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SUMMARY

This paper is concerned with the optimal linear quadratic regulation problem for discrete-time systems with
state and control dependent noises and multiple delays in the input. We show that the problem admits a
unique solution if and only if a sequence of matrices, which are determined by coupled difference equations
developed in this paper, are positive definite. Under this condition, the optimal feedback controller and the
optimal cost are presented via some coupled difference equations. Our approach is based on the stochastic
maximum principle. The key technique is to establish relations between the costate and the state. Copyright
© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Time delays exist in many real processes in economics, finance, networked control systems, popula-
tion dynamics, and so on. Its wide applications have inspired long-term interest and active research
on time-delay systems. The control problems for time-delay systems have been extensively studied
since 1960s [1–7]. For example, [2] considers the linear quadratic regulation (LQR) problem for
systems with constant delays in both state and control variables and characterizes the feedback gain
of the optimal controller by a three-argument matrix function which obeys a set of partial differ-
ential equations. The presence of a delay in the state (resp. control) variable of the system makes
the optimal controller dependent on the past state (resp. past control). This property creates serious
technical difficulties for the optimal control problem for time-delay systems.

On the other hand, systems with stochastic uncertainties have received much attention as well
[8–13]. Reference [10] is concerned with H1 control problem for discrete-time systems with mul-
tiplicative noises. Necessary and sufficient conditions for the existence of a stabilizing controller
making the norm of a perturbation operator less than a specified value are derived by means of
coupled nonlinear matrix inequalities. The authors of [12] investigate the finite-horizon LQR prob-
lem for systems with state and control dependent noises subject to an indefinite performance cost
function. The existence of an optimal controller is shown to be equivalent to the solvability of a
generalized difference Riccati equation.

*Correspondence to: Huanshui Zhang, School of Control Science and Engineering, Shandong University, Jinan,
Shandong 250061, China.

†E-mail: hszhang@sdu.edu.cn
‡A preliminary version of this paper entitled ‘Stochastic linear quadratic regulation for discrete-time systems with single
input and multiple delays’ was presented at the 32nd Chinese Control Conference, Xi’an, China, 2013.

Copyright © 2016 John Wiley & Sons, Ltd.



L. LI, H. ZHANG AND M. FU

Systems involving both time delay and stochastic uncertainties are often used to model financial
quantities [14], networked control systems with random delay [15, 16] or with both delay and packet
dropout [17], and so on. Their great significance in application is one of the motivations for us to
consider the control problem for such systems. In addition, optimal control problems for stochastic
systems with delays have attracted much attention. Dynamic programming principle and maximum
principle for systems described by stochastic differential equations with delays are established in
[18] and [19], respectively. Both the finite-horizon LQR problem and the stabilization problem are
solved in [20] for discrete-time systems with state and control dependent noises and a single input
delay, which derives the condition for the existence of a unique optimal controller in terms of a
Riccati-ZXL difference equation and the stabilizing condition of an algebraic Riccati-ZXL equation.
The authors of [21] investigate the finite-horizon LQR problem for continuous-time stochastic lin-
ear systems with multiple delays in both state and control variables. It presents the optimal feedback
controller in terms of a different type of Riccati equation. However, it also points out that the solv-
ability of this type of Riccati equation is not easy to obtain. By examining the existing literature,
we find that conditions for the existence of an optimal feedback controller for stochastic systems
with multiple input delays are not available. Motivated by this, we will study the conditions for the
existence of an optimal feedback controller for such a system.

The purpose of this paper is to extend the finite-horizon LQR problem in our early work [20]
to discrete-time systems with state and control dependent noises and multiple input delays. The
approach is based on the maximum principle, which is given by delayed forward backward stochas-
tic difference equations composing of a state equation (delayed and forward), a costate equation
(backward) and an equilibrium condition. The key technique is to establish relationships between
the costate � and the state x. Difficulties encountered in the generalization from the single-delay
case [20] to the multiple delay case include two aspects. First, only one relation between �k�1 and
xk is enough to derive the optimal controller in [20]. However, another one between �kCd�1 (d is
the maximal time delay) and xk is necessary for the multiple delay case. Because of the time lag
between �kCd�1 and xk , the establishment of this relation is complicated, and the associated coef-
ficient matrices can not be expressed directly but only recursively. Secondly, the optimal controller
in the multiple delay case no longer admits a simple predictor form as in [20]. This further leads
to the complexity of the coupled difference equations which yield the gain matrices of the optimal
controller compared with the simple Riccati-ZXL difference equation in the single-delay case.

The contribution of this paper is as follows. First, a necessary and sufficient condition for the LQR
problem to admit a unique solution is proposed. Most papers in the literature on the LQR problem
impose the condition that the control weight in the quadratic cost function is positive definite to
guarantee that the optimal controller is unique, see, for example, [1–6, 8], and [9]. But this condition
is too strong in general. Here, we only require that the control weight is positive semi-definite.
Secondly, we present explicitly the optimal feedback controller and the optimal cost via coupled
difference equations. Finally, our approach to finding relations between the costate and the state can
be used to solve more general delayed forward backward stochastic difference equations such as
equations involving delays in both the forward equation and the backward equation.

The rest of paper is organized as follows. Section 2 describes the optimal control problem to be
addressed. Section 3 presents the solution to the problem. Section 4 shows the derivation of the solu-
tion. Section 5 gives two numerical examples. Section 6 gives conclusions. Appendix supplements
some details of the proof.

The following notations will be used in this paper: Rp stands for an p�dimensional Euclidean
space; I denotes an identity matrix with appropriate dimension. For a matrix X , X 0 is its transpose;
A symmetric matrixM > 0 (reps.> 0) means that it is strictly positive definite (reps. positive semi-
definite). For a random variable � and a � -algebra G, EŒ�� and EŒ�jG� represent the expectation of
� and the conditional expectation of � with regard to G, respectively; �i;j is the usual Kronecker
function, that is, �i;j D 1 if i D j and �i;j D 0 otherwise.

