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Abstract: This paper proposes to solve the H ~ optimal estima- 
tion problem via interpolation theory. The advantages of this 
approach are the following. (i) Direct and simple solutions can 
be obtained for the optimal estimators; (ii) frequency weight- 
ings on estimation error and disturbance can be easily incorpo- 
rated; and (iii) unnecessary high observer gains can be avoided. 
We also show the interconnection between the H °° optimal 
estimation problem and the optimal loop transfer recovery 
problem. The interpolation approach applies to both continu- 
ous-time and discrete-time systems. 
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1. I n t r o d u c t i o n  

Consider the following system: 

£ c ( t ) = A x ( t ) +  B w ( t ) ,  x (O)=O,  

y ( t )  = C x ( t )  + D w ( t ) ,  

z ( t )  = F x ( t ) ,  

( la)  

( lb )  

( lc)  

where x ( t )  ~ R n is the state, w(t)  ~ R m is the 
disturbance satisfying II w II 2 ~ 1, y ( t )  ~ R r is the 
measured output, z(t) ~ R p is the linear combina- 
tion of x(t) to be estimated, and A, B, C, D, F are 
given matrices with appropriate dimensions. The 
H °~ optimal estimation problem can be stated as 
follows: Find an estimate £(t) of z( t )  based 
o n y ( t )  and its history such that 

max [I z - £ II 2 = m i n .  ( 2 )  
tlwll2-<l 

Similarly, for any given ?x > 0, the H °~ suboptimal 
estimation problem is to find £(t)  such that 

max IIz-2112 <2~. (3) 
Ijwll2-<l 

It is well known [1,2,3] that for any ~ > 0, if the 
H ~ suboptimal estimation problem is solvable, 
then it must be solvable with an estimator of the 
following form: 

~ ( t ) = A ~ ( t ) + K ( y ( t ) - C ~ ( t ) ) ,  :~ (0 )=0 ,  

2 ( t )  = F.~(t),  (4) 

where K ~ R n×r is the observer gain matrix. The 
suboptimal K which guarantees (3) can be de- 
termined via an algebraic Riccati equation; see 
[1,2,3], for example. 

Although the observer (4) given by the Riccati 
equation method appears simple and that the usage 
of algebraic Riccati equations has become very 
popular in H ~ control [4], this approach to esti- 
mation has three limitations. First, in order to 
determine the minimal X, the suboptimal problem 
needs to be solved repeatedly for successively 
smaller X's. This is usually computationally de- 
manding. Secondly, it is difficult to handle 
frequency weightings on estimation error and dis- 
turbance. Although the frequency weightings can 
be embedded in the system equations (1), the 
system dimension will increase. Furthermore, 
changing the weighting functions will cause struct- 
ural variations in the system (both dimension and 
the system matrices), which is rather inconvenient. 
Finally, the observer gain is usually very high 
especially when ?~ approaches its minimum due to 
the restriction that the observer (4) is strictly 
proper. Consequently, very small stability margin 
can be assured. 

We propose in this paper to solve the H °~ 
optimal estimation problem using the interpola- 
tion theory. This is done by allowing £(t)  to be a 
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general linear dynamic function of y( t )  rather 
than in the form of (4). Using this approach, a 
more direct and simpler solution can be obtained 
for the optimal problem; frequency weightings on 
estimation error and disturbance are easy to han- 
dle; the estimator obtained is of minimum order; 
and unnecessary high observer gain can be avoided 
by allowing nonstrictly proper estimators. We also 
show that the H ~ optimal estimation problem and 
the so-called optimal loop transfer recovery problem 
proposed by the author [6] are essentially the 
same, thus offering more insights to the both 
problems. In fact, the interpolation approach given 
in this paper was initially used in [6] for solving 
the optimal loop transfer recovery problem. 

is the transfer function from w to the estimator 
error. It is easy to verify that for the observer (4), 
the functions M(s)  and N(s)  are given by 

Mobs(S) = F ( s I -  A + KC) 'K, (11) 

Nob~(S ) = F(sI  - A + KC)-~B,  (12) 

which are both stable. For a general estimator (7), 
the equations (11) and (12) do not hold. However, 
constraints on M and N are needed to guarantee 
the internal stability of the estimation error dy- 
namics, as shown below. 

