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A Recursive Method for the Approximation of LTI
Systems Using Subband Processing

Damián Marelli and Minyue Fu, Fellow, IEEE

Abstract—Using the subband technique, an LTI system can
be implemented by the composition of an analysis filterbank,
followed by a transfer matrix (subband model) and a synthesis
filterbank. The advantage of this approach is that it offers a good
tradeoff between latency and computational complexity. In this
paper we propose an optimization method for approximating an
LTI system using the subband technique. The proposed method
includes optimal allocation of parameters from different FIR
entries of the subband model, while keeping constant the total
number of parameters, for a better utilization of the available
coefficients. The optimization is done in a weighted least-squares
sense considering either linear or logarithmic amplitude scale.
Simulation results demonstrate the advantages of the proposed
method when compared with classical implementation approaches
using pole-zero transfer functions or segmented FFT algorithms.

Index Terms—Modeling, system analysis and design, subband
signal processing.

I. INTRODUCTION

A N LTI system can be implemented in the time-domain
using direct convolution. When the order of the im-

pulse response ranges from several hundred to a few thousand
taps, this approach is computationally inefficient and often
prohibitive for real-time applications (e.g., in audio signal pro-
cessing). A computationally efficient alternative implements
the system in the frequency domain. However, this approach is
equally unsuitable for real-time applications since it requires
block processing of the “whole history of the involved sig-
nals, introducing large latency (i.e., implementation delay).
Even when applying the so-called overlap-save and overlap-add
(OS/A) methods [1], which permit efficient implementation of a
finite impulse response (FIR) approximation of the LTI system,
delays can be reduced only to a limited extent. To further
reduce the delay, a low latency fast convolution algorithm was
introduced in [2]. This algorithm splits the impulse response
into a number of segments which are processed using OS/A
methods, while the first segment can be optionally processed in
the time domain to eliminate the latency. The latency reduction
can be accommodated by varying the number of segments,
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and is obtained at the expense of increasing the computational
complexity. All the methods, collectively called segmented
FFT methods, accommodate a tradeoff between computational
complexity and latency [3]. These are attractive options for
applications where some delay can be afforded, but reduced
computational efficiency is a main side effect.

A different approach for modeling LTI systems uses pole-
zero transfer functions [4]–[9]. The advantage of this approach
is that it approximates an LTI system with a very large im-
pulse responses without implementation latency. However, a
large number of poles and zeros may be needed to achieve a
small approximation error, hence, it is often less numerically ef-
ficient than segmented FFT methods [10], [11]. Also, the coef-
ficients of a pole-zero model are sensitive to quantization errors
[1, Ch. 7.6], which can cause robustness and stability problems,
especially in implementations using fixed point arithmetic.

A recently proposed alternative approach implements the
system in the subband (i.e., time-frequency) domain [12], [13].
Using this subband technique, a linear system is implemented
by the composition of an analysis filterbank, followed by a
transfer matrix (subband model) and a synthesis filterbank.
This approach has also been used for system identification [14],
adaptive filtering [15], [16], channel equalization [17], etc.,
with the advantage of having high numerical efficiency. The
approximation of LTI systems using the subband technique was
studied in [12] for the critical sampling subband scheme (where
the downsampling factor equals the number of subbands). A
step further in this direction was taken in [13], where a more
general oversampling subband scheme (where the downsam-
pling factor is smaller than or equal to the number of subbands)
was used, and the subband model was optimally chosen in a
least-squares (LS) sense.

In this paper we extend the result from [13] as follows:
First, we propose an iterative algorithm to jointly optimize the
subband model, the analysis and the synthesis filterbanks in a
weighted least-squares (WLS) sense. The algorithm includes
the adaptive allocation of parameters from different FIR entries
of the (matrix) subband model, while keeping constant the total
number of parameters, for a better utilization of the available
coefficients. We then propose another iterative algorithm where
a weighted logarithmic-least-squares (WLogLS) criterion is
used for optimization. This criterion is motivated by the fact
that the human auditory system perceives the amplitude of the
frequency contents of a sound signal in a logarithmic scale [18],
and therefore aims at audio signal processing applications.

In order to illustrate the applicability of the proposed method
we introduce two examples. The first one considers a WLS cri-
terion to approximate the inverse of a multipath communica-
tion channel. The second one considers a WLogLS approxima-
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Fig. 1. System approximation using subband processing.

tion criterion for implementation of head-related transfer func-
tions (HRTFs), which find applications in the so-called bin-
aural virtual acoustics synthesis [19], [20]. Simulation results
show that the subband method, designed using the proposed
method, is more efficient than segmented FFT methods and
pole-zero models, while keeping the latency and approximation
error within prescribed tolerances.