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2016)
DOI: 10.1002/oca



LQR FOR STOCHASTIC SYSTEMS WITH MULTIPLE INPUT DELAYS

2. PROBLEM FORMULATION

Consider the following discrete-time stochastic system with multiple input delays:

xkC1 D

2
4AC rX

jD1

!k.j / NAj

3
5 xk C dX

iD0

2
4Bi C rX

jD1

!k.j / NBi;j

3
5uk�i ; k D 0; : : : ; N: (1)

Here, xk 2 Rp and uk 2 Rq are the state and input control, respectively; d is a constant delay; x0
and u�i , i D 1; : : : ; d , are known deterministic initial values; A, NAj ; Bi and NBi;j with j D 1; : : : ; r
and i D 0; : : : ; d are constant matrices with compatible dimensions; !k

:
D
�
!k.1/ � � � !k.r/

�0
is a r-dimensional zero-mean white noise defined on a complete probability space ¹�;F ;Pº
with covariance

EŒ!k!
0
t � D

²
†; k D t;

0; k ¤ t;

where† > 0. Let ¹FkºkD0;:::;N be the natural filtration generated by ¹!kºkD0;:::;N , that is, Fk � F
is the � -subalgebra generated by ¹!0; : : : ; !kº, and F�1D¹;; �º be the smallest � -subalgebra of F .

Consider the cost function

J D E

"
NX
kD0

�
x0kQxk C u

0
kRuk

�
C x0NC1PNC1xNC1

#
; (2)

where Q > 0, R > 0 and PNC1 > 0. The optimal control problem under consideration is
formulated as follows:

Problem 1
Find Fk�1-measurable uk; k D 0; : : : ; N; to minimize the cost function (2) subject to system (1).

The aim of this paper is twofold: (i) Establish a necessary and sufficient condition for Problem 1
to admit a unique optimal controller; and (ii) If this condition is satisfied, give explicitly the optimal
feedback controller and the optimal cost.

Remark 1
System (1) studied in this paper is with one input uk and with multiple delays in this input, while
systems considered in the literature [22–25] contain several inputs u1

k
; : : : ; uh

k
where each input

admits a single (but different) delay. If we define uk
:
D
� �
u1
k

�0
� � �

�
uh
k

�0 �0, then systems in [22–25]
can be changed into system (1), and the LQR problem studied in [22–25] can be equivalently con-
verted into Problem 1. However, the converse is not possible in general. In addition, if the inputs
ui
k
; i D 1; : : : ; h; admit the same delay, the LQR problem in [22–25] reduces to the LQR problem

for single-delay system investigated in [20].

Remark 2
The differences between this paper and [26] are as follows. Reference [26] focuses on the stabi-
lization problem for discrete-time systems with control dependent noise and multiple input delays,
while this paper studies the finite-horizon LQR problem. Also, the multiplicative noise in [26] is
required to satisfy additional independence assumptions.

3. MAIN RESULTS

For simplicity, we will first consider a special case of system (1) with r D 1 and Bi D NBi;1 D 0 for
i D 1; : : : ; d � 1, that is,

xkC1 D
�
AC !k.1/ NA1

�
xk C

�
B0 C !k.1/ NB0;1

�
uk C

�
Bd C !k.1/ NBd;1

�
uk�d : (3)

In this case, the white noise !k D !k.1/ becomes one dimensional, and its variance † is a
nonnegative scalar; ¹Fkºk>0 still represents the natural filtration generated by ¹!kºk>0. Notations
NA1; NB0;1 NBd;1 will be re-denoted by NA; NB0; and NBd . Then, the LQR problem is restated as follows:
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Problem 2
Find Fk�1-measurable uk; k D 0; : : : ; N; to minimize the cost function (2) subject to system (3).

Following the results in [22], we give the maximum principle of Problem 2 which will play a key
role in this paper:

xkC1 D A.k/xk C B0.k/uk C Bd .k/uk�d ; (4)

�N D PNC1xNC1; (5)

�k�1 D E
�
A0.k/�kjFk�1

�
CQxk; (6)

0 D E
�
B 00.k/�k C B

0
d .k C d/�kCd jFk�1

�
CRuk; k D 0; : : : ; N; (7)

where �k is the costate with �k
:
D 0 for k > N and

A.k/
:
D AC !k NA; B0.k/

:
D B0 C !k NB0; Bd .k/

:
D Bd C !k NBd :

Define the coupled difference equations as

Pk D A
0PkC1AC† NA

0PkC1 NA � T
0
kR
�1
k Tk CQ; (8)

where

Rk DRC B
0
0PkC1B0 C†

NB 00PkC1
NB0 C B

0
dPkCdC1Bd C†

NB 0dPkCdC1
NBd

C B 00P
d�1
kC1 C

�
P d�1kC1

�0
B0 �

dX
iD1

�
T d�ikCi

�0
R�1kCiT

d�i
kCi ;

(9)

Tk DB
0
0PkC1AC†

NB 00PkC1
NAC

�
P d�1kC1

�0
A; (10)

with

T 0k D B
0
0PkC1Bd C†

NB 00PkC1
NBd C

�
P d�1kC1

�0
Bd ; (11)

T
j

k
D B 00P

j�1

kC1
C
�
P
d�j�1

kCjC1

�0
Bd �

jX
iD1

�
T d�ikCi

�0
R�1kCiT

j�i

kCi
; (12)

P 0k D A
0PkC1Bd C† NA

0PkC1 NBd � T
0
kR
�1
k T 0k ; (13)

P
j

k
D A0P

j�1

kC1
� T 0kR

�1
k T

j

k
; j D 1; : : : ; d � 1: (14)

The terminal value is given by

PNC1; PNCiC1 D 0; P
j
NCi D 0; T

j
NCi D 0; RNCi D I; i > 1; j D 0; : : : ; d � 1: (15)

The solution to Problem 2 is stated in the following theorem.

Theorem 1
Problem 2 has a unique optimal controller if and only if Rk > 0, k D 0; : : : ; N . In this context, the
optimal controller uk is given by
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uk D �R
�1
k Tkxk �R

�1
k

d�1X
jD0

T
j

k
ujCk�d : (16)

The associated optimal value of (2) is given by

J ? D x00P0x0 C 2x
0
0

d�1X
jD0

P
j
0 uj�d C

d�1X
jD0

u0j�d
�
B 0dPjC1Bd C†

NB 0dPjC1
NBd
�
uj�d

C 2

d�1X
jD0

d�1X
iD0

u0j�dB
0
dP

i�j�1
jC1 ui�d �

d�1X
jD0

d�1X
iD0

d�1X
fD0

u0j�d

�
T
j�f

f

�0
R�1f T

i�f

f
ui�d :

(17)

In addition, the optimal costate �k�1 and state xk satisfy the following non-homogeneous
relationship

�k�1 D Pkxk C

d�1X
jD0

P
j

k
ujCk�d : (18)

The proof of Theorem 1 will be provided in the next section.

