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Robust Relative Stability of Time-Invariant and Time-Varying Lattice
Filters

Soura Dasgupta*

Abstract

We consider the relative stability of time invariant
and time varying unnormalized lattice filters. First,
we consider a set of lattice filters whose reflection pa-
rameters o;, obey |a;| < §;, and provide necessary
and sufficient conditions on the 4; that guarantee that
each time invariant Lattice in the set has poles inside
a circle of prescribed radius 1/p < 1, i.e. they are
relatively stable with degree of stability In p. We also
show that the relative stability of the whole family
is equivalent to the relative stability of a single filter
obtained by fixing each a; to §;, and can be checked
with only the real poles of this filter. Counterexam-
ples are given to show that a number of properties
that hold for stability of LTI Lattices do not apply
to relative stability verification. Second, we give a
diagonal Lyapunov matrix that is useful in checking
the above pole condition. Finally, we consider the
time varying problem where the reflection coefficients
vary in a region where the frozen transfer functions
have poles with magnitude less than 1/p, and provide
bounds on their rate of variations that ensure that the
zero input state solution of the time varying Lattice
decays exponentially at a rate faster than 1/p' > 1/p.

1 Introduction

This paper explores the relative stability of Lin-
ear Time Invariant (LTI) and Linear Time Varying
(LTV) Lattice filters. Lattice filters have been stud-
ied extensively in the last two decades. They bear a
direct relationship to the celebrated Levinson-Durbin
algorithm [1], and have been applied in speech pro-
cessing and linear predictive coding [2].
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Chris Schwarz?

Of particular interest is their stability property. To
elaborate consider the n-th order unnormalized Lat-
tice filter, the subject of this paper, depicted in figure
1, below.

In it u(k) and y(k) represent the input and output
of the lattice, k, is the time index, and each block Fj,
1 < i < n, is described as below.
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(L1)

Here, o;(k) are the so called reflection coefficients as-
sumed to be real in this paper. The time dependence
of the a;(k) recognizes our intention to study the time
varying unnormalized lattice. It is well known that in
the LTI case, i.e. when a;(k) = a;, for all k, the
unnormalized Lattice is asymptotically stable if and
only if its reflection coefficients obey

jasl <1 V1<i<nm. (1.2)
Furthermore, the Lattice transfer function
Y(z)
= —2 1.3
G(z) U(Z) b ( )
is all-pass, i.e. obeys for all w € [0, 2m),
IG(e™)| = 1. (14)

There are, however, two outstanding open issues in
the understanding of Lattice filters. The first of these
concerns the issue of relative stability. Simply put,
what are the conditions on the reflection coefficients
for the defined Lattice to have roots inside a circle
of radius 1/p, p > 1, i.e. when is G(z/p) stable? In
such a case we say that Inp is the degree of stability
of the filter. Such a property, as opposed to mere sta-
bility, is important in most practical applications as
it reduces the likelihood of quantization induced limit
cycles. Further, as will become evident in the sequel,
the relative stability of the unnormalized LTV Lattice
is also critical to the stability of the LTV Lattice.

The second concerns the relative stability of the
LTV Lattice. It is known that the normalized Lattice
[3, 4] is stable under arbitrary time variations in the
reflection coeflicients as long as they obey

loi(k) <1 Vie{l,...,n}, k. (1.5)
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Figure 1: The Unnormalized Lattice Structure

However, no comparable result exists for the unnor-
malized Lattice. In fact it is well known that the
unnormalized LTV Lattice could be unstable despite
the satisfaction of (1.5). Moreover, to our knowledge,
no nontrivial conditions exist that guarantee the sta-
bility, let alone the relative stability of the LTV, un-
normalized Lattice.

Equally, in recent years there have been a number
of developments in the stability of LTV systems. One
such result is that of [5] which considers digital fil-
ters in the direct form, and adopts a Lyapunov, [6],
approach to analyze stability. It gives bounds on the
logarithmic rate of variation of the filter coefficients
that guarantee the relative stability of the underlying
LTV systems. These bounds provide a natural trade-
off between the relative stability of the frozen LTI
systems and the rate of time variations that sustain
a prescribed relative stability or stability of the LTV
systems.