Lemma 1. Suppose M(s)  is stable. Then, N(s)  in 
(10) is stable only if L(s )Gt (s )  is void of all 
unstable poles of L(s )  and G(s) for all Gt(s) .  

2. Problem description 

For the system (1), we denote the transfer func- 
tions from w to y and z by G(s) and L(s),  
respectively, i.e., 

G(s)  = D + C ( s I - A ) - I B ,  (5) 

L ( s )  = F ( s I -  A ) - l B .  (6) 

It is assumed that G(s) is left invertible, with its 
left inverse denoted by Gt(s) .  The transfer func- 
tions G(s) and L(s )  are minimal and rational, 
but not necessarily proper (causal). 

Let the estimator of z to be in the following 
form: 

£(s)  = M ( s ) y ( s ) ,  (7) 

where M(s)  is a stable rational matrix with ap- 
propriate dimensions, but not necessarily proper. 
(For the purpose of this paper, we define a stable 
transfer matrix to be a transfer matrix void of 
finite unstable poles in the closed right half plane.) 
Then, the transfer function from w to £ is simply 
given by 

2(s)  = M ( s ) G ( s ) w ( s ) .  (8) 

Obviously, the estimation error reads 

z ( s ) -  2 ( s ) = (  M ( s ) G ( s ) -  L ( s ) ) w ( s )  

= N ( s ) w ( s )  (9) 

where 

N(s )  = M ( s ) G ( s )  - L ( s )  (10) 

Proof. For any Gt(s), rewrite 

U(s )  = [ M ( s ) - L ( s ) G * ( s ) ] G ( s ) .  

If LGt has an unstable pole of G, so will be 
M - LGt. Due to the minimality of G, this unsta- 
ble pole can not be cancelled by any zero of G(s), 
leading to the contradiction that N will be unsta- 
ble. On the other hand, suppose LG t has an 
unstable pole p of L. Since M is stable, this 
unstable pole must be cancelled by G in order for 
N to be stable. That is, LGtG must be void of the 
pole p, which contradicts the assumption that p is 
a p o l e o f  L. [] 

Based on Lemma 1, it is essential to have the 
following assumption in order to assure the stabil- 
ity of the error dynamics (9): 

Assumption 1. L(s)G*(s) is void of all unstable 
poles of L(s )  and G(s) for all Gt(s) .  

The H ~ optimal estimation problem becomes 
to find a stable M(s)  such that 

~,, = J[ MG - L l[ ~ = min. (13) 

Remark. Since we do not restrict the estimator to 
be proper, the solution to (13) will be unique, 
achievable by an improper M(s).  However, a 
proper or even a strictly proper estimator can be 
obtained by cascading with M(s)  a low pass filter 
with sufficiently large bandwidth and sufficiently 
high relative degree (see Example 4.1). The corre- 
sponding function N(s)  will also be proper when 
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L ( s )  and G(s)  are proper. In this case, the maxi- 
mum singular value Omax[N(jto)] will be slightly 
higher than ?~m, but the difference vanishes as the 
bandwidth of the low-pass filter approaches to 
infinity. 

If frequency weightings on estimation error and 
disturbance are desired, the weighted H ~ optimal 
estimation problem is to find a stable M such that 

X,.  = II W1(MG - t ) W 2  I1~ = min. (14) 

where Wl(s ) and W2(s ) are (left and right) weight- 
ing rational matrices which are stable and of 
minimum phase, representing frequency weight- 
ings on estimation error and disturbance, respec- 
tively. Note, however, that the weighted problem 
can be converted to an unweighted problem by 
defining 

G =  G W  2, 7.= W1LW2, M =  W,M.  (15) 

With the above definitions, the weighted problem 
(14) becomes 

11MG - L II o~ = min. (16) 

Therefore, we will only address the unweighted 
problem (13) in the sequel. A careful examination 
of the algorithms given in the next section will 
indicate that the weighting matrices do not signifi- 
cantly effect the computation, it only increases the 
dimension of the estimator which is unavoidable. 
However, if the Riccati equation approach is used, 
a weighted problem will require much more com- 
putation on higher dimensional matrices. 

