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Abstract

This paper concerns Passivity and Stability analy-
sis of Linear Time Varying (LTV) systems character-
ized by parametric time variations. The first set of
results quantify a trade off between the degree of pas-
sivity of the frozen systems and the rate of parameter
variations, so that passivity of certain classes of such
LTV systems is preserved. One class of systems exam-
ined has frozen systems whose transfer functions are
multiaffinely parametrized. Another class considered
includes linear circuits with time varying resistors, in-
ductors capacitors and mutual inductors. The second
set of results exposes the utility of these passivity re-
sults in stability analysis.

1 Introduction

This paper considers the passivity of Linear Time
Varying (LTV) circuits and systems where the time
variation is restricted to certain parameters. For cir-
cuits, these parameters directly reflect the circuit ele-
ment values. We also show that these passivity results
hold the key to the stability analysis of related LTV
systems.

Our basic approach is Lyapunov/Riccati based. In
particular the celebrated Kalman-Yakubovic-Popov
(KYP) lemma, [1], is extensively invoked. The results
fall within the following broad category: Suppose the
LTV systems are such that their frozen Linear Time
Invariant (LTI} values enjoy a prescribed degree of
passivity /stability. Then quantify the rate of param-
eter variations that preserve its passivity/stability.

To appreciate the connection between passivity and
stability analysis consider the following facts.

*Department of Electrical and Computer Engineering, The
University of Jowa, Jowa City, 1A-52242, USA. Supported in
part by NSF grants ECS-9350346 and ECS-9211593.

tDepartment of Electrical and Computer Engineering, The
University of lowa, Iowa City, 1A-52242, USA. Supported in
part by NSF grants ECS-9350346 and ECS-9211593. Now with
Ford Motor Co.

tDepartment of Electrical and Computer Engincering, The
University of Newcastle, NSW 2308, Australia. Was visiting
The University of lowa when part of this work was performed.

0-7803-3590-2/96 $5.00 © 1996 |IEEE

Ganapathy Chockalingam!

1857

Minuye Fu?

o The zero input dynamics of every strictly passive,
uniformly completely controllable and uniformly
completely observable LTV systemn and that of
its inverse are exponentially asymptotically sta-
ble (eas).

¢ Given any square A(t), for which

#(t) = A(t)z(2) (1.1)

is eas, one can find B(t), C(t), D(t) such that the
LTV system with state variable realization (SVR)

T = {A(t), B(t),C(t), Dt)}  (1.2)

is strictly passive.

Thus, to demonstrate the eas of an LTV system as
in (1.1), one may use the following approach. Find
if possible, a second system that is strictly passive
and whose stability, or the stability of whose inverse,
implies that of (1.1). As will be shown in this paper
such related systems can be constructed in a number
of important problems.

Having dispensed with preliminaries in Section 2,
in Section 3, we present algebraic properties of cer-
tain LTI passive systems admitting parametric uncer-
tainty. In particular we show that for three classes
of uncertain LTI passive systems, the Riccati matrix
solving the KYP lemmais multiaffine in the uncertain
parameters. The first two of these results are from [2]
and [5] and involve systems whose transfer functions
are multiaffine in the uncertain parameters. The last
category comprises linear circuits with uncertain re-
sistors, inductors, capacitors and mutual inductors.
Observe, that the presence of mutual inductors, de-
stroys the multiaffine nature of the transfer function,
[3].

Section 4 considers the above systems but now with
the parameters allowed to be time varying. It derives
hard bounds on the parameter variation rates that
preserve passivity. Section 5 gives average bounds on
these rates that allow a related “less stable” system
to be passive. It then shows how to use this result to
undertake stability analysis. ‘Section 6 is the conclu-
sion.



2 Preliminaries

This Section provides certain preliminary results.
First the notion of passivity.

Definition 2.1 A linear causal system with input
u(t) and output y(t) is (strictly) passive, if there exist
constants Ky > (>)0 and K3 such that for all bounded
u(t) and time T

T T
/ W (Q)y(t)dt > K, / o (t)u(t)dt + Ko
0 0

Further if the system has a SVR as in (1.2), it is
said to be passive with degree of passivity ¢ > 0, or
o-passive if the system with SVR

£, = {o] + A(t), B(t),C(t), D(t)} 2.1)

is strictly passive.