More specifically, suppose that the frozen digital
filters in direct form representation have transfer func-
tion G{z), and denominator coeflicients a;, and that
G(z/p) is stable for all frozen systems. Suppose also
that the denominator coefficients vary in the intervals

af <a;<al 1<i<n. (1.6)
Then with (]) o
a; - a,
i (k :—'——————-'—, 1.
wh) = o (L7)

the LTV filter is shown in [5] to be stable with degree
of stability Inp’, 1 < p’ < p if there exist N > 0 and
0 < B < 1, such that

w2 3 [ 2] o (2).
(1.8)

[a]* = { 0 . =0 (1.9)

Here

else

Observe, first there is a tradeoff between the frozen
system relative stability In p, the LTV filter degree of
stability 1n p’ and the average rate of variation in the
parameters +;, directly related to the filter coefficients
a;; the v; monotonically increase with the a;. Further,
only increases in v;(k), and bence a; (k) are of concern.
Diminishing a;(k) carry no destabilizing influence.

Unfortunately, the result of [5] does not readily ex-
tend to the Lattice framework, for two reasons. First
there is no simple characterization of the relative sta-
bility of LTI Lattice filters in terms of the reflection
coefficients, an issue that goes directly to the first sub-
ject of this paper. Secondly, the LTV analysis of [5]
is founded on a Lyapunov based methodology. While
there are diagonal Lyapunov matrices obtained by ex-
ploring the all pass property of Lattice filters that ad-
dress the stability of LTI Lattice filters [7, 8], these



matrices are not useful for the relative stability prob-
lem. More precisely, with p > 1, and A the state
matrix of the LTI Lattice, we need a diagonal pos-
itive definite Lyapunov matrix P = P’ > 0, which
obeys

p?A'PA-PL0. (1.10)
The Lyapunov matrix of [7, 8] works only for p = 1.

Accordingly, the structure and contributions of this
paper are as follows. In section 2, we present cer-
tain preliminary results that provide recursive rela-
tionships defining the state space and transfer func-
tion descriptions of Lattice filters.

Section 3 addresses the LTI relative stability issue
‘within the following context. Consider the set of re-
flection coefficients that obey

i} <8 <1 vie{l,...,n}. (1.11)
Then we provide a necessary and sufficient condition
on the §; for all the corresponding G(z/p) to be stable,
with p > 1. This result exploits certain Bounded Real
(BR) property ideas associated with G(z/p).

It is known that the stability of all members of
the Lattice filter set obtained via (1.11), can be ver-
ified by checking the stability of just one member,
namely a; = &, V1 < i < n. The second result of
this Section shows that the same conclusion applies
concerning the verification of relative stability of the
members of this set. At the same time a counter-
example is presented to disprove the conjecture that
Lattice filter sets characterized by more general vari-
ations, e.g.

-l1<ajf <o; <af <1,

do not have corner verifiable relative stability prop-
erties. We also give a series of counterexamples to
demonstrate that the relative stability verification of
a single Lattice filter, as opposed to those of all mem-
bers of sets such as in (1.11), does not have a number
of nice properties that characterize the issue of stabil-
ity invariance verification.

Section 4 derives a Lyapunov matrix that obeys
(1.10) whenever G(z/p) is stable for all a; as in (1.11).
Section 5 uses the results of Sections 3 and 4 to give
a logarithmic rate of variation condition similar to (5]
that assures that the LTV Lattice has a prescribed
degree of stability, as long as the frozen LTI values
assumed by the LTV Lattice has a larger degree of
stability, and the reflection coefficients obey

jai(k)| < 6 < 1,

vie{l,...,n} k. (1.12)

Section 6 concludes.
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2 Preliminaries

This Section derives a number of preliminary defi-
nitions. We begin with the definition of relative sta-
bility of an LTV system.

An LTV, SISO system with state variable repre-
sentation (SVR) {A(k), B(k), C(k), D(k)}, the n x 1
state z(k), and u(k) and y(k) the input and output
respectively.

Then we say that this system has degree of stability
In p, p > 1 if there exist constants BL>0,0<<1
such that the zero input state solution obeys for all
k, and initial time ko,

pEkollz (k)| < Bullz(ko)llBE 0.