Incidentally, the H °° optimal estimation prob- 
lem is found to be the same as the so-called 
optimal loop transfer recovery problem [6] to 
which a complete solution is established via the 
interpolation theory; see Section 5. Hence, solu- 
tion to the H °° optimal estimation problem is 
derived. This is discussed in the next section. 

3. Solution 

To show the simplicity of the formulation of 
the H ~ optimal estimation problem (13), we first 
examine the special case for which the minimal 
estimation error can be made to be zero. The 
condition for this case is simply given as follows: 

Theorem 1. Consider system (1). There exists a 
stable estimator in the form of (7) such that ~k m = 0 
if and only if L ( s ) G t ( s )  is stable for some Gt(s) .  
In this case, M(s )  = L ( s ) G t ( s )  and N(s )  = O. 

Proof. This is obvious to verify and therefore 
omitted. [] 

If a proper estimator is required, a slight mod- 
ification is needed for the result above: 

Theorem 2. Consider system (1). There exists a 
stable and proper estimator in the form of (7) such 
that Xm = 0 if and only L ( s ) G t ( s )  is stable and 
proper for some Gt(s). In this case, M ( s ) =  
L ( s ) G t ( s )  and N(s )  = O. Moreover, there exists a 
stable and proper estimator in the form of (7) such 
that 

Omax[N(j6o)] < e ,  0~<t0~<~2, (17) 

for any given ( f ixed)  e > O, $2 > 0 if and only if 
L ( s ) G t ( s )  is stable (but not necessarily proper) 
for some Gt(s) .  In this case, we can choose 

M ( s )  = P , o w ( s ) L ( s ) G t ( s )  (18) 

and N(s)  by (10), where Plow(S) is a unity gain 
low-pass filter with sufficiently large bandwidth and 
sufficiently high relative degree. 

Now we consider the solution to the general 
situation where X,, is nonzero. If  G and L are 
stable, then the problem (13) is a standard H ~ 
problem which can be solved by using various 
methods. See the conjugation method in [12] and 
references thereof and a method in [13], for exam- 
ple. Due to the fact that G and L may be unsta- 
ble, the problem (13) is not a standard H °° opti- 
mization problem. Fortunately, because L and G 
share the identical unstable poles, this problem 
can be solved using the interpolation theory. The 
solution is mainly due to [6,10,11]. For simplicity, 
we further require the following: 

Assumption 2. The unstable zeros a I . . . . .  a t of 
G(s)  are distinct and simple, satisfying Re[ai] > 0. 

The requirement of distinct unstable zeros is 
for simplicity. For treatment of unstable zeros 
with multiplicities, see [15]. 
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Assumpt ion 2 implies that, for each a~, there 
exists a unique ~ ~ C "  with II ~, II = 1 such that 

G ( a , ) ~ ,  = 0, i = 1 , 2  . . . . .  l. (19) 

Note  that ~, = 1 for the single input case (m = 1). 
Let 

n , : = L ( a , ) ~ , ~ C  ", i = 1 , 2  . . . . .  l. (20) 

Then, the constraint  (10) is equivalent to 

N ( a , ) ~ ,  = "O,, i = 1 , 2  . . . . .  l, (21) 

i.e., L - N contains all unstable zeros of  G. Hence, 
we have the following result; see [6] for proof. 

Theorem 3. The optimization problem (13) is equiv- 
alent to finding 

2," = inf{ II N(s)I1 ~:  g(a~)~,=~l,, 

i = 1, 2 . . . . .  l } (22) 

and all such N( s ). The corresponding stable M( s ) is 
given by 

M(s)  = ( L(s )  - U(s))G+(s).  (23) 

Now we discuss two cases: (i) Single input case 
(m = 1) and (ii) multi-input case (m > 1). 