The rest of the paper is organized as follows: In Section II we
state the problem of approximating an LTI system using sub-
bands. In Section III we use the polyphase representation to pro-
vide a mathematical setting for deriving, in Section IV the pro-
posed optimization algorithm. In Section V we explain how to
modify the proposed algorithm to carry out the optimization in
a logarithmic amplitude scale. The application of the proposed
method is illustrated in Section VI using numerical simulations,
and concluding comments are given in Section VII. For the ease
of readability, all proofs are contained in the Appendix.

Throughout the paper we will use the following notational
convention: Scalars are denoted using normal (i.e., nonbold)
lowercase letters (e.g., ); and vector and matrix using lower-
case bold letters (e.g., ) and uppercase bold letters (e.g., ),
respectively. The th entry of a vector is denoted by and
the th entry of a matrix is denoted by .

II. LTI SYSTEM IMPLEMENTATION USING SUBBAND

PROCESSING

The subband technique for approximating a linear system is
depicted in Fig. 1. The linear system is approximated by
splitting the input signal into subbands using an array of
filters , followed by a downsam-
pling operation of factor (by keeping one out of samples).
In this way, the subband signal
is generated, which is called the subband representation
of the (fullband) signal . The subband model is an

transfer matrix whose output is denoted by
. The output signal is gener-

ated by upsampling by a factor of (by inserting
zeros between every two samples), then filtering each compo-
nent using an array of filters , and
finally adding together all the resulting signals.

We will assume that the filters in the arrays and
are FIR, having tap sizes and , respectively. Also, to sim-
plify the notation, and without lost of generality, we will assume
that they are causal. The entries of the subband model are
FIR filters whose supports are defined by two matrices

as follows: for each , for
all ). The total number of parameters of

TABLE I
COMPUTATIONAL COST (CC) AND LATENCY OF THE SUBBAND METHOD

the subband model is denoted by
, and its latency by . We as-

sume that the filterbanks are of Gabor type, i.e., there exists a
prototype filter such that for
all and all , and a similar condition holds
for . Gabor filterbanks offer less flexi-
bility than generic filterbanks, but they can be implemented in a
numerically efficient way using FFT [21], and they turn out to
outperform generic filterbanks in the tradeoff between compu-
tational complexity and approximation error.

Using the algorithm in [21], and assuming that is a power
of two, so that an -point FFT can be implemented with

(real) multiplications using the Radix-2 algorithm
[11, Ch. 6.1], the implementation of both the analysis and the
synthesis filterbanks require real
multiplications per (fullband) sample. Also, assuming that the
input signal is real valued, only half of the subband model

entries need to be computed. Using these remarks, we
show in Table I the computational cost required to implement
an LTI system using the subband method, together with its
associated latency.

As pointed out in Remark 1, the system induced
by the subband technique from input to output is -cyclosta-
tionary (i.e., there exists a set of impulse responses ,

such that ).
In view of this, the design problem becomes finding, for given
values of , , , and , the prototype filters and

, and the subband model (including the matrices
and defining its support), that solve the following WLS min-
imization problem:

(1)

where is a user-supplied spectral weighting function
which needs to be real and positive on the unit circle.

III. A RESTATEMENT OF (1) USING POLYPHASE

REPRESENTATION

The aim of this section is to express (1) in a mathematically
more tractable way. To this end, we use the so-called polyphase
representation [22].

A. Polyphase Representation

The polyphase representation of a scalar signal is the
-dimensional vector signal defined by
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Also, the polyphase representation of a -cyclostationary linear
system with impulse responses , , is the

impulse response matrix defined by

(2)

The polyphase representation enjoys the following proper-
ties:

(P1) The polyphase representations and of the
input and output of a -cyclostationary system
with polyphase representation are related by

.
(P2) The polyphase representation of the system
formed by the concatenation of -cyclostationary systems
with polyphase representations and is given
by .