Henceforth || - || will denote the 2-norm. Observe in
the LTI case (2.1) ensures that the transfer function

2.1)

G(z) = d + c(z] — A)~'b (2.2)

obeys: G(z/p) is stable.

We next recall the Lyapunov approach to stability
analysis. As is well known, (2.1) holds iff there exists
a symmetric n x n Lyapunov matrix,

psl > P(R)=P'(k)y>mI>0 Yk  (23)
for which

QA (K)P(k + 1)AK) - P(k) < ~Q (F)Q(K), (24)
Q(k) is real, and [pA(k), Q(k)] is uniformly completely

observable (u.c.0.), i.e. there exist ps,pg > 0 and
integer N such that for all k

k+N-1 z'_ ! i

pal <Y, (HpA(t)) Q'(1)QG) (HpA(t))
sk I=k =k

< pal (2:5)

Here, the products are identity should the lower index
exceed the upper. Further, the order of operation for
the products is exemplified by

i-1
[T o(A(#) = (pA( = D) (PAG — 2)) -+~ (PA(K))-
=k

Observe in the LTI case this reduces to: [6], P = P’ >
0

p?A'PA-P < -QQ (2.6)
and "
> (pA)Q'Q(pA) > 0. 2.7)
$=0

We next present a recursive formula for determin-
ing the transfer function of a Lattice filter



In the sequel (see figure 1) we will define

_ W,'(Z)
Gi(z,a1,...,) = Vi) (2.8)
Thus
Gn(z;aly"';an) = G(z;al)'-wan)> (29)

the overall transfer function of the Lattice. Further,
we will define the transfer function sets, 1 <7 < n,

Gi(2) = {Gi(z,01,...,05) | |e| <8, < 1,1 < j < i},

(2.10)
forall0<i<n—1
273Gi(z, a1, . ..y @) = @ig
Giri(z, 0, @in) = 1— 270 1Gi(z, a1, .., 04)
(2.11)
with
Go(z) = {1} (2.12)
Finally we will call the SVR of Gi(?)

{Ai(k), bi(k), ci(k), di(k)}-

3 Robust Relative Stability of the
LTI Lattice

We call a set of transfer functions stable invariant
if all its members are asymptotically stable. In this
Section we provide a necessary and sufficient condi-
tion for G,(z/p) to be stable invariant, given p > 1.
Thus, this solves the problem of determining whether
each member of G,,(z/p) has degree of stability In p.

Henceforth we consider the stable invariance of all
the G;(2/p). In order to state the main result of this
Section, we must consider the following sequence:

fO = l) (31)
: pli-i—4 . _
fi ————————l_p&fi_l, i=1,...,n.  (3.2)

Then the necessary and sufficient condition for the
stable invariance of the G;(2/p), 1 < i < n, is as
follows.

Theorem 3.1 Consider the sets Gi(z), 1 < i < n,
as defined in (2.8-2.10). Then with p > 1, G, (z/p)
is stable invariant iff the f; defined in (3.1,3.2) erist
and obey, forall1 <i<n

0< pfi16; < 1. {(3.3)
Further, under (3.3), forall1 <i<n
Ji > pfi-1. (3.4)

Note that with p = 1, the recursion in (3.1-3.2)
gives fi = 1, for all 1 < i < n, and condition (3.3)
boils down to

& <1, (3.5)
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a fact well known about Lattice filters. Note, however,
that (3.5) is necessary and sufficient for stability of
any Gp (%), while (3.3) is not necessary for the stability
of G, (2/p).
Observe, (3.4) implies that
fi > o, (3.6)
whence we have that a necessary, though not sufficient
condition for stable invariance of G,(2/p) is

5,~<%, Vi<i<n. (3.7
Finally, observe that the number of computations
needed to check the condition in question grows lin-
early with n.
We conclude this Section with two results of inde-
pendent interest.

