

It is shown in Theorem 1 that 2-reachability of every
sensor node from the set of anchor nodes is a necessary
graphical condition. Certainly, 2-reachability implies that
every sensor node has at least two neighbors in the graph.
So we assume that every sensor node in the sensor network
has at least two neighbors. In this paper, we consider the
minimum sensing graph, that is, every sensor node has
only two neighbors, requiring the minimum number of
measurements. The assumption is stated formally below.

To simply demonstrate our ideas in deriving necessary and
sufficient conditions for localizability as well as developing
distributed localization algorithms, we consider the above
assumption. However, our results will also hold if each
sensor node in the sensor graph has relative position
measurements of more than two neighbors.

Assumption 1. Every sensor node in the sensor network G
measures relative positions of only two neighbors.

3.2 Necessary and Sufficient Algebraic Conditions

Under Assumption 1, it holds that for any sensor node i,
there exists a set of complex weights wij to make

∑

j∈Ni

wij(pj − pi)e
−ιαi = 0

represented in the local coordinate system Σi and equiva-
lently

∑

j∈Ni

wij(pj − pi) = 0 (3)

represented in the global coordinate system Σg. An easy
way to choose the complex weights wij is to take the values
that normalize the relative position vectors of its neighbors
and project onto the positive and negative real axis of its
local coordinate system Σi. That is, if j is a neighbor of
node i then

wij =
e−ιθij

ρij
, (4)

and if k is the other neighbor of node i then

wik = −e−ιθik

ρik
. (5)

In this way, the complex weights use only the measure-
ments of relative distances and bearing angles of sensor
node i. Taking Fig. 1 for example, we can choose the

complex weights for edges (1, 3) and (2, 3) as w31 = e
−ιθ31

ρ31

,

w32 = − e
−ιθ32

ρ32

. Then it holds that

w31(p1 − p3) + w32(p2 − p3) = 0. (6)

Denote by

p = [p1 · · · pm, pm+1, · · · , pm+n]
T (7)

the aggregate position vector of the sensor network. Then
the aggregate equation of (3) can be written as

Lp = 0 (8)

where L is the complex Laplacian matrix for the sensing
graph with the nonzero complex entries being the complex
weights chosen above.

Let pa and ps be the position vectors of anchor nodes and
sensor nodes respectively. Thus, eq. (8) can be re-written
as

Lp =

[

0 0
B H

] [

pa
ps

]

= 0, (9)

where H is the Dirichlet matrix. Equivalently, we could
write as

Hps = −Bpa. (10)

Now, the problem of localizability of the sensor network is
equivalent to the existence of a unique solution for ps to
the equation (10) for which pa is known. Thus, a necessary
and sufficient algebraic condition is presented below.

Theorem 2. Suppose Assumption 1 holds. Then a sensor
network consisting ofm anchor nodes and n sensor nodes is
localizable if and only if m ≥ 2 and rank(L) = rank(H) =
n where L and H are the Laplacian and Dirichlet matrix
with their entries defined in (4)-(5).

Proof: (Necessity) From Theorem 1, it is certain that
m ≥ 2 is necessary. On the other hand, we suppose by
contradiction that rank(L) 6= n or rank(H) 6= n. Note
that rank(H) ≤ rank(L) ≤ n. So for both cases, it means
rank(H) < n. Then eq. (10) has multiple solutions of
ps, which contradicts to the condition that the sensor
network G is localizable. Therefore, it is necessary that
rank(L) = rank(H) = n.
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(Sufficiency) For a sensor network G, if the Laplacian
and Dirichlet matrix with their entries defined in (4)-
(5) satisfy rank(L) = rank(H) = n, then there exists a
unique solution ps to eq. (10). Thus, the sensor network is
localizable. �

3.3 Necessary and Sufficient Graphical Conditions

In this subsection, we develop necessary and sufficient
graphical conditions for localizability. It is shown below
that the necessary condition given in Theorem 1 is also
sufficient for localizability of almost all sensor networks.
That is, the 2-reachability of every sensor node from the
anchor set is a key to the localization problem with relative
position measurements.

Theorem 3. Suppose Assumption 1 holds. Then a sensor
network consisting of m anchor nodes and n sensor nodes
is localizable for almost all distribution p if and only if
m ≥ 2 and every sensor node in G is 2-reachable from the
set of anchor nodes.

Proof: (Necessity) Following the same argument as in
the proof of Theorem 1, if either m < 2 or there exists
one sensor node that is not 2-reachable from the set of
anchor nodes, then the sensor network is not localizable
for whatever distribution p. Therefore, it is necessary that
m ≥ 2 and every sensor node in G is 2-reachable from the
set of anchor nodes.