The polyphase representation of an analysis filterbank with
filters , and downsampling factor is
the transfer matrix defined by

(3)

Also, the polyphase representation of a synthesis filterbank with
filters , and upsampling factor is given
by , where is defined in a way similar to (3), and

denotes the transpose conjugate of .
If is of Gabor type, and the prototype filter is causal

with tap size , then its polyphase representation is given by
[21]

(4)

where is the DFT matrix, i.e.,
and

with , ( denotes the nearest in-
tegers greater than or equal to ), denoting the matrix
formed with the first columns of , and
denoting the diagonal matrix with elements in its
main diagonal.

B. Restatement of the Approximation Criterion (1)

Using the polyphase representation, the scheme in Fig. 1 can
be represented by the LTI system shown in Fig. 2, i.e.

(5)

(6)

Then, as shown in the Appendix, (1) is equivalent to

(7)

Fig. 2. Polyphase representation of the subband system approximation scheme.

where the norm is defined by

(8)

with being the polyphase representation of and
denoting the trace operator.

Remark 1: Equation (6) states that the input-output relation
induced by the subband technique is given by the
polyphase matrix . Also, (2) states that all

polyphase matrices correspond to the polyphase rep-
resentation of a -cyclostationary system. Hence, it follows
that, for any choice of filterbanks and and any sub-
band model , the system induced by the subband
technique is -cyclostationary.

IV. OPTIMIZATION ALGORITHM

In this section, we propose an optimization algorithm to solve
(7). Suppose and are given, then (7) becomes a nonlinear
LS optimization problem, which could in principle be solved
using any Newton-like search algorithm as described in [23].
However, notice that if we only consider the optimization with
respect to either , or , the problem becomes a linear LS
(LLS) one. Hence, it can be solved using the simpler alternating
LS (ALS) algorithm, i.e., by cyclically optimizing ,
and . On the other hand, if and are given, then
and can be obtained using the orthogonal matching pursuit
(OMP) algorithm, as described in Section IV-D below. Then,
we propose the following algorithm:

1) Initialization: Obtain initial values of and (to
be described in Section IV-E).

2) Main iterations: Cyclically iterate the following two
steps, until the approximation error stops decreasing.

a) OMP algorithm: Obtain and using the OMP
algorithm (to be described in Section IV-D).

b) ALS algorithm: Cyclically optimize ,
and using the LLS method (to be described in
Sections IV-A–C, respectively) until the error reduc-
tion falls within a given tolerance.

In Sections IV-A–E below, we describe each step separately.
The proofs are in the Appendix.

A. Optimization of

The solution of (7), for fixed choices of , , and ,
is given by

(9)
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where and

The expression, denotes a column vector con-
taining the diagonal entries of the matrix and

with

and denoting point-wise matrix product, i.e.,
for all and .

B. Optimization of

The solution of (7), for fix choices of , , , and ,
is given by

(10)

where and

with

C. Optimization of

In this section we assume that , , and are fixed
and we design . Let be the column
vector obtained by stacking up the samples of the impulse re-
sponse of , within the support defined by and ,
i.e., for each ,

Also, define the following two transfer matrices

where denotes the Kronecker product, i.e., if
and have dimensions and , respectively,

for all ,
and . Then, we have

(11)

where is obtained from in a way similar in which
is obtained from , after truncating the impulse response

of so that its support is given by and . Also,
is the convolution matrix associated with , i.e.

...
. . .

...

where for each

...
. . .

...

with and .

D. Choice of and

Notice that the norm defined in (8) implicitly induces a
Hilbert space of transfer matrices with inner product

(12)
Consider the impulses response matrices ,

, defined by

otherwise

which form a basis for the space of all transfer matrices.
Then, we have that

(13)

is a (possibly linearly dependent) set of transfer matrices.
Using this setting we can choose and using any sparse
approximation algorithm [24], [25] aiming at solving the fol-
lowing minimization problem:

(14)

where the notation means that the minimization over
and is constrained so that the total number of nonzero

coefficients of the subband model equals , and
means that the minimization over is constrained so that its
support is defined by and . As aforementioned, we adapt
the OMP algorithm [26], [27] to our problem, resulting in the
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following iterative procedure. We begin by setting the estimate
, and at iteration we compute

(15)

where and are defined so that they include all the indexes
.

Remark 2: In order to simplify the computation of (15), we
use (13) and Lemma 1 in the Appendix to get

where denotes the inner product (12) with
for . All the inner products can be computed as the
coefficients of the impulse response of the transfer
matrix . Also, notice that

is independent of , i.e.

for all , so only norms need to be computed at the
beginning of the iteration process.