Remark 3
P
j

k
and T j

k
with j D 0; : : : ; d � 1 are well defined by (8)–(15). For simplicity, we have used the

notations P j
k

and T j
k

for j < 0 in (17). Throughout the paper, we set P j
k
D 0 and T j

k
D 0 for

j < 0:

Remark 4
For a delay-free system, that is, Bd D NBd D 0, (11) and (13) become

T 0k D 0; P
0
k D �T

0
kR
�1
k T 0k D 0:

According to (12) and (14), it yields

T 1k D B
0
0P

0
kC1 �

�
T d�1kC1

�0
R�1kC1T

0
kC1 D 0;

P 1k D A
0P 0kC1 � T

0
kR
�1
k T 1k D 0:

Inductively, it can be derived that T j
k
D 0 and P j

k
D 0 for j D 0; : : : ; d � 1 and any k. Then,

(10) and (9) reduce to

Rk D RC B
0
0PkC1B0 C†

NB 00PkC1
NB0; (19)

Tk D B
0
0PkC1AC†

NB 00PkC1
NA: (20)

It can be easily observed that (8), (19), and (20) are the generalized Riccati equation arising in
the standard stochastic LQR problem [12]. In addition, (16) and (17) degenerate to

uk D �R
�1
k Tkxk;

J ? D x00P0x0:

Therefore, Theorem 1 contains the standard stochastic LQR problem as a special case.

Now, we extend Theorem 1 to system (1). First, we generalize (8)–(14) as follows:

Pk D A
0PkC1AC

rX
fD1

rX
lD1

�f;l NA
0
f PkC1

NAl � T
0
kR
�1
k Tk CQ; (21)
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Rk D RC

dX
iD0

0
@B 0iPkCiC1Bi C

rX
fD1

rX
lD1

�f;l NB
0
i;f PkCiC1

NBi;l

1
AC d�1X

iD0

B 0iP
d�i�1
kCiC1

C

d�1X
iD0

�
P d�i�1kCiC1

�0
Bi �

dX
iD1

�
T d�ikCi

�0
R�1kCiT

d�i
kCi ; (22)

Tk D B
0
0PkC1AC

rX
fD1

rX
lD1

�f;l NB
0
0;f PkC1

NAl C
�
P d�1kC1

�0
A; (23)

T
j

k
D

jX
iD0

0
@B 0iPkCiC1Bi�jCd C

rX
fD1

rX
lD1

�f;l NB
0
i;f PkCiC1

NBi�jCd;l

1
AC j�1X

iD0

B 0iP
j�i�1

kCiC1

C

jX
iD0

�
P d�i�1kCiC1

�0
Bi�jCd �

jX
iD1

�
T d�ikCi

�0
R�1kCiT

j�i

kCi
; (24)

P
j

k
D A0PkC1Bd�jC

rX
fD1

rX
lD1

�f;l NA
0
f PkC1

NBd�j;lCA
0P
j�1

kC1
�T 0kR

�1
k T

j

k
; j D 0; : : : ; d � 1; (25)

where the terminal value is given by (15) and �f;l ; f D 1; : : : ; r; l D 1; : : : ; r; are elements of the
variance matrix †, that is,

† D

0
B@
�1;1 � � � �1;r
:::

:::
:::

�r;1 � � � �r;r

1
CA :

Theorem 2
Problem 1 has a unique optimal controller if and only if Rk > 0, k D N; : : : ; 0. In this case, the
optimal controller is

uk D �R
�1
k Tkxk �R

�1
k

d�1X
jD0

T
j

k
ujCk�d ; (26)

and the optimal cost is

J ? Dx00P0x0 C 2x
0
0

d�1X
jD0

P
j
0 uj�d C

d�1X
jD0

d�1X
iD0

d�1X
mD0

u0j�d

�
B 0mCd�jPmC1BmCd�i

C

rX
fD1

rX
lD1

�f;l NB
0
mCd�j;f PmC1

NBmCd�i;l C B
0
mCd�jP

i�m�1
mC1

C
�
P
j�m�1
mC1

�0
BmCd�i �

�
T j�mm

�0
R�1m T i�mm

	
ui�d ;

(27)

where Bi and NBi;j are defined to be zero for i > d .
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Remark 5
Theorems 1 and 2 present solutions to the LQR problem for system (3) and (1), respectively. Dif-
ferences between systems (3) and (1) are as follows. First, the multiplicative noise of system (3)
is !k.1/, which is a scalar, while that of system (1) is

�
!k.1/ � � � !k.r/

�0
, which is high dimen-

sional. Secondly, system (3) contains one delayed input term uk�d . However, system (1) includes
d delayed input terms ¹uk�1; : : : ; uk�d º. In addition, by setting r D 1 and Bi D NBi;1 D 0 for
i D 1; : : : ; d�1, system (1) reduces to system (3). In this case, it can be easily verified that (21)–(27)
naturally becomes (8)–(17). Hence, Theorem 1 is a special case of Theorem 2.

4. PROOF OF THE MAIN RESULTS

In this section, we will first give a detailed proof for Theorem 1. Then, some comments on the
derivation of Theorem 2 will be made.

4.1. Proof of Theorem 1

The proof consists of two parts: the necessity is based on the maximum principle (4)–(7); the
sufficiency is deduced by constructing a value function.

4.1.1. Necessity. Suppose Problem 2 admits a unique optimal controller. The aim is to prove that
Rk , k D 0; : : : ; N , defined by (8)–(14), is positive definite and the optimal uk is as (16).

The proof will be divided into two steps. First, two linear relations will be established: both �k�1
and �kCd�1 are to be expressed as linear combinations of ¹xk; uk�1; : : : ; uk�d º. The feedback gains
of the optimal controller will be given by means of the coefficient matrices of these linear relations.
The coefficient matrices in the first relation obey some backward recursion equations, but those of
the second relation possess complicated expressions and are not easy to compute. To overcome this
obstacle, in the second step, we will seek connections between the two relations.