(Sufficiency) For a sensing graph G consisting of m
anchor nodes and n sensor nodes, let L be the Laplacian
matrix and H be the Dirichlet matrix corresponding to
the n sensor nodes with their entries defined in (4)-(5).
We denote by Hi (i = 1, . . . , n) the right-bottom i-by-i
dimensional sub-matrix of H . By Assumption 1 that each
sensor node has only two neighbors in the graph and by the
condition that every sensor node is 2-reachable from the
set of anchor nodes, we then know that for any i = 1, . . . , n,
there must exist a row in Hi having at most two nonzero
entries as otherwise it indicates that the subset of sensor
nodes corresponding to the labels of Hi is not reachable
from the set of anchor nodes, a contradiction. With the
above observation, we label the anchor nodes from 1 to m
and re-label the node corresponding to the row in Hn that
has at most two nonzero entries as m + 1. Moreover, we
re-label the node corresponding to the row in Hn−1 that
has at most two nonzero entries as m + 2, and so on. By
this relabeling scheme, for any Hi it is modified so that
the first row of Hi has at most two nonzero entries and
one of them is at the diagonal entry. That is, the following
form holds for Hi.

Hi =

[

h(n−i)(n−i) △
∗ Hi−1

]

where h(n−i)(n−i) represents the (n− i)-th diagonal entry
ofH , and there is at most one nonzero entry in △, denoted
as h(n−i)j if exists. Thus,

det(Hi) = h(n−i)(n−i)det(Hi−1) + (−1)kh(n−i)jdet(M
∗)
(11)

where k is a proper integer and M∗ is the minor by
removing the first row and the column of Hi which the
nonzero entry h(n−i)j lies in.

Next we prove det(H) = det(Hn) 6= 0 for almost all sensor
distribution p by induction. First, it can be seen that for
a generic sensor distribution p, no two sensor nodes are
overlapped. Thus, the diagonal entries of H are nonzero.
So det(H1) 6= 0. Second, suppose that det(Hi−1) 6= 0.
Then according to (11), it is known that for a generic
sensor distribution p, det(Hi) 6= 0 as both h(n−i)(n−i)

and possible nonzero entry h(n−i)j are dependent solely
on p. This means, for almost all sensor distribution p,
det(H) 6= 0. Thus, applying Theorem 2 leads to the
conclusion that for almost all sensor distribution p, the
sensor network is localizable. �

Theorem 3 shows that if the number of anchor nodes is
greater than 2 and every sensor node in the sensing graph
is 2-reachable from the set of anchor nodes, then a sensor
network with a distribution p, which is not localizable, is
of zero measure. Take the sensor network in Fig. 2(a) as an
example, for which, nodes 5 and 6 are the anchor nodes,
and every sensor node i = 1, . . . , 4 is 2-reachable from the
set of anchor nodes. Suppose the sensor distribution is the
one given in Fig. 2(a), i.e.,

p = (1 + ι, 1, 0, 2 + ι, ι3, 3).

Then it can be checked that rank(L) = rank(H) is less
than 4, meaning that (10) must have infinite number
of solutions and the sensor network is not localizable.
Actually, for whatever choice of wij satisfying (3), the rank
of H is still less than 4, meaning that there is no other
way to solve the absolute positions of the sensor network.
However, it can be checked that such situations are of
zero measure as shown in Theorem 3. For this example,
when we shift a little bit the position of node 5 in the
neighborhood of the original location (Fig. 2(b)), then the
new Dirichlet matrix H is of full rank and thus the sensor
network is localizable.

1

23

4

6

5

(a) Not localizable.

1

23

4

5

6

5
′

(b) Localizable.

Fig. 2. A sensor network satisfying the conditions of The-
orem 3 is localizable for a generic sensor distribution.

Note that if a sensor node has more than two neighbors,
the corresponding row of the resultant Laplacian has more
nonzero entries. Thus, the analysis will be very similar in
obtaining the same necessary and sufficient localizability
conditions.

4. DISTRIBUTED LOCALIZATION ALGORITHM
AND CONVERGENCE ANALYSIS

For a sensor network, once we find out that it is localizable
according to the conditions developed in last section, we
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need to find an efficient way to solve the absolute positions
ps in eq. (10). A centralized computation is trivial, but
for practical applications, we are looking for a distributed
scheme. To this end, we multiply a complex diagonal
matrix D on both sides of (10) and obtain a new equation
as

DHps = −DBpa. (12)

Adding ps on both sides of equation (12) and re-arranging
the terms in the equation, the following is obtained.

ps = (I −DH)ps −DBpa. (13)

According to (13), we then can construct an iterative
algorithm for localization as follows.