Theorem 3.2 The set G, (z/p) is stable invariant iff
forall1 <i< nand|ai| <6,

%G,-(z/p, a,.. ) (3.8)
and
————l————G;(z/p,al, ey ) (3.9)
gi(laal, ..., Jas])
are BR. Further, for all w € [0, 27)
1< (G /p,an, ..., ). (3.10)

Compare this to the all pass property when p = 1.

The next Theorem relates the stable invariance of
Gn(z/p) to the stability, in fact the real poles, of a
‘worst’ member.

Theorem 3.3 Givenp > 1,0< §; < 1,i=1,...,n.
The following are equivalent:

(i) The set G,(z/p) is stable invariant.

(it) Go(z/p,81,...,6,) is stable.

(iii) Gn(z/p, 81, ...,8,) has no poles on z € [1, p).

Thus, Theorem 3.3 shows that the stability invari-
ance of the whole set G,,(z/p) boils down to the stabil-
ity of a single corner Lattice filter. Recall that when
p =1, the set of G(z/p,d1,...,d,) stability preserv-
ing Lattice coefficients form a convex set (|§;]| < 1).
Therefore, it is intuitive to conjecture that the result
in Theorem 3.3 can be generalized to the case where
the set of reflection coefficients lie in a non-symmetric
interval, i.e.

of <ao; < a;".
We show via the following example that when the pa-
rameter set becomes non-symmetric, relative stability

of corner filters will not imply the relative stability of
the whole set.



Example 3.1

n = 5, (o3, as,a4,a5) = (~0.5,0.1,0,-0.1), oy €
[~0.8,0.8], p = 1.25. It is straightforward to verify
that G,(z/p) is stable at ay = £0.8 but unstable at
a1 = —0.45. Note from this example that a1 even lies
in a symmetric interval, although as,...,as don’t.

Remark 3.1 The condition (iii) in Theorem 3.3 of-
fers a simple way of determining the mazimum p,
Pmaz, for which relative stability of G.(z/p) is guar-
anteed for all 1 €< p < ppaz- Indeed, p7l. is the
smallest pole of Gn(2,61,...,8,) on the positive real
azis, which can be checked easily by solving the real
eigenvalues of A,.

4 Lyapunov Matrix for Relatively
Stable LTI Lattices

In order to address the LTV stability problem con-
sidered in Section 5, we need to determine a Lyapunov
matrix that proves the stable invariance of G,{z/p).
It is known [7] that with

P = diag{(1-a}) - (1-0f_,),

(1—ag)"'(l_az—l)"“xl}’ (41)
and {Ambm cmdn} the SVR of Gn(Z,Otl, ceey Og),
ALPA, — P = —(1-a2)enel,. (4.2)

However for the stable invariance of G,,(z/p), we need
to find a positive definite symmetric II,, that obeys

PPA M Ay — T, < ~QnQn (4.3)

for |oy] € 8:;, 1 € i < n with [An,@n] obeying
(2.7). The main result of this section, presented be-
low, solves this problem by employing the sequence

go = l) (4.4)
(o al) = Poi=rllaal, s faial) = o]
gi(loal, ..., ]ail) = 1-pgi~1(jasl,.. ., lai=1])]as|
(4.5)

Theorem 4.1 Suppose G,(z/p) is stable invariant
with p > 1. Then with {A,, by, cn,dn} the SVR of
Gu(z,01,...,an) € Gn(2), and I1,, defined by

M, = diag {p" 11— ad_,)--- (1~ af)gn/90,
pn_z(l - ai_l) s (1 - a%)gn-—l/gly
,p(l —03_1)971-1/9"—2’ 1} ’ (46)

forall |o;] < 6;, 1 < i< n, wehave 1 —p?g2_102 >0
and
P AN An =11, < —(1~ p%gh_ad)eney.  (4.7)

Here the g; are as in ({.4,4.5). We have dropped the
arguments |a;| in g;, Ap, and I1,.
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The stable invariance of G,(z/p) ensures that II, is
positive definite for all ja;] < d;, 1 < 7 < n. Further,

0 < pgn-1ay, < 1. (4.8)
Thus @, in (4.3) is
Qn = \/1 —p*g’_jalel. 4.9
Further observe that
D (PALY Q4 Qn(pAn) = WiWha (4.10)
i=0
where
Qn
PQnAn
Wo = N (4.11)
p"“Q.::“An

Then it is readily verified that W,.W,, is positive def-
inite throughout G,(2).