E. Initialization

The recursive method introduced above requires an initializa-
tion, since it is not guaranteed to converge to a global minimum
of (7). To this end, we need to provide initial choices and

for the filterbank prototypes and , respectively.
In the context of subband adaptive filtering, it was pointed out in
[15] that a diagonal subband model leads to the most efficient
subband configuration. In view of this, we propose to choose

and so that the nonzero entries of the subband con-
centrate on the main diagonal as much as possible. To this end,
we point out the following fact which follows from [14, The-
orem 1]:

Lemma 1: If the frequency response of the analysis filters
and the synthesis filters

satisfy:
(C1) For each , the supports of and

are contained in the same interval of measure
,

(C2) The union of all supports cover the
whole interval , then, the approximation error can
be made arbitrarily small using a diagonal subband model
of sufficiently large tap size.

In view of Lemma 1, and need to minimize their
stop-band energy. Hence, we design as follows:

and we choose .

V. OPTIMIZATION IN A LOGARITHMIC AMPLITUDE SCALE

As explained in Section I, in audio applications it is often
more appropriate to replace the WLS criterion (1) by the fol-
lowing WLogLS criterion:

(16)

A recursive algorithm for optimizing the parameters of a
pole-zero transfer function in a WLogLS sense was proposed
in [28]. Roughly speaking, that algorithm solves a weighted
LLS problem whose weight is updated at each iteration. In this
section we use this idea to modify the algorithm in Section IV
to solve (16). The resulting algorithm is as follows:

1) Initialization: Obtain initial values of and as
described in Section IV-E.

2) Main iterations: Cyclically iterate the following two
steps, until the approximation error stops decreasing.

a) WLS optimization: Optimize , , , ,
and using the algorithm described in Section IV.

b) Weight update: Update the weight as de-
scribed below.

As with the algorithm in [28], the proposed algorithm requires
only a few (one or two) iterations to converge.

Let be the polyphase representation of and
be that of , . Then, we can

write (16) as

(17)

The idea is to iteratively solve (7), replacing at iteration the
weight by a weight , so that the solution of (7)
approximates that of (17).

Let , and denote the values ob-
tained at iteration , and and denote the
polyphase matrices of and , respectively. Define

and .
Also let denote the -cyclostationary impulse re-
sponses obtained at iteration , let be the polyphase
representation of and .
We define the weight at iteration by

(18)

Then, using (8), we have

(19)

(20)

Hence, if the algorithm converges, we have that
and therefore (20) is

equivalent to (17).

VI. ILLUSTRATING EXAMPLES

In order to illustrate the applicability of the proposed method
we consider two examples, one using the method described in
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Fig. 3. Impulse response of the channel to be inverted.

Fig. 4. Impulse response of the inverse channel.

Section IV for minimizing a WLS function, and the other using
the method in Section V which minimizes a WLogLS function.

A. Example 1: Multipath Communication Channel
Equalization

For the first example, we consider a channel equalization (i.e.,
inversion) problem for a communication channel whose impulse
response is shown in Fig. 3, which resembles a multipath com-
munication channel consisting of one main path and two reflec-
tions. The impulse response of the inverse channel is shown in
Fig. 4.

We compare the performance obtained when approximating
the inverse channel using segmented FFT (SFFT) methods, the
zero-delay variant (ZD-SFFT) of the SFFT method which pro-
cesses the first segment in the time domain, and the proposed
subband method minimizing a WLS criterion (WLS-SB). The
comparison is done in terms of computational cost, implemen-
tation latency, and approximation error. The latter is measured
using the minimization argument in (1) with for all

. Notice that is the natural choice for
the SFFT and ZD-SFFT methods, in which the inverse channel
is approximated by truncating its impulse response.

For the SFFT and ZD-SFFT methods we truncate the equal-
izer impulse response so that its support is contained within the
interval , which achieves the minimum approxima-
tion error for a fixed impulse response length of 455 taps. By
doing so we obtain an approximation error of . For
the WLS-SB method, we chose subbands, a downsam-
pling factor of , prototype tap sizes of

TABLE II
COMPARISON OF THE COMPUTATIONAL COST, LATENCY AND APPROXIMATION

ERROR WHEN USING THE SFFT, THE ZD-SFFT AND THE WLS-SB METHOD

Fig. 5. Computation cost vs. latency of the different inverse channel imple-
mentation methods. All methods have similar approximation errors, as shown
in Table II.

and we choose the total number of subband parameters so
that the maximum error is compatible with those of the SFFT
and PZTF methods. To this end we choose which pro-
duces an approximation error of .