z(k + 1) = (I −DH)z(k)−DBpa, (14)

where z(k) = [zm+1, · · · , zm+n]
T is the estimate of ps at

time k. The above iterative form can also be written as an
iterative process at each sensor node, i = 1, . . . , n, that is,

zi(k + 1) = zi(k) +
∑

j∈Ni

diwij(zj(k)− zi(k)), (15)

where zi(k), i = m+1, . . . ,m+n, is the estimate of sensor
i’s own position and zi(k) = pi for i = 1, . . . ,m (the
anchor nodes are stationary). Notice that wij is available
to node i based on its local measurements about its two
neighbors. So when its neighbors j ∈ Ni communicate with
sensor node i their estimates of themselves positions, then
the iterative localization scheme (15) can be implemented
locally in a distributed manner.

Remark 1. The convergence rate of the iterative localiza-
tion algorithm depends on the spectral radius of I −DH .
To increase the convergence rate, we can choose appropri-
ate di’s to minimize the spectral radius of I −DH .

In the following, we provide a method on how to find an
appropriate complex scaling parameter di. Similar as [7]
and [8], we apply the continuity property of eigenvalues.
Denote by H(i) the i-th leading principal sub-matrix.
This method firstly assigns a d1 such that the eigenvalue
of d1H

(1), i.e., d1H
(1) itself, lies on the positive real

axis. Note that diag{d1, 0}H(2) has two eigenvalues,
namely, d1H

(1) and 0. Then according to the continuity
of eigenvalues, we can find an appropriate d2 around zero
to make the eigenvalues of diag{d1, d2}H(2) lie on the
positive real axis. The process is repeated until all di’s are
found.

Algorithm 1 Find scaling parameters di.

1: for i = 1, · · · , n do
2: Find di such that the eigenvalues of

diag{d1, · · · , di}H(i) lie on the real axis between
(0, 2).

3: end for
4: return di, i = 1, . . . , n.

5. SIMULATIONS

In this section we provide a simulation example to il-
lustrate our results. To demonstrate the idea clearly, we
consider a very simple example with two anchor nodes and
three sensor nodes to be localized as shown in Fig. 3(a).
The two triangles in the figure indicate the anchor nodes,

say node 1 and 2. The other three filled circles represent
the true positions of the sensor nodes. The lines with
arrows indicate the sensing graph topology. In other words,
the arrow pointed from i to j means that node j can
measure the relative position of node i. It can be known
that for the sensing graph, it satisfies Assumption 1 and
every sensor node in G is 2-reachable from the set of anchor
nodes. So it is localizable by our results. Based on the
local relative position measurements in the sensing graph
G, each node, i = 3, 4, 5, can have their weights

w31 = −1 + ι2, w32 = 2 + ι,

w41 = −2 + ι, w43 = 3,

w52 = 3− ι, w53 = −3 + ι3.

According to Algorithm 1, the complex scaling parameters
are obtained as follows

d3 = 0.05− ι, d4 = 0.25(1− ι), and d5 = −ι0.5.

Thus, the distributed and iterative localization algorithm
provides a convergent trajectory to the true value for each
sensor node, i = 3, 4, 5. That is,

zi(k + 1) = zi(k) +
∑

j∈Ni

diwij(zj(k)− zi(k)), (16)

where z1(k) = 1 and z2(k) = −1 are the locations of the
two anchor nodes, which are known. With the iterative
algorithm (16), the trajectories of the estimates converging
to the true values (p3 = ι, p4 = 1 + ι3, p5 = −1 + ι3)
are plotted in Fig. 3(a). The estimation error ‖z(k) − p‖
is shown in Fig. 3(b), which asymptotically converges to
zero.

6. CONCLUSIONS

This paper introduces a localization problem for sensor
networks based on relative position measurements. Also
we assume that the relative position measurements are
obtained by local onboard sensors and thus do not have
a common reference frame. For this problem, necessary
and sufficient conditions are developed for localizability
in terms of 2-reachability of the sensing graph. Also,
necessary and sufficient algebraic conditions are obtained
in terms of the rank of graph Laplacians. In addition, we
provide a distributed and iterative algorithm to compute
the true position of each sensor node, which uses only
the local measurements and exchanged information from
neighbors, yet globally asymptotic convergence is assured.
The minimum sensing graph is studied in the paper. That
is, each sensor node is assumed to have only relative
position measurements of two neighbors. Our results can
be extended to a more general topology where every
node may have more than two neighbors. In that case,
sensitivity to measurement noises can also be reduced.
This is left for our future work.
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(a) The localization trajectories of zi(k), i = 3, 4, 5.
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Fig. 3. A simulation of a sensor network with two anchor
nodes and three sensor nodes.
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