Single input case 

In the single input case (m = 1), the equivalent 
problem (22) is a classical Nevan l inna-P ick  inter- 
polation problem which has a unique solution 
[10,14], solved in the following four steps. The 
first step is to compute  2,,.. Let Nx(s) = N(s)/2,; 
then II N(s) [I ~ < 2, if and only if II Nx(s)II ~ -< 1. 
According to [10,14], there exists Nx(s) interpolat- 
ing Nx(a~) = ~/J2,, i = 1, 2 . . . . .  l, if and only if the 
following l × l Pick matrix is nonnegative deft- 
nite: 

Px = Po - 2 , - 2 p 1 ,  (24) 

where 

1 ~ ~,nj 

and the overbar -  denotes the complex conjugate. 
Then, 2,,. is given by 

2,., = sup { 2, : det Px = 0 }. 

Equivalently, due to the positive-definiteness of  
P0, we have 

2`m = sup{2`: det[2`Zl - Po'P,] = 0 }  

o r  

~ . m = ¢ ~ m a x [ p o l p l ]  (26) 

where 2`max denotes the max imum eigenvalue. The 
second step is to scale N(s) and ~1i: set N(s):= 
N(s)/2`,, and ~i-'= ~1J2`", i = 1, 2 . . . . .  l. Then the 
problem (22) becomes to find all the stable N(s) 
with II N(s)11 ~ -< 1 subject to N ( a , )  = ~,, i = 
1, 2 . . . . .  1. Step 3 is to solve this scaled problem. 
The final step is to reverse the scaling done in step 
2. The complete procedure,  which is summarized 
from [10,14], is given below. 

Step 
Step 
(20). 
Step 
Step 
Step 
Step 
follows: 

]~t,1 : =  T/i, 

0.1. Compute  a,, i = 1, 2 . . . . .  l. 
0.2. Compute  ~i, i = 1, 2 . . . . .  1, according to 

1.1. Compute  P0 and P1 in (25). 
1.2. Compute  h "  according to (26). 
2. Set ~i := B,/h", i = 1, 2 . . . . .  l. 
3.1. Form the so-called Fenyves array ~,.j as 

i = 1 , 2  . . . . .  l; 

+ 

(a , -a i ) (1-~1 . f l~ i . i )  ' 

1 < j < i - 1 < 1 - 1 .  

3.2. Find 

(27) 

Step k < l (which must  exist) such that 

It~i.il < 1 ,  i = 1  . . . . .  k, I f lk+l .k+, l  = 1 .  (28) 

Step 3.3. Set N(k+l~(s)= ~k+l,k+~" 
Step 3.4. For  i = k ,  k - 1  . . . . .  1, do 

N ' ' ) =  ( s - a i ) N " + l ' ( s ) + f l " ' ( s + a ' )  (29) 
(s + ai) + ~,.i( s -  ai)N(i+l)(s) 

and set N(s) = N(l~(s). 
Step 4. Set N(s) = 2`raN(s) and compute  

M ( s ) =  [ L ( s ) - N ( s ) ] G - ' ( s ) .  

Multi-input case 

In the multi- input case (m > 1), the problem 
(22) is known as the directional interpolation prob- 
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lem (DIP) [11] or the Nevanlinna-Pick tangent 
problem [15]. Thanks to a recent paper by Kimura 
[11], this can be solved by using an extension of 
the so-called Schur-Nevanlinna algorithm. As in 
the single input case, the solution involves four 
steps. The first step is to compute h,, given by 
(26) but with P0 and Pa defined by 

P0={ ̀% :( ,, (30) 

where the tilde denotes the Hermitian transpose. 
The second step is to scale N ( s )  and B~, same as 
in the single input case. Step 3 is to solve the 
scaled DIP problem using an extension of the 
Schur-Nevanlinna algorithm. The final step is to 
reverse the scaling done in Step 2. The complete 
procedure is given below. 

Step 0.1. Compute at, i = 1, 2 . . . .  , l. 
Step 0.2. Compute ~, and ~ ,  i =  1, 2 . . . . .  1, 
according to (19) and (20). 
Step 1.1. Compute Po and P1 in (30). 
Step 1.2. Compute k,, according to (26). 
Step 2. Set ~/i := *b/k,,, i = 1, 2 . . . . .  1. 
Step 3.1. Initialize v~ = 0 and 

Step 3.2. For i = 1, 2 . . . . .  1, do the following. Given 
the i-th interpolation vectors 

m-J,  i ~(i) _(i) r= C , 

~]  ~ ~ ( / ) 1 '  . ]  , I[j 

j = i ,  i + 1  . . . . .  l, 

and the integer ~, compute 

Or = It e~" II 2 - I I  ~7' II =. (32)  