With the design above the SFFT, ZD-SFFT and WLS-SB
methods have compatible approximation errors. So we com-
pare in Fig. 7 their computational costs and latency values. In
this comparison we also consider the time domain (TD) method,
which directly implements the 455-tap truncated equalizer im-
pulse response using direct convolution. The SFFT, ZD-SFFT
and TD implementations have latency of 223, which is needed
to make the equalizer impulse response causal. We observe that
the ZD-SFFT method provides a significant improvement over
the TD method in terms of computational cost, while keeping
the same latency. The SFFT method is an attractive alternative
only if large latency is allowed. On the other hand, the WLS-SB
method offers an implementation slightly more efficient than the
SFFT method, while introducing latency slightly smaller than
those of the TD and ZD-SFFT methods.

We summarize the performance of the SFFT, ZD-SFFT, and
WLS-SB methods in Table II. For the SFFT method we choose
the configuration that most closely resembles the computational
cost of the WLS-SB method. This is achieved when using one
segment of 2048 samples. On the other hand, the ZD-SFFT
method approximately matches the latency of the WLS-SB
method. This is obtained using two segments of 128 samples,
the first of which implemented in the time domain, followed
by a third segment of 256 samples. We see that the WLS-SB
method greatly outperforms the other two methods for the same
latency or the same computational cost.

The comparison in Fig. 5 and Table II is for similar ap-
proximation errors for the TD, SFFT, ZD-SFFT, and WLS-SB
methods. To see this, we show in Fig. 6 the frequency responses
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of the models obtained using the four methods. Notice that the
WLS-SB method is characterized not by one but by
frequency responses, since it is a -cyclostationary system.
However, all 20 systems are almost equivalent after optimizing
the subband scheme using the proposed method.

B. Example 2: Implementation of Head-Related Transfer
Functions

In the second example, we consider the implementation of
HRTFs. We use a set of 1420 HRTFs (710 per ear), measured
on a KEMAR dummy-head, publicly available from [29]. The
HRTFs are 512 tap FIR filters (measured at 44.1 kHz) for the
left and right ear. Following [30], we convert the HRTFs into
minimum phase filters before processing.

We compare the performance obtained when implementing
the HRTFs using the SFFT and ZD-SFFT methods, pole-zero
transfer functions (PZTF) and the proposed subband method
minimizing a WLogLS criterion (WLogLS-SB). Again, the
comparison is done in terms of computational cost, latency
and approximation error. For the latter, we use the following
definition:

(21)

where denotes the frequency in the Bark scale, i.e., if denotes
frequency in Hertz

Also, and denote the Bark values of
20 Hz and 20 kHz, respectively, and denotes the function
which converts Barks to normalized angular frequency. Notice
that for evaluating the error of the WLogLS-SB method,
needs to be averaged over all as in (16). The error measure
in (21) is similar to the one used in [31], except that we carry
out the integration in the Bark frequency scale. To optimize
using (16) we take , where denotes the
function which converts normalized angular frequency to Barks,
and denotes its derivative with respect to .

For the SFFT and ZD-SFFT methods, following [32], we
truncate the HRTF’s impulse responses to . (i.e., 221
taps). By doing so, the maximum approximation error over all
available HRTFs is 2.644. For the PZTF method, we use the
quasi-Newton algorithm in [9], initialized using the algorithm
in [28], [31]. Following [9], we choose 40 poles and 40 zeros,
which leads to a maximum error of 2.577. For the proposed
WLogLS-SB method, as before, we chose subbands,
a downsampling factor of and prototype tap sizes of

, and we choose the total number of subband
parameters so that the maximum error is compatible with
those of the SFFT, ZD-SFFT, and PZTF methods. This is met
with which leads to a maximum error of 2.537.

As before, the design above guarantees that the SFFT,
ZD-SFFT, PZTF, and WLogLS-SB methods have compatible
maximum approximation errors, and we compare in Fig. 7 their

Fig. 6. Frequency response of the ideal inverse channel, and those of the im-
plementations using the SFFT and the WLS-SB methods.

Fig. 7. Computation cost versus latency of the different HRTF implementation
methods. All methods have similar approximation errors, as shown in Table III.