We now give the time varying version of the KYP
lemma. In the sequel, the realization matriz of the
system in (1.2) is defined as

(2.2)

c@) D()

Theorem 2.1 Consider an eas LTV system with
SVR as in (1.2) and A(t) n x n. Then this system is
passive with degree of passivity o > 0 iff there erists
a n X n, uniformly positive definite symmetric matriz

P(t) such that [4],
iP(t)+0P(t) © ]
, (2.3)

Py 0
Q) -
0 I 0 0
is uniformly positive definite.

Henceforth P(t) will be called the Riccati matrix
solving the KYP lemma. Should, the system be LTI
rather than LTV, then the Riccati matrix in question
becomes time invariant, whence the P(t) term in (2.3)
dissapears.

Finally given two square matrices P and ¢}, there
direct sum is defined as

P 9
PoQ= .
0 @

3 Frozen Systems

This Section has the following objectives. First, it
introduces the three classes of time varying systems
whose passivity is to be studied in Section 4. Second,
(it provides certain algebraic properties of the under-
lying frozen systems. Sections 3.1 defines the first
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two types of systems. Section 3.2 considers the third
category.

Throughout the time variations will be confined to
a parameter vector O(t) = [0;(t),--,0n(t)]’. In the
sequel, if an SVR

{A(B()), B(6(1)), C(0(t), D(O(1))}
defines the LTV system, the SVR
{A(8©), B(©),C(0), D(0)}

defines its frozen version.

3.1 System Types 1 and 2

For simplicity we will restrict attention to Single
Input Single Output (SISO) systems here, though the
ideas readily extend to Multiple Input Multiple Out-
put (MIMO) systems as well.

In this subsection we will use a somewhat nonstan-
dard notion of frozen systems. The set of what we
call the frozen systems is in fact a slightly expanded
version of the standard definition. In particular, the
vector of time varying parameters ©(¢) will lie in the
set

O7 = [0] +e, 0F —€] x[05 +¢,0F —] x- - - [0 +e¢, 0, —¢]

(3.1)

where ¢ > 0 is arbitrarily small. The set of frozen

parameters, on the other hand will correspond to the
set

Or = [07,67) x [6;, 6] % ---[65,6%).  (3.2)

Both the classes discussed here, labelled as types

1 and 2 have parameter vectors that obey for some

p<N,
=

Then, with A and u vectors respectively comprising
A; and y;, the type 1 system has SVR

{F + ghi(n(®)), 9, 1 (1(2)) — R(A(2)), 1}-

with ¢ a constant n x 1 vector and h;{u(t)) and
ha(A(t)) also n X 1 vectors, respectively multiaffine
in the A; and ;. The type 2 system has SVR

{F + ghi(p(), 9, 1 (0(@)) — By (A1), 1 — a}, (3.)

for some 0 < o < 1. Each of (3.4) and (3.5) obeys,
O(t) € Of, Vt.

In both cases we will assume that each member
of the respective frozen sets as defined above is o-
passive. Then we have the following Theorem from
[2] and [5], characterizing the Riccati matrices that
solve the KYP lemma for the frozen systems.

Ais
Hi;

iE{l,---p}

ie{p+1,---N} (3.3)

(3.4)



Theorem 3.1 Consider the set of LTI systems with
SVR’s given in (3.6) ((3.7)) below.

{{F + ghi(p), 9, ki (1) — h5(X),1}; © € O} (3.6)

{{F +ghi(n),9,hi(p) — h3(}),1-a}; ©€ G{},)

3.7

0 < a < 1. Then every member (3.6) ((3.7)) is

a-passtve only if the corresponding Riccati matriz is
multiaffine in the 6;.

Note that the set of transfer functions in (3.6)
has numerator and denominator coefficients that are
multiaffine in the parameters A; and p;, respectively.
There is at the same time decoupling between the nu-
merator and denominator uncertainties. Likewise in
(3.7) also, numerator and denominator coeflicients are
multiaffine in the parameters A; and g;. Now however
they are not decoupled.

3.2 Type 3 Systems

The third class under investigation comprises,
square MIMO circuits with mutiple external ports
obeying the following assumptions. We make a num-
ber of assumptions, the first of which applies to the
circuits in the next section as well.

Assumption 3.1 The circuit comprises entirely of,
possibly time varying, resistors, inductors, capacitors
and mutual inductors. The input and output vectors
consist of the external port voltages and currents, with
the restriction that:

o The input/output dimension equals the number of
external ports.

o If the i-th input is a voltage (current) at a par-
ticular external port, then the i-th oulput is the
current (voltage) at the same port.