Lemma 1
Suppose Problem 2 has a unique optimal controller, then

Rk D B
0
0PkC1B0 C†

NB 00PkC1
NB0 CE

�
B 0d .k C d/SkC1

�
B0

CE
h
B 0d .k C d/S

d�1
kC1

i
C B 00P

d�1
kC1 CR > 0:

(28)

The optimal controller uk is as

uk D �R
�1
k Tkxk �R

�1
k

d�1X
jD0

T
j

k
ujCk�d ; (29)

with

Tk D B
0
0PkC1AC†

NB 00PkC1
NACE

�
B 0d .k C d/SkC1

�
A; (30)

T 0k D B
0
0PkC1Bd C†

NB 00PkC1
NBd CE

�
B 0d .k C d/SkC1

�
Bd ; (31)

T
j

k
D B 00P

j�1

kC1
CE

h
B 0d .k C d/S

j�1

kC1

i
; j D 1; : : : ; d � 1: (32)

Therein, the matrices PkC1, P j
kC1

, SkC1 and Sj
kC1

, j D 0; : : : ; d � 1, are the coefficients of the
following relationships:

�k�1 D Pkxk C

d�1X
jD0

P
j

k
ujCk�d ; (33)
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�kCd�1 D Skxk C

d�1X
jD0

S
j

k
ujCk�d ; (34)

where Pk and P j
k

satisfy the following coupled difference equations:

Pk D QC A
0PkC1AC† NA

0PkC1 NA �
�
A0PkC1B0 C† NA

0PkC1 NB0 C A
0P d�1kC1

�
R�1k Tk; (35)

P 0k D A
0PkC1Bd C† NA

0PkC1 NBd �
�
A0PkC1B0 C† NA

0PkC1 NB0 C A
0P d�1kC1

�
R�1k T 0k ; (36)

P
j

k
D A0P

j�1

kC1
�
�
A0PkC1B0 C† NA

0PkC1 NB0 C A
0P d�1kC1

�
R�1k T

j

k
; j D 1; : : : ; d � 1; (37)

while Sk and S
j

k
, which are initialized by SNC1 D 0 and S

j
NC1 D 0, contain the noises

¹!k; : : : ; !kCd�1º and will be explicitly expressed in Lemma 3 of Appendix B.

Proof
See Appendix A. �

Lemma 2
The following identities hold for k D 0; : : : ; N :

E
�
B 0d .k C d/SkC1

�
D
�
P d�1kC1

�0
; (38)

E
h
B 0d .k C d/S

j

kC1

i
D�

jX
iD0

�
T d�i�1kCiC1

�0
R�1kCiC1T

j�i

kCiC1
C

d�2X
iD0

�i;j

�
P d�i�2kCiC2

�0
Bd

C �d�1;j
�
B 0dPkCdC1Bd C†

NB 0dPkCdC1
NBd
�
; j D 0; : : : ; d � 1:

(39)

Proof
See Appendix B. �

Finally, it will be clarified that (28), (30)–(32), and (35)–(37) can be rewritten as (8)–(14) with
the help of Lemma 2. In fact, the application of (38) and (39) in (28) and (30)–(32) yields (10), (9),
(11), and (12) directly. From (9), it follows that

T 0k D A
0PkC1B0 C† NA

0PkC1 NB0 C A
0P d�1kC1 :

Employ the aforementioned equation in (35)–(37). Then, (8), (13), and (14) can be derived
immediately. This completes the proof of the necessity of Theorem 1.

4.1.2. Sufficiency. Given (8)–(14) andRk > 0, k D 0; : : : ; N , we will show that the unique optimal
controller of Problem 1 and the optimal cost are, respectively, as (16) and (17).

Define a value function by

V.k; Nxk/
:
DE

2
4x0kPkxk C 2x0k

d�1X
jD0

P
j

k
uj�dCk C

d�1X
jD0

u0j�dCk
�
B 0dPkCjC1Bd

C† NB 0dPkCjC1
NBd
�
uj�dCk C 2

d�1X
jD0

d�1X
iD0

u0j�dCkB
0
dP

i�j�1

kCjC1
ui�dCk

�

d�1X
jD0

d�1X
iD0

d�1X
fD0

u0j�dCk

�
T
j�f

kCf

�0
R�1kCf T

i�f

kCf
ui�dCk

3
5 ;

(40)
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where Nxk represents the vector
�
x0
k
u0
k�1
� � � u0

k�d

�0
. By applying (4), it yields

V.k; Nxk/ � V.k C 1; NxkC1/

DE

2
4x0k �Pk � A0PkC1A �† NA0PkC1 NA� xk C 2x0k

d�1X
jD0

P
j

k
ujCk�d � 2x

0
kA
0

d�1X
iD0

P i�1kC1uiCk�d

� 2x0k
�
A0PkC1Bd C† NA

0PkC1 NBd
�
uk�d � u

0
k�d

d�1X
iD0

�
T 0k
�0
R�1k T ikuiCk�d

�

d�1X
jD1

u0jCk�d

�
T
j

k

�0
R�1k T 0k uk�d �

d�1X
jD1

d�1X
iD1

u0jCk�d

�
T
j

k

�0
R�1k T ikuiCk�d

� u0k

0
@B 00PkC1B0 C† NB 00PkC1 NB0 C B 0dPkCdC1Bd C† NB 0dPkCdC1 NBd C B 00P d�1kC1

C
�
P d�1kC1

�0
B0�

dX
fD1

�
T
d�f

kCf

�0
R�1kCf T

d�f

kCf

1
Auk�2u0k



B 00PkC1AC†

NB 00PkC1
NAC
�
P d�1kC1

�0
A

�
xk

� 2u0k



B 00PkC1Bd C†

NB 00PkC1
NBd C

�
P d�1kC1

�0
Bd

�
uk�d

�2u0k

d�1X
jD1

0
@B 00P j�1kC1

C
�
P
d�j�1

kCjC1

�0
Bd �

jX
fD1

�
T
d�f

kCf

�0
R�1kCf T

j�f

kCf

1
AujCk�d

3
5 :

In view of (10), (9), (11), and (12), the aforementioned equation is further written as

V.k; Nxk/ � V.k C 1; NxkC1/

DE

2
4x0k �Pk � A0PkC1A �† NA0PkC1 NA� xk C 2x0k

d�1X
jD0

P
j

k
ujCk�d � 2x

0
kA
0

d�1X
iD0

P i�1kC1uiCk�d

� 2x0k
�
A0PkC1Bd C† NA

0PkC1 NBd
�
uk�d � u

0
k�d

d�1X
iD0

�
T 0k
�0
R�1k T ikuiCk�d

�

d�1X
jD1

u0jCk�d

�
T
j

k

�0
R�1k T 0k uk�d �

d�1X
jD1

d�1X
iD1

u0jCk�d

�
T
j

k

�0
R�1k T ikuiCk�d

�u0k.Rk �R/uk � 2u
0
kTkxk � 2u

0
k

d�1X
jD0

T
j

k
ujCk�d

3
5 :