TABLE III
COMPARISON OF THE COMPUTATIONAL COST, LATENCY AND

MAXIMUM APPROXIMATION ERROR WHEN USING THE SFFT,
THE PZTF AND THE WLOGLS-SB METHOD

computational costs and latencies. In this comparison we also
consider the TD method and a hybrid PZTF-SFFT method in
which the numerator is implemented using the SFFT method.
In this case, the PZTF method provides an efficient implemen-
tation with zero latency. Only the SFFT and the WLogLS-SB
methods are able to provide more efficient implementations
than the PZTF method, but while doing so, the latency intro-
duced by the WLogLS-SB method is clearly smaller than that
of the SFFT method.

We summarize the performance of the SFFT, PZTF, and
WLogLS-SB methods in Table III. For the SFFT method
we consider two cases. In the first case, we aim at matching
the latency of the WLogLS-SB method. We do so by using
two segments of 256 samples. In the second case we aim at
matching the computational cost of the WLogLS-SB method,
for which we use one segment of 2048 samples. We see that the
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Fig. 8. Approximation errors obtained with the SFFT, the PZTF, and the
WLogLS-SB method, when implementing all the HRTFs corresponding to the
left ear. The approximation error is presented as a function of the azimuth and
elevation (Ele).

Fig. 9. Frequency response of the true HRTF (right ear, ��������� 	 
 ,
����
�� 	 
 ), the SFFT model �� 	 
����, the PZTF model �� 	

����, and the WLogLS-SB model �� 	 
����.

WLogLS-SB method largely outperforms the SFFT method for
the same latency or the same computational cost, and that it is
significantly more efficient than the PZTF method, although
the latter introduces no latency.

Again, the comparison in Fig. 7 and Table II has similar max-
imum approximation errors for all the methods. We illustrate
this by showing in Fig. 8 the approximation errors obtained
using the SFFT, PZTF, and WLogLS-SB methods, for different
azimuths and elevations. Also, in Fig. 9 we show the result ob-
tained using the three methods for one particular direction.

VII. CONCLUSION

We have proposed an optimization method for approx-
imating an LTI system using the subband technique. The
proposed method optimizes the choices of subband model,
analysis and synthesis filterbanks, including the optimal allo-
cation of parameters from the different entries of the subband
model. The proposed method has two versions. The first one
carries out the optimization in a weighted least-squares sense
in a linear amplitude scale, while the second one uses a log-
arithmic amplitude scale. We have presented results showing
that, for a given approximation error, the proposed subband
method can offer a more efficient implementation than the
one obtained using a pole-zero transfer function and a better
tradeoff between computational cost and latency than the one
obtained using segmented FFT methods.

APPENDIX

PROOFS

Proof of (7): Let be such that and
define and, for each ,

. Then, (1) can be written as

Let and be the polyphase representations of
and , respectively, and define . Then,
using (2) we obtain

Now, is the impulse response ob-
tained by the cascade of the LTI system with impulse
response , followed by the -cyclostationary system
with impulse response . Hence, using
(P2) in Section III-A, it follows that
and , with being
the polyphase representation of . Then, defining

we have
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and the result follows.
Notation 1: The symbol denotes the Hilbert space

of transfer matrices with inner product defined by (12),
and refers to the case when for .

Lemma 2: Consider the map defined
by , then

Proof: We have that

and the result follows since the equality holds for arbitrary
and .

Lemma 3: Let be a closed subspace of and
be the projection onto . Let be the map defined

in Lemma 1 and be its restriction to . Then, the (Moore-
Penrose) pseudoinverse [33] of is given by

where the map is defined by

Proof: From a property of pseudoinverses, we have

(22)

Now, for all and ,

hence

(23)

and the result follows by putting (23) and Lemma 1 into (22).
Below, we use Lemma 3 to prove (9), (10), and (11).

Proof of (11): Let be the subspace of sub-
band models whose support is defined by the matrices
and , and let be the projection onto .
Consider the map defined by

. Then, the optimal subband model is given by

Applying Lemma 3, we have

with

Now, since is finite-dimensional (its dimension is ), the re-
sult follows by rearranging into a column vector
and the map into a matrix.

Proof of (9): Recall that denotes the tap size of the anal-
ysis prototype , and let be the subspace of

diagonal transfer matrices whose impulse response dif-
fers from zero only at , and let be the
projection onto . In this case, we use (4) to define the map

by , and fol-
lowing the steps above, the optimal matrix is given by

with

and again, the result follows by arranging
into a column vector and

into a matrix.
Proof of (10): This proof follows the steps of the proof

above, taking into account the fact that the synthesis prototype
has real impulse response, which implies .
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