Further, all the capacitors c;(t), the resistors r;(t)
and the inductors l;(t) are positive at all times, and
the mutual inductors are described by

M;(t) = mi(t)Ty, (3.8)
where T; = T{ > 0 is constant, with unit diagonal
elements, and m;(t) > 0 for all t. With the vectors
Vi(t) and I;(t) comprising the voltages and currents
at the mutual inductor ports, one has

Vi) = S ML) (3.9)

The following assumption also applies.

Assumption 3.2 All the reactive elements are time
varying.
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As before ©(t) comprises all these time varying el-
ements. We say that a network has been obtained by
eztracting a given element from this network, if in it
this circuit element is replaced by an open circuit, and
the input/ output dimension over the original network
has each increased by one, by augmenting the origi-
nal input/output vectors by the voltage and current
at this newly created port. We have the following
theorem proved on the basis of ideas given in [1].

Theorem 3.2 Consider an LTV MIMO circuit obey-
ing Assumptions 3.1 and 3.2. Suppose, the network
obtained by extracting the time varying elements is
LTI passive. Suppose the number of inductors, capac-
itors and mutual imductors are respectivelyp, ¢ and v.
Then there exist a subset of inductors, capacitors and
mutual inductors, labelled with out loss of generality

as ll(t)’ T )ll’x(t); Cl(t), N C<I1(t) Ml(t)’ T Mul(t)’
respectively, A(©(t)), B(O(t)) , C((t)), D(O(t)) all
independent of l;, ¢; and m;, and a constant matriz
H, such that the SVR of the LTV circuit is

(M1(0) [-M(©) + AB®)] , BOw),
LCONCIONS (3.10)
where
M(O() = Mi(O(1) + H'Ma(O(0) H,

and M1(0(t)) and M2(O(t)) are respectively defined
by

P 91 121
(@l;(t)) ® (G;)c,-(t)) ® (QB M;(t)) , (3.12)

and

(3.11)

P wv|o| P c,-(t)) @( é} M;(t)).

i=py+1 i=q1+1 i=v1+1
(3.13)
Further, for all t,
[ —A(©(t)) —-B(O() }
> 0. (3.14)
ce(t)) Do)

Observe a few facts. First, the rate of variation in
the resistive elements does not at all affect the circuit
behaviour. Further, the frozen system has SVR

{M™1(©)4(0),B(6),C(0), D(O(t)},  (3.15)

Consequently, the passivity of (3.15) is trivially
demonstrated with M(O) as the Riccati matrix. No-
tice this matrix is affine in the reactive parameters,
and independent of the resistive parameters, despite
the fact that unlike the case in Section 3.1, the trans-
fer function, is not multiaffine in these parameters.



A natural question to ask is whether this same M(O)
acts as a Riccati matrix for demonstrating o-passivity.
The answer in general is no. However, below we give
conditions under which M(0) does act as the appro-
priate Riccati matrix even for o-passivity.

Define

o(t) = [A(®), r(®))

where 7(t) contains the resistive elements and

AR) = [La(t), - p(t), ea(t), -~ - cq(B), ma(2), - - ()]

(3.16)

(3.17)
Assume the frozen parameter set obeys
0<I7 <L(t) <1, (3.18)
0<e¢f <eft) <cf, (3.19)
0<my <m(t) <mf (3.20)
and
0<ry <ri(t) <rf. (3.21)

Then the following additional assumption is made.

Assumption 3.3 The frozen systems (3.15) are o-
passive for all parameters as in (3.18-3.21). Further
Jor eachie {1, ---,p1 + q1 + v1}, there exists a com-
bination of Aj, j € {{1,---,p1 + @1 + v1} — {i}} and
r;, obeying (3.18 - 8.21), and an ¢ > 0 such that for
all

M€ (WHAT +o),

the system in (8.15) is not o-passive, where \} is
obviously defined.

(3.22)

Essentially this assumption imposes a maximality
requirement on the reactive parameter set from the
view point of o-passivity. Then we have the following
Theorem.

Theorem 3.3 Consider the set of frozen values of
the LTV system described in Theorem 3.2. Suppose
assumption 3.8 holds. Then M(©) acts as a Riccati
matriz for demonstrating o-passivity of every frozen
system.