I f  pi = O, take U/, 1/;/(E C (m-~,)x(m-~,-1) such that 

~I ')~') = U,.~,  (33) 

"0~')¢i~') = V~ ,  (34) 

vi+ 1 = v i + 1, (35) 

0 

and 

~ ( i + l ) = ~ o j O ,  j ' j = i +  1 , . .  1, (37) j "~ 

where 

[go 0] J =  - I , ~ "  

If Or > O, take 

e , ( s )  --- s - ,~, 
s +  ot i ' 

(i)~(i) 
~i #li 

E ~ -  E!~)~. ) , 

li : ( i m _ v i  - E i t~  ` ) -  1 / 2 ( ~ i ) _  Ei.o~i) ) ,  

. [Ji X , ( s )  = I , . _ . . -  ( B , ( s )  - 1 ) ~ .  

/-/,= 
0 

-I,,_~, E, ] 

_ [X,(s)  o I, 
O/(S)  = /"/i [ 0 Im_pi  ] 
~(i+1)_ ~ i ) j O i ( a j ) j  ' j = i + 1 1, j --  ~ . . . ,  

/"i+1 = /"i" 

Step 3.3. Choose any stable matrix 
R(s)  ~ ' - " ' ÷ ° x ~ ' -  .... ) with II '/'(/+/)II ~ -< 1. For i 
=1, 1 - 1  . . . . .  1, d o : i f p ~ > 0 ,  set 

q,(i) = T1T21 (46) 

where 

o,[/ ]; 
if O~ = O, set 

~(i)  = /~i Jr- Uix/l(i+l)vi" (47) 

Then, assign N ( s ) : =  ~'°)(s) .  
Step 4. Set N ( s ) : =  ~ , , N ( s )  and compute 

M ( s )  = [ L ( s ) - N ( s ) ] G t ( s ) .  

(38) 

(39) 

(40) 

(41) 

° 1 ( I m _ v  --  jff, iE ,  ) - 1 / 2  

(42) 

(43) 

(44) 

(45) 

~/s(t+l) (~ 
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4. Examples 

In this section, we i l lustrate the results in Sec- 
t ion 3 by two examples.  

because L does not  conta in  the uns tab le  zeros of  
G, Therefore,  we app ly  the first a lgor i thm de- 
scr ibed in Sect ion 3 to solve for ~, ,  and  the 
cor respond ing  es t imator .  

Example 4.1. The system (1) is given by 

A~ = x 2, 

~2 = - 2xl - x2 + w, 
y = xl,  

z ] v . (48) [ X  1 X2 

It follows that  

1 
G ( s ) -  (s + l)  2 

1 S ]T. 
L ( s )  = ( s+  1) 2 ( S +  1) 2 

Since G and L do  not  have any uns table  poles  
and that  G is of m i n i m u m  phase,  zero es t imat ion  
error  is poss ible  (Theorem 1). Indeed,  the op t imal  
solut ion to M is given by  

M ( s ) = L ( s ) G  ' ( s ) = [ 1  s]  T. 

Because this op t imal  solut ion is not  proper ,  we 
can modi fy  it to be 

[ M ( s )  = 1 es + 1 

where e > 0 is sufficiently small.  The cor respond-  
ing t ransfer  funct ion for the es t imat ion  error  is 
then given by  

__ £S 2 

N ( s ) = M G - L =  0 (es+ l ) ( s +  l)  2 " 

No te  that  N(s)  --+ 0 as e -+ 0. 

Example 4.2. This example  i l lustrates the design 
p rocedure  of  the op t ima l  es t imator  for the single 
input  case. Suppose  

(1 - 2 s ) (1  - 4 s )  (49) 
G ( s ) =  s ( s +  2) ' 

2 -  3s 
L ( s ) =  as  (50) 

It is easily verified that  G and L have the same 
uns table  pole  s = 0 and that  )~,, can not  be zero 

Step 
Step 
Step 

P0 = 

Step 
Step 
Step 

/~2.2 

0.1. a,  = ½, 0/2- j" 

0.2 .  71 = Ld(0/1) = ¼; 72 = Ld(0/2) -- }- 
1.1. 