Because Rk > 0, we can complete the square in the earlier equation as

V.k; Nxk/ � V.k C 1; NxkC1/ D E

2
4x0k �Pk � A0PkC1A �† NA0PkC1 NAC T 0kR�1k Tk

�
xk

C2x0k

d�1X
jD1

�
P
j

k
�A0P

j�1

kC1
CT 0kR

�1
k T

j

k

�
ujCk�dC2x

0
k

�
P 0kCT

0
kR
�1
k T

0
k�A

0PkC1Bd�† NA
0PkC1 NBd

�
uk�d

Cu0kRuk �

0
@ukCR�1k TkxkCR

�1
k

d�1X
jD0

T
j

k
ujCk�d

1
A
0

Rk

 
ukCR

�1
k TkxkCR

�1
k

d�1X
iD0

T ikuiCk�d

!35 :
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Furthermore, from (8), (13), and (14), it follows that

V.k; Nxk/ � V.k C 1; NxkC1/

DE

2
4x0kQxk C u0kRuk �

0
@uk CR�1k Tkxk CR

�1
k

d�1X
jD0

T
j

k
ujCk�d

1
A
0

Rk

 
uk CR

�1
k Tkxk

CR�1k

d�1X
iD0

T ikuiCk�d

!#
:

(41)
(40) and P jNC1 D 0; j D 0; : : : ; d � 1 imply that V.N C 1; NxNC1/ D E

�
x0NC1PNC1xNC1

�
.

Adding from k D 0 to k D N on both sides of (41) produces

J D

NX
kD0

E
�
x0kQxk C u

0
kRuk

�
C V.N C 1; NxNC1/

DV.0; Nx0/CE

2
4 NX
kD0

0
@uk CR�1k Tkxk CR

�1
k

d�1X
jD0

T
j

k
ujCk�d

1
A
0

Rk

 
uk CR

�1
k Tkxk

CR�1k

d�1X
iD0

T ikuiCk�d

!35 :
As Rk > 0, the unique optimal controller must be as (16), and the optimal cost is V.0; Nx0/, that

is, (17). Thus, the proof of sufficiency is completed. �

4.2. Derivation of Theorem 2

The change of the system from (3) to (1) does not cause any essential differences. The main pro-
cedures in the derivation of Theorem 2 are the same as those in Theorem 1. Therefore, only major
differences in the proof will be listed below.

� The equilibrium condition in the maximum principle becomes

0 D E

"
dX
iD0

B 0i .k C i/�kCi jFk�1

#
CRuk;

where Bi .k C i/ D Bi C
Pr
jD1 !k.j /

NBi;j .
� Accordingly, it is necessary to establish the additional relations between the costate and

the state

�kCi D Sk.i/xk C

d�1X
jD0

S
j

k
.i/ujCk�d ; i D 0; : : : ; d � 2;

and to set up identities like (38) and (39) for Sk.i/; S
j

k
.i/; i D 0; : : : ; d � 2.

4.3. Technical difficulties for the multiple delay case

First, we will review the LQR problem for the single input-delay case investigated in [20]. The
problem is to minimize the following cost function

J D E

 
NX
kD0

x0kQxk C

NX
kDd

u0k�dRuk�d C x
0
NC1PNC1xNC1

!
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subject to the system equation

xkC1 D
�
AC !k NA

�
xk C

�
B C !k NB

�
uk�d ; k D 0; : : : ; N

over Fk�1�measurable uk . Based on the maximum principle, the main idea is to set up the
following relation

�k�1 D P
1
k xk C

dC1X
iD2

P ikE ŒxkjFk�dCi�3� ; k D d; : : : ; N C 1: (42)

The optimal controller is shown to be the following predictor form [20]

uk D �‡
�1
kCdMkCd OxkCd jk; k D 0; 1; : : : ; N � d; (43)

where

OxkCd jk
:
D E ŒxkCd jFk�1� D Adxk C

dX
iD1

Ai�1Buk�i : (44)

The gain matrix is given by the following Riccati-ZXL difference equation

Zk D A
0ZkC1AC �

2 NA0XkC1 NACQ � Lk; (45)

Xk D Zk C

d�1X
iD0

.A0/iLkCiA
i ; (46)

Lk DM
0
k‡
�1
k Mk; (47)

‡k D B
0ZkC1B C �

2 NB 0XkC1 NB CR; (48)

Mk D B
0ZkC1AC �

2 NB 0XkC1 NA; (49)

with the terminal values ZNC1 D PNC1 and XNC1 D PNC1.
From the technical viewpoint, the difficulty arising in the generalization from the single input-

delay case to the multiple input-delay case lies in the establishment of the relation between the state
and the costate. More specifically, the relation (42) is sufficient to derive the optimal controller in
[20]. However, this is not true for the multiple delay case. Except the relation between �k�1 and
xk (33), another one between �kCd�1 and xk (34) is established to compute the optimal controller.
The construction of (33) is similar to that of (42) and is simple, but that of (34) is much more
complicated.

Another fundamental obstacle is that the optimal controller for the multiple delay case does not
process a simple predictor form like (43). The feature of (43) is that only two variables, ‡k and
Mk , are needed to determine its feedback gains. But for the multiple delay case, d C 2 variables,
Rk; Tk; T

0
k
; : : : ; T dC1

k
, are necessary to give the optimal gain matrices. (An example will be given

in the next section to further clarify this point). This is the one of the reasons why the coupled
difference equations (8)–(14) can not be simplified like (45)–(49).
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5. NUMERICAL EXAMPLES

Before we give numerical examples, let us see how to solve the coupled difference equations (8)–
(14). In fact, (8)–(14) are backward recursions, and they have solutions for k D N; : : : ; 0 if and only
ifRk is nonsingular. The solution is a set of matrix sequences

®
Rk; Tk; T

0
k
; : : : ; T d�1

k
; Pk; P

0
k
; : : : ;

P d�1
k

¯
kDN;:::;0

. It is worth noting that, for each k, the correct order of computation should be (10)–

(12), (8), (13), and (14). Moreover, the derivation of
°
Rk; Tk; T

j

k
; Pk; P

j

k
; j D 0; : : : ; d � 1

±
needs

the previous values
°
RkCi ; TkCi ; T

j

kCi
; PkC1; PkC1Ci ; P

j

kC1Ci
; i D 1; : : : ; d; j D 0; : : : ; d � 1

±
.