4 Hard Bounds for LTV Passivity

The previous section gave algebraic characteriza-
tions of the Riccati matrices whenever the set of frozen
systems defining the three LTV systems under consid-
eration, is o-passive invariant. In this question we ad-
dress the issue of passivity of the LTV system itself.
Observe that there are two crucial determinants. to
whether the LTV systems in question will be passive.

¢ The extent of parameter variation.

o The rate of parameter variation.
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Clearly, the first of these is implicit in the o-
passivity invariance assumption on the frozen sys-
tems. We give here, hard bounds on the rate of varia-
tion that in combination with this assumption, guar-
antees passivity.

First we deal with systems described in Section 3.2.
To this end we note that the observations made at
the end of the last Section indicate that the rate of
variation in the resistive elements will not affect the
passivity of the LTV circuit. Further, it is known [6],
that under all positive rates of variation in positive
valued capacitors and inductors, these devices remain
passive. Consider for example a time varying capaci-
tor ¢(t). The net energy delivered to it, over the time
interval [0, ] is simply

vioal (t;c(t) + %'/0 v2(1)é(T)dr.

This is clearly positive whenever ¢(t) and ¢(t) are pos-
itive. Question is what happens under mutual induc-
tance time variation and negative rates of variations
in the reactive elements. Theorem 4.1 below answers
this question.

Theorem 4.1 Consider the LTV system described in
Theorem 3.2, with assumptions 8.1, 3.2, 8.3 in force.
Then this LTV system is strictly passive if for all t,

f:l [(% In l'(t)]— +
e [gmea@®)] +
Yo [ mmi(t)]” > ~20,

.t

Further in this case the matriz M(O(t)) described in
Theorem 3.2 acts as a Riccati matriz.

(4.1)

where
a<0
a>0

Thus passivity is not affected by the resistor vari-
ation rates. Further, arbitray positive variation rates
can be sustained in the reactive elements without im-
pairing passivity.

For type 1 and two systems however the result is
more complicated.

Theorem 4.2 Consider the LTV system described in
(8.4) ((8-5)), (3.8), with ©(t) € T for all t. Suppose
all members of the set in (3.6) ((3.7)) are o-passive.
Then consider the LTV system with SVR given in
(4-2) ((4.3)), with ©O(t) € T for all t

{F + gh'i(n(2), 9, B@) [ (n(¥)) - h'z(/\(t))]»ﬂ(i()g 2

{F + ghi(1(), 9, B[ (1(2)) — ha(A())),

(1 —a)}, (4.3)



where

=1 [t +1]

Then (4.2) ((4-3)) is strictly passive if for all t,

N —a+
d 0;—0; ]
—1In < 20, (44)
iz:; [dt 0;+ - 0;
where
+_J a a>0
[a]" = { 0; a<0

Few observations need to be made. First, observe
because of the fact that whenever ©(t) € 7T for all t,
there exist 3=, Bt such that for all ¢,

0< B~ < B(t) < BT

Thus instead of showing the passivity of the origi-
nal LTV system, we have shown the passivity of this
system scaled by a time varying, uniformly positive,
bounded signal. The time varying nature of 3(t) pre-
cludes in general the implication that the original
LTV system is passive as well. The key reason behind
the difference between this result and that in Theorem
4.1 is that the frozen systems in Theorem 4.1 would
have retained passivity with their parameters taking
values from any point on the entire positive real axis.
This is not the case with the systems in Theorem 4.2.
Nonetheless, as will be shown in Section 5, the passiv-
ity of this scaled system still allows useful conclusions
to be drawn about the original LTV system.

Second, the condition in (4.4) shows that this
scaled passivity obtains for arbitrary positive rates of
variation in the parameters ;. Only negative rates of
variation cause concern. This is directly opposite to
what is the case in (4.1).

5 Passivity Under Average Bounds

In this Section, we consider the situation when the
hard bounds in the previous Section are replaced by
average bounds of the type used in the stability anal-
ysis in [2]. In Section 5.1 we show that, under these
conditions a related LTV system is passive. In Section
5.2 we give the stability implications to the original
systems.

5.1 Passivity Results

We first turn to the system in Section 3.2.