[, 
4 2 '  152 ~ " 

1.2. X m = ;~kmax[ p o l p l ]  = 3.1008. 
2. 71 = 71/)~,, = 0.0806, 72 = 72/~,,  = 0.4031. 
3.1. 

71 = 0.0806, ]~2,1 = ~2 = 0.4031, 

(0/2  -1- ~1 ) ( /~2 ,1  - -  / ~ l , l )  

/ ( 0 / 2  - -  0 / 1 ) ( 1  - -  ~ , , 1 ~ 2 , 1 ) =  - -  1 .  

Step 3.2. k = 1 because  [flH [ < 1 and  1/32,21 = 1. 
Step 3.3. Set N(2)(s)=/~2.2 = - 1 .  
Step 3.4. 

= N ( ' ) ( s )  

( s - a, ) N(2) ( s ) + f l , , l (S + 5 , )  

(s + a,) + ~1,1(s-  a , )N(2)(s)  

1 - 1.7016s 

1 - 1.7016s 

N ( s )  

Step 4. 

1 + 1 . 7 0 1 6 s  

N ( s )  := h , , N ( s )  = 3.1008 
1 + 1.7016s ' 

l + s  
M ( s ) =  [ L ( s ) - N ( s ) I G  1 ( s ) = 4  

1 + 1.7016s" 

Remark.  No te  in the above  that  the op t ima l  M(s)  
is not  str ict ly proper .  Therefore ,  if the observer  (4) 
is used to app rox ima te  the op t ima l  solut ion,  high 
observer  gain is necessary due  to the fact  the 
observer  (4) is s tr ict ly proper .  This  shows that  the 
general  s t ructure  of  e s t ima tor  (7) obvia tes  the 
unnecessary  high observer  gains. 

5. lnterconnection between estimation and loop 
transfer recovery 

The theory of loop t ransfer  recovery (LTR)  has 
been deve loped  fol lowing the nomina l  work  of  
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Doyle and Stein [7] as a means of designing a 
robust observer. (For an introduction to the LTR 
theory, the reader is referred to [7,8,9,6] and the 
references thereof.) However, the research on LTR 
has been focused mainly on the issues of the 
so-called exact LTR and asymptotic LTR where 
the difference between a target loop transfer and 
the achievable loop transfer is required to be zero 
or arbitrarily small. Consequently, the applicabil- 
ity of the theory is more or less limited to mini- 
mum phase systems; see [6] for more discussion 
on this point. The issue of optimal LTR has been 
recently addressed by the author to deal with 
nonminimum phase systems [6]. In this section, we 
briefly describe the optimal LTR problem for- 
mulated in [6] and show that this problem and the 
H a optimal estimation problem are essentially the 
same, thus bridging the two theories together. 

Consider the system 

Yc( t ) = Ax(  t ) + Bu( t ) + Bw( t ), (51a) 

y( t ) = Cx( t ) + Du( t ), (51b) 

where x, y, w, A, B, C, D are as in system (1), 
and u(t) ~ R m is the control. We denote the open 
loop transfer function of the system by G(s), i.e., 

G(s)  = D + C ( s I -  A)-aB.  (52) 

Let the desired control law be described by 

u(t)  = r ( t )  - z ( t ) ,  (53) 

z( t )  = F x ( t ) ,  (54) 

where r(t) is the input reference and z(t) is the 
feedback signal. It follows that the desired open 
loop transfer function from w to z is given by 

L ( s )  = r ( s I  - A ) - ' B  (55) 

and the output is 

y ( s ) = G ( s ) [ I + L ( s ) ] - ' [ r ( s ) + w ( s ) ] .  (56) 

Now consider the following dynamic output 
feedback law: 

u(s) = r ( s ) -  2 (s ) ,  (57) 

e(s) = M(s)  y ( s )  + N ( s ) u ( s ) ,  (58) 

where M(s) and N(s) are stable rational matrices. 
If the observer (4) were employed as in many 
standard LTR techniques, then M(s) and N(s) 
would be given by (11) and (12). But here, we 

allow M and N to be general dynamic compensa- 
tors. Corresponding to (57) and (58), the open 
loop transfer function from w to 2 becomes 