5.1. Example 1

Consider the system (3) and the cost function (2) with

A D 1:5; NA D 0:8; B0 D �2; NB0 D 1:2; Bd D 1; NBd D �0:2; d D 1; † D 1;

N D 0; R D 1; Q D 1; PNC1 D 1:

The solution to (8)–(14) can be easily derived as

R0 D 6:44; T0 D �2:04; T
0
0 D �2:24; P0 D 3:2438; P

0
0 D 0:6304:

Theorem 1 implies that the unique optimal controller and the optimal cost are, respectively,

u?0 D �R
�1
0 T0x0 �R

�1
0 T 00 u�1 D 0:3168x0 C 0:3478u�1;

and

J ? D P0x
2
0 C 2P

0
0 x0u�1 C

�
B 01P1B1 C†

NB 01P1
NB1 �

�
T 00
�0
R�10 T 00

�
u2�1

D 3:2438x20 C 1:2609x0u�1 C 0:2609u
2
�1:

Next, we will verify in a direct way that the aforementioned u?0 and J ? are indeed optimal. Based
on the fact that the admissible control u0 is a function of x0 and u�1 and thus is deterministic, the
cost function (2) is computed as

J D E
�
x20 C u

2
0 C x

2
1

�
D x20 C u

2
0 C .B0u0 C Ax0 C B1u�1/

2 C
�
NB0u0 C NAx0 C NB1u�1

�2
D
�
1C B20 C

NB20
� "
u0 C

�
AB0 C NA NB0

�
x0 C

�
B0B1 C NB0 NB1

�
u�1

1C B20 C
NB20

#2

C

"
1C A2 C NA2 �

�
AB0 C NA NB0

�2
1C B20 C

NB20

#
x20 C

"
B21 C

NB21 �

�
B0B1 C NB0 NB1

�2
1C B20 C

NB20

#
u2�1

C 2

"
AB1 C NA NB1 �

�
AB0 C NA NB0

� �
B0B1 C NB0 NB1

�
1C B20 C

NB20

#
x0u�1

D 6:44Œu0 � 0:3168x0 � 0:3478u�1�
2 C 3:2438x20 C 1:2609x0u�1 C 0:2609u

2
�1;

which means J > J ? and J reaches J ? at u?0 . Hence, u?0 and J ? are optimal. This demonstrates
the correctness of our results.

5.2. Example 2

Consider the system (3) and the cost function (2) with
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A D 2; NA D 1; B0 D �2; NB0 D 1; Bd D 1; NBd D 3; d D 2; † D 1;

N D 1; R D 1; Q D 1; PNC1 D 1:

Direct computation produces the solution to (8)–(14) as

R1 D 6; T1 D �3; T
0
1 D 1; T

1
1 D 0; P1 D 4:5; P

0
1 D 5:5; P

1
1 D 0;

R0 D 23:5; T0 D �13:5; T
0
0 D 4:5; T

1
0 D �11; P0 D 15:7447; P

0
0 D 25:0851; P

1
0 D 4:6809:

From Theorem 1, it follows that the optimal controller is

u?0 D 0:5745x0 C 0:4681u�1 � 0:1915u�2;

u?1 D 0:5000x
?
1 C 0u0 � 0:1667u�1:

If the aforementioned optimal controller was a predictor form like (43), then its coefficients would
have to satisfy the following relation

0:5

0:5745
D

0

0:4681
D
�0:1667

�0:1915
;

which obviously does not hold. Therefore, the optimal controller in the multiple input-delay case
fails to admit a predictor form as in the single input-delay case.

6. CONCLUSION

This paper resolves the LQR problem for discrete-time systems with multiplicative noise and mul-
tiple input delays. A necessary and sufficient condition for the problem to admit a unique optimal
controller is given. Under this condition, the optimal feedback controller and the optimal cost are
given via coupled difference equations. The approach is based on the maximum principle and the
main idea is to establish the relations between the costate and the state. We expect that the results
in this paper pave new ways for optimal control of stochastic systems with multiple delays in both
state and control variables. In addition, this paper focuses on the finite-horizon LQR problem. The
infinite-horizon LQR problem and the stabilization problem are worth considering in the future.

APPENDIX A: PROOF OF LEMMA 1

Proof
This lemma is to be shown inductively on k. Define

J.k/
:
D

NX
iDk

E
�
x0iQxi C u

0
iRui

�
CE

�
x0NC1PNC1xNC1

�
; k D N; : : : ; 0: (A.1)

First, consider the case of k D N . By applying (4), J.N / defined via (A.1) is computed as

J.N / D E
®
u0N

�
RCE

�
B 00.N /PNC1B0.N /

��
uN

C 2u0N
�
E
�
B 00.N /PNC1Bd .N /

�
uN�d CE

�
B 00.N /PNC1A.N/

�
xN
�

C u0N�dE
�
Bd .N /

0PNC1Bd .N /
�
uN�d C 2u

0
N�dE

�
Bd .N /

0PNC1A.N/
�
xN

Cx0NE
�
A0.N /PNC1A.N/

�
xN C x

0
NQxN

¯
;

where the fact that xN ; uN and uN�d are independent of the noise !N has been used. Because
Problem 1 has a unique solution so does minuN J.N /. Therefore, the weighting matrix of uN in
J.N / must be positive definite, that is,

RN D RCE
�
B 00.N /PNC1B0.N /

�
D RC B 00PNC1B0 C†

NB 00PNC1
NB0 > 0:
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To solve the optimal uN , substituting (5) and (4) into (7) yields

0 D E
�
B 00.N /PNC1xNC1jFN�1

�
CRuN

D E
�
B 00.N /PNC1A.N/

�
xN CE

�
B 00.N /PNC1Bd .N /

�
uN�d CRNuN

D
�
B 00PNC1AC†

NB 00PNC1
NA
�
xN C

�
B 00PNC1Bd C†

NB 00PNC1
NBd
�
uN�d CRNuN :

From RN > 0, it is easily seen that the optimal uN is as (29).
Next, we show that relations (33) and (34) hold for k D N . For d > 1, (34) is trivial because

�NCd�1 D 0. For d D 1, (34) can be derived by employing (4), (5) and the optimal uN , that is,

�N D PNC1A.N/xN C PNC1B0.N /uN C PNC1Bd .N /uN�d

D
�
PNC1A.N/�PNC1B0.N /R

�1
N TN

�
xNC

�
PNC1Bd .N /�PNC1B0.N /R

�1
N T 0N

�
uN�d :