Theorem 5.1 Consider the LTV system described in
Theorem 3.2, with assumptions 3.1, 3.2, 3.8 in force.
Suppose there exist ¢, > 0 and T' > 0 such that for all
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to

LTI, (S k)] +
Lilgma@)] +

it [EInmi(t)] T )dt > ~2(0 —e1).  (5.1)
Then with
p(t) = 20+ 30, [H k()] +
= [F )] +
i [Flnmi(0)] (5.2)

the LTV system with SVR (see (3.10)),

{05001 + M7 (O@) [-M(0@) + AB1)],
B(e(t)), ¢(6(1)), D(6()}, (5.3)
together with its inverse, is strictly passive and eas.
We will call (5.3) the p(t)-shifted version of (3.10).

Remark 5.1 If one assigns the operators G and G,
to (3.10) and (5.3), respectively, then one has

G, = exp [-0.5 /tt p('r')dr] G {e:cp [0.5 [ p(r)d‘r] }

Further with the states of these two systems labelled
z(t) and z,(t) respectively, one has

z,(t) = z(t)ezp [0.5 / t p(‘r)dr] .

to

The states of their respectve inverses also obey this
relationship. It is easy to construct ezamples where
the passivity of G, does not imply the passivity of G.

For type 1 and 2 systems a similar result is possible.
Theorem 5.2 Consider the LTV system described in
(3.4) ((3.3)), (3.3), with ©(t) € T for all t. Suppose

all members of the set in (3.6) ((3.7)) are o-passive.
Suppose there exist €¢ > 0 and T' > 0 such that for all

to
to+T N d 8, —0;” +
/t > [EZ In g 0{] dt < 2o —€1), (5.4)

o i=1

Then the LTV system with SVR given in (5.5) ((5.6}),
together with its inverse, with ©(t) € T for all t, is
strictly passive and eas

{0.5p(t) + F + ghi(n(t)), 9,

B[R (u(t)) = Ro(A(®))], B(1)} (5.5)
{0.5p() ] + F + ghi(u(t)), g,
(5.6)

A1) (u(2)) = ha(A())), BB} (1 - @)},



where B(t) is given in Theorem 4.2 and

_q+
d, 0;—6;
plt) = o — [Eln9i+—9i}

Observe that remark 5.1 applies to this setting as
well. Further (4.4) is a special case of (5.4). Con-
sequently, the results in the next subsection, though
stated in terms of Theorem 5.4 apply to (4.4) as well.

5.2 Stability Results

It is clear that under the hypothesis of the results
in Section 5.1, p(t) is on the average positive. Thus,
because of Remark 5.1 we have the following stability
result on the original LTV systems in Section 3.

Theorem 5.3 Under the hypothesis of Theorem 5.1,
(Theorem 5.2), the system in (3.10) ((3.4)) and its

inverse is edas.

This result can in fact be applied in a wider stabil-
ity verification context. For example, it provides an
interpretation of the result in [2], on the stability of
(1.1) with

A(t) = F + gh'(8(t)), (5.7

where h(©(t)) is affine in (), for all ¢, Ot) € T.
Then [2] shows the eas of this system under (i) Re[F +
gh'(@)] < —a, for all ® € F and (ii) (5.4) holding.
One can show that (i) holds iff one can find a LTV
system as in (3.4) whose frozen SVR’s are all o-passive
and stability of whose inverse implies the stability of
(1.1), (5.7). Thus Theorem 5.3 proves this result.

The next two results concern the closed loop of
fig. 1 with f(-,) a memoryless nonlinear time varying
(NLTV) block. If G and F were passive then the
closed loop would have been stable. However, as the
next theorem shows, the passivity of a shifted version
of G, suffices for stability.

Y
u
G -

Sy, )

Figure 1: A closed-loop configuration

Theorem 5.4 Suppose G in fig. 1 is as in (3.4),
((3-10)) with the assumptions in Theorem 5.2, (The-
orem 5.1) in force. Then the closed loop is Ly stable
if for all ¢,

fly,t)y >0

The next result is similar in nature.

Theorem 5.5 Suppose G in fig. 1 has SVR

{F + ghy(u(t)), 9, R1 (u(2)) — h3(A(1))}

and that all members of the LTI set (3.7) are o-
passive. Suppose, with O(t) = [A(t), (1)), ©(t) €
TVt. Then the closed loop is Ly stable if for all ¢,

1
0< fly,t)y < 1a

and (5.4) holds.

6 Conclusions

We have presented a number of results on the passiv-
ity of LTV systems and its utility to stability analysis.
All these results exploit the passivity of a frozen ver-
sion of the system and on the solution of a Riccati
matrix being multiaffine in the time varying parame-
ters.
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