Lo(S ) = ( I  + N ( s ) ) - ' M ( s ) G ( s )  (59) 

and the output is 

y(s )  = G[I + N + M G ] - l r ( s )  

+ G [ I + ( I + N ) - I M G ] - l w ( s ) .  (60) 

In order for the control law (57)-(58) to have the 
same closed-loop input-output  transfer function 
as the sate feedback law (54) does so that the 
separation principle is assured, we must have 

N(s)  + M ( s ) G ( s )  = L ( s ) .  (61)  

However, this constraint may cause the closed-loop 
transfer function from w to y differ from that 
given by the state feedback due to a possible 
nonzero N. Therefore, the following optimal LTR 
problem arises: design M and N such that 
[1N Ila = min, subject to (61) and a stable M. 

Equivalently, we need to find a stable M such that 

X,, = II MG - Z II ~ = rain. (62) 

When ?~,~ = 0, then L o = L s and 

y = G [ I + L s ] - l ( r + w )  

as in the state feedback case. When the resulting 
L(s)Gt(s)  is proper, this situation is called exact 
LTR and the corresponding M ( s ) =  L(s)Gt(s)  
and N(s)= 0. When the resulting L(s)G*(s) is 
improper, we can cascade with it a high band- 
width low-pass filter to achieve properness. Con- 
sequently, N(s) can be made arbitrarily small. 
This situation is referred to as asymptotic LTR 
and the corresponding M(s) and N(s) can be 
given by (18) and (10) for some small e; see [6]. In 
general, however, X,, =~ 0. From the analysis in 
section 2, we immediately conclude that the opti- 
mization problem in optimal LTR for system (51) 
and the that in H a optimal estimation for system 
(1) are exactly the same. 

Example 5.1. This example is adopted from [7]. 
The system is given by 

0 _ l l x + [ O l ( u + w ) "  (63a) x ( t ) = [ _  3 

y ( t ) = [ 2  1Ix. (63b) 
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(The white noises in [7] are neglected because we 
are not  involved in LQG designs.) The plant  
transfer function is 

s + 2  
G ( s )  = ( s  + 1)(s  + 3)" (64) 

The desired control law derived from an optimal 

full state designs assigns the closed loop poles at 
s = - 7.0 _+ j2.0, i.e., 

G ( s ) [ Z + L ( s ) ] - '  

s + 2  

(s + 7.0 + j2 .0 ) ( s  + 7.0 - j2.0) 

which gives 

s + 5  
L ( s )  = 10 (s + 1)(s  + 3) (65) 

or F = [ 5 0  10]. Since 

s + 5  
L ( s ) G - ' ( s ) =  l O s  + ~ 

is stable and proper, we can achieve the exact 
LTR by making M ( s )  = L ( s ) G - l ( s )  and N ( s )  = 

O. That  is, the desired dynamic  output  feedback 
law is given by 

u ( s )  = r ( s )  - 2 ( s ) ,  (66a) 

s + 5  
£ ( s )  = 1 0 ~ y ( s ) .  (66b) 

It is straightforward to check that this control  law 

gives the desired LTR result: Lo(S  ) = L ( s ) .  Note  
that if an strictly proper  observer of the form (4) is 
used, the exact LTR is not  achievable, and  the 
approximat ion  of the output  feedback control law 

(66) must  employ a high observer gain. 

6. Conclusion 

In this paper, we have shown that the H ~ 
opt imal  est imation problem can be solved via the 
interpolat ion theory. Among  several advantages,  
this approach offers a more direct and simpler 
solution than the Riccati equat ion method and an 
easy t reatment  for frequency weightings on esti- 
mat ion  error and disturbance.  The in terconnect ion  

between the H a opt imal  es t imat ion problem and  
the so-called opt imal  loop transfer recovery prob- 
lem is hoped to provide better  unders tand ing  of 
the both problems. We finally emphasize that  the 

interpolat ion approach given in this paper  applies 
to both cont inuous- t ime and  discrete-time sys- 
tems. This can be accomplished by the means  of 
bil inear t ransformation,  for example, 
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