(A.2)
By plugging (A.2) into (6), one obtains

�N�1 D E
®�
A0.N /PNC1A.N/ � A

0.N /PNC1B0.N /R
�1
N TN

�
xN

C
�
A0.N /PNC1Bd .N / � A

0.N /PNC1B0.N /R
�1
N T 0N

�
uN�d jFN�1

¯
CQxN

D
�
A0PNC1AC† NA

0PNC1 NA �
�
A0PNC1B0 C† NA

0PNC1 NB0
�
R�1N TN CQ

�
xN

C
�
A0PNC1Bd C† NA

0PNC1 NBd �
�
A0PNC1B0 C† NA

0PNC1 NB0
�
R�1N T 0N

�
uN�d ;

which is just (33) with k D N .
Inductively, suppose when k > n C 1, Rk defined by (28) is positive definite; the optimal uk

is as (29); �k�1 and �kCd�1 can be expressed as (33) and (34), respectively. We shall verify this
claim for k D n. First, Rn > 0 will be shown. For convenience, denote the value of J.nC 1/ with
uk; k > nC 1; being optimal by J ?.nC 1/ and

OJ .n/
:
D E

�
x0nQxn C u

0
nRun

�
C J ?.nC 1/: (A.3)

According to the dynamic programming principle, that Problem 2 admits a unique optimal con-
troller implies that minun OJ .n/ has a unique solution. Hence, the weighting matrix of un in OJ .n/
must be positive definite. The following calculation reveals that Rn is just the weighting matrix. Let
us compute J ?.nC 1/ first. In view of (4), (6), and (7), it leads to

E
�
x0k�k�1 � x

0
kC1�k

�
D E

®
x0kE

�
A0.k/�kjFk�1

�¯
CE

�
x0kQxk

�
�E

�
x0kA

0.k/�k
�
�E

�
u0kB

0
0.k/�k

�
�E

�
u0k�dB

0
d .k/�k

�
D E

�
x0kQxk

�
�E

�
u0kB

0
0.k/�k

�
�E

�
u0k�dB

0
d .k/�k

�
D E

�
x0kQxk C u

0
kRuk

�
CE

�
u0kB

0
d .k C d/�kCd

�
�E

�
u0k�dB

0
d .k/�k

�
; k > nC 1:

Adding from k D nC 1 to k D N on the two sides of the aforementioned equation, we have

E
�
x0nC1�n � x

0
NC1PNC1xNC1

�
D E

�
x0nC1�n � x

0
NC1�N

�
D

NX
kDnC1

E
�
x0k�k�1 � x

0
kC1�k

�
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D

NX
kDnC1

E
�
x0kQxk C u

0
kRuk

�
C

NX
kDnCdC1

E
�
u0k�dB

0
d .k/�k

�
�

NX
kDnC1

E
�
u0k�dB

0
d .k/�k

�

D

NX
kDnC1

E
�
x0kQxk C u

0
kRuk

�
�

nCdX
kDnC1

E
�
u0k�dB

0
d .k/�k

�
;

where �k D 0 for k > N has been applied. From the aforementioned equation, it can be easily
obtained that

J ?.nC 1/ D E
�
x0nC1�n

�
C

nCdX
kDnC1

E
�
u0k�dB

0
d .k/�k

�
: (A.4)

To compute the weighting matrix of un in OJ .n/, let xn D 0 and un�i D 0 for i D 1; : : : ; d . (A.3)
and (A.4) imply that

OJ .n/ D E
�
u0nRun C x

0
nC1�n C u

0
nB
0
d .nC d/�nCd

�
: (A.5)

According to the inductive assumption, (33) and (34) hold for k D nC 1, that is,

�n D PnC1xnC1 C

d�1X
jD0

P
j
nC1ujCnC1�d ; (A.6)

�nCd D SnC1xnC1 C

d�1X
jD0

S
j
nC1ujCnC1�d : (A.7)

Combined with un�i D 0; i D 1; : : : ; d; and xnC1 D B0.n/un, substitution of (A.6) and (A.7)
into (A.5) yields

OJ .n/ D E
°
u0n

h
B 00PnC1B0 C†

NB 00PnC1
NB0 C B

0
0P

d�1
nC1 CE

�
B 0d .nC d/SnC1

�
B0

CE
�
B 0d .nC d/S

d�1
nC1

�i
un

±
D E

�
u0nRnun

�
;

where the fact that PnC1 and P jnC1 are deterministic while SnC1 and SjnC1 contain the noises
¹!nC1; : : : ; !nCd º are used. Thus, Rn > 0 has been shown.

Secondly, we will compute the optimal un. Substitution of (A.6), (A.7), and (4) into (7) yields

0 D E

2
4�B 00.n/PnC1 C B 0d .nC d/SnC1� xnC1
C

d�1X
jD0

�
B 00.n/P

j
nC1 C B

0
d .nC d/S

j
nC1

�
ujCnC1�d jFn�1

3
5CRun

D E
° �
B 00.n/PnC1A.n/C B

0
d .nC d/SnC1A.n/

�
xn C

�
B 00.n/PnC1Bd .n/

CB 0d .nC d/SnC1Bd .n/
�
un�d C

d�1X
jD1

h
B 00.n/P

j�1
nC1 C B

0
d .nC d/S

j�1
nC1

i
ujCn�d

C
h
B 00.n/PnC1B0.n/C B

0
d .nC d/SnC1B0.n/C B

0
0.n/P

d�1
nC1 C B

0
d .nC d/S

d�1
nC1

i
unjFn�1

±
CRun:
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Notice that xn; un; : : : ; un�d are all Fn�1-measurable and the coefficient matrices in the afore-
mentioned equation are independent of Fn�1. Also, recall that P and S in the aforementioned
equation have been assumed to be deterministic and FŒnC1;nCd�-measurable, respectively. So
one has

0 D
®
B 00PnC1AC†

NB 00PnC1
NACE

�
B 0d .nC d/SnC1

�
A
¯
xn

C
®
B 00PnC1Bd C†

NB 00PnC1
NBd CE

�
B 0d .nC d/SnC1

�
Bd
¯
un�d

C

d�1X
jD1

°
B 00P

j�1
nC1 CE

h
B 0d .nC d/S

j�1
nC1

i±
ujCn�d CRnun:

In view of Rn > 0, the optimal un can be derived as (29).
Finally, we show (33) and (34) for k D n. From (4), (6), and (A.6), �n�1 is derived as

�n�1 D E

2
4A0.n/PnC1A.n/xn C A0.n/PnC1B0.n/un C A0.n/PnC1Bd .n/un�d
C

d�1X
jD0

A0.n/P
j
nC1ujCnC1�d jFn�1

3
5CQxn

D
�
A0PnC1AC† NA

0PnC1 NACQ
�
xn C

�
A0PnC1B0 C† NA

0PnC1 NB0 C A
0P d�1nC1

�
un

C
�
A0PnC1Bd C† NA

0PnC1 NBd
�
un�d C

d�2X
jD0

A0P
j
nC1ujCnC1�d :