Observe, as g; = 1 for all 1 < i < n, whenever
p =1, we recover the result of [7] when p = 1. A few
further comments on the nature of the derived Lya-
punov Matrix are in order. In the setting of [5] involv-
ing direct form realization, the Lyapunov Matrix was
multiaffine in the coefficients of the transfer function
denominator. This fact considerably simplified the
LTV analysis conducted in {5]. The Lyapunov Matrix
in (4.6) is clearly not multiaffine. There is however
one vast simplification in the form of (4.6) over its
counterpart in [5]: namely that it is diagonal. As will
be shown in Section 5, this diagonal nature does aid
the LTV analysis conducted there. Two other points
to be exploited in Section 5 are as follows. First, IT,,
is independent of a,,. Further, because of (4.4,4.5),
the Lyapunov Matrix in (4.6) depends only on |al,
1< i< n-1, as opposed to depending on «; directly.

5 Relative Stability of the LTV
Lattice

This Section addresses the relative stability of LTV
Lattice filters. We will assume that there exists ¢; > 0,
arbitrarily small, such that forall 1 <i<n

|ai(k)] < 8 — € (5.1)
We will further assume that the f; in (3.1,3.2) obey
(3.3) for all 1 < i < n; ie. all frozen systems are
stable with degree of stability In p. The question is,
given

1<p <p, (6.2)

what rates of time variations can be sustained to en-
sure that the LTV Lattice has degree of stability In p'?



To this end we present two results. The first is a

simple consequence of the comments made at the end
of the previous section. The second constitutes the
main result of this Section.
Theorem 5.1 Consider the Lattice filter depicted in
figure 1. Suppose (5.1) holds and that G,(z/p) is sta-
ble invariant for some p > 1. Suppose also that there
erist a; such that forall1 <i<n-—1, and all k,

|ai (k)| = |a]. (6-3)

Then the LTV Lattice filter is stable with degree of
stability In p.

Observe, this Theorem states that as long as the
frozen LTI systems have degree of stability In p, the
LTV filter sustains the same degree of stability for
arbitrary rates of variation in a, (k) as long as the
a;(k), 1 < i < n—1 sustain only changes in sign, and
(5.1) holds for all 1 <i < n.

The next Theorem addresses relative stability un-
der simultaneous magnitude variations in multiple re-
flection coefficients.

Theorem 5.2 Consider the LTV Lattice in figure 1
that obeys (5.1). Suppose G,(z/p) is stable invariant
and p > 1. Then the LTV Lattice is stable with de-
gree of stability p', obeying (5.2) if the following holds:
there exists an integer N > 0 and 0 < 8 < 1 such that

1 k+N~-1 0B

ig}; — 2 v(l) <2In [7] (5.4)
with *

= p(1 — a2(k))L2L

1o (k) = p(1 ‘z’(k))g,,-l(k)’ (5.5)
+

- u = n Yok +1)

vk = s { ;1 -0 } . (5.8)

A few comments concerning (5.4,5.5,5.6) are called
for. Essentially, this condition represents a tradeoff
between frozen systems and LTV system degree of
stability with the rate of variations in the magnitude
of the «;. Sign changes are inconsequential.

Equations (5.4,5.5,5.6) essentially quantify the po-
tentially destabilizing time variations as those which
increase vp(k), and limit the average increase in these
vp (k). Declining values of v, (k) are found not to be
destabilizing.

6 Conclusion

We have studied the relative stability of both LTI
and LTV Lattice. We have shown that when the LTI
set of Lattice filters is defined by bounds on the re-
flection coefficients, then there is a simple necessary
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and sufficient condition for all such LTI Lattices to
have degree of stability In p. We also show that verifi-
cation of stable invariance can be effected by checking
a single corner of G, (z/p).

We provide a Lyapunov matrix for checking this
degree of stability requirement, and show that it spe-
cializes to the matrix of [7]. Finally, we give a log-
arithmic rate of variation result that suffices for the
relative stability of LTV unnormalized Lattices.
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