Applying the optimal un in the aforementioned equation generates (33) directly. In addition, from
the inductive assumption, (33) holds for k D nC d , that is,

�nCd�1 D PnCdxnCd C

d�1X
jD0

P
j

nCd
ujCn:

By employing (4) and (29) with k D n C d � 1; : : : ; n in the aforementioned identity, (34) for
k D n can be obtained, and its coefficient matrices contain the noises ¹!n; : : : ; !nCd�1º. So far,
the case of k D n has been clarified. The proof is completed in an inductive way. �

APPENDIX B: PROOF OF LEMMA 2

Before showing Lemma 2, we need to give explicit expressions of Sk and Sj
k

, j D 0; : : : ; d � 1.

Lemma 3
Define a set of matrices ˆs

k
; ˆ

s;j

k
;…s

k
and …s;j

k
, k D 0; : : : ; N; by the recursion

ˆsC1
k
D ˆ1kCsˆ

s
k C

s�1X
fD0

ˆ
1;fCd�s

kCs
…
f

k
; (B.1)

ˆ
sC1;j

k
D ˆ1kCsˆ

s;j

k
C

s�1X
fD0

ˆ
1;fCd�s

kCs
…
f;j

k
Cˆ

1;j�s

kCs
; (B.2)

…s
k D …

0
kCsˆ

s
k C

s�1X
fD0

…
0;fCd�s

kCs
…
f

k
; (B.3)
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…
s;j

k
D …0

kCsˆ
s;j

k
C

s�1X
fD0

…
0;fCd�s

kCs
…
f;j

k
C…

0;j�s

kCs
; s D 0; : : : ; d � 1; j 6 d � 1; (B.4)

with initial values

ˆ0k D I; ˆ
0;j

k
D 0; (B.5)

ˆ1k D A.k/ � B0.k/R
�1
k Tk; (B.6)

ˆ
1;j

k
D �j;0Bd .k/ � B0.k/R

�1
k T

j

k
; (B.7)

…0
k D �R

�1
k Tk; …

0;j

k
D �R�1k T

j

k
; j 6 d � 1; (B.8)

where Rk , Tk and T j
k

, j 6 d � 1, are defined by (28) and (30)–(32). Let the controller be the
optimal one, that is, (29). Then ,xkCsC1 and ukCs can be represented as

xkCsC1 D ˆ
sC1
k

xk C

d�1X
jD0

ˆ
sC1;j

k
ujCk�d ; (B.9)

ukCs D …
s
kxk C

d�1X
jD0

…
s;j

k
ujCk�d ; s D 0; : : : ; d � 1: (B.10)

Moreover, Sk and Sj
k

in (34) can be calculated by

Sk D PkCdˆ
d
k C

d�1X
fD0

P
f

kCd
…
f

k
; (B.11)

S
j

k
D PkCdˆ

d;j

k
C

d�1X
fD0

P
f

kCd
…
f;j

k
: (B.12)

Proof
First of all, (B.9) and (B.10) will be shown inductively with respect to s D 0; : : : ; d � 1. When
s D 0, (B.10) is actually the expression of the optimal controller (29). Substituting (29) into (4)
results in

xkC1 D
�
A.k/ � B0.k/R

�1
k Tk

�
xkC

�
Bd .k/ � B0.k/R

�1
k T 0k

�
uk�d �B0.k/R

�1
k

d�1X
jD1

T
j

k
ujCk�d ;

which is (B.9) with s D 0. Now, suppose (B.9) and (B.10) hold for s D 0; : : : ; n � 1 and arbitrary
k. Thus, we have

xkCnC1 D ˆ
1
kCnxkCn C

d�1X
jD0

ˆ
1;j

kCn
ujCkCn�d ; (B.13)

ukCn D …
0
kCnxkCn C

d�1X
jD0

…
0;j

kCn
ujCkCn�d ; (B.14)

xkCn D ˆ
n
kxk C

d�1X
jD0

ˆ
n;j

k
ujCk�d ; (B.15)
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ukCf D …
f

k
xk C

d�1X
jD0

…
f;j

k
ujCk�d ; f D 0; : : : ; n � 1: (B.16)

Rewrite (B.13) and (B.14) as

xkCnC1 D ˆ
1
kCnxkCn C

d�1X
jD0

ˆ
1;j�n

kCn
ujCk�d C

n�1X
fD0

ˆ
1;f �nCd

kCn
ukCf ;

ukCn D …
0
kCnxkCn C

d�1X
jD0

…
0;j�n

kCn
ujCk�d C

n�1X
fD0

…
0;f �nCd

kCn
ukCf ;

where ˆ1;j�n
kCn

D 0 and …
0;j�n

kCn
D 0 if j < n. By substituting (B.15) and (B.16) into the

aforementioned two identities, (B.9) and (B.10) with s D n can be deduced directly.
Next, (B.11) and (B.12) are to be proven. According to (33), �kCd�1 can be expressed as

�kCd�1 D PkCdxkCd C

d�1X
fD0

P
f

kCd
ukCf : (B.17)

Just now, it has been proven that

xkCd D ˆ
d
kxk C

d�1X
jD0

ˆ
d;j

k
ujCk�d ; ukCf D …

f

k
xk C

d�1X
jD0

…
f;j

k
ujCk�d :

Substituting the aforementioned equations into (B.17) yields an express of �kCd�1 like (34) with
the coefficient matrices given by (B.11) and (B.12). Hence, Sk and Sj

k
in (34) can be written as

(B.11) and (B.12). This ends the proof. �

Next, Lemma 2 is to be verified.

Proof
This lemma is to be shown inductively on k D N; : : : ; 0. The case of k D N is trivial because both
sides of (38) and (39) are zero in this case.

Suppose (38) and (39) hold for k > n. Then, the application of (38) and (39) in (28) and
(30)–(32) yields

Rk D B 00PkC1B0 C†
NB 00PkC1

NB0 C
�
P d�1kC1

�0
B0 C B

0
0P

d�1
kC1 �

dX
iD1

�
T d�iiCk

�0
R�1iCkT

d�i
iCk

C B 0dPkCdC1Bd C†
NB 0dPkCdC1

NBd CR;
(B.18)

Tk D B
0
0PkC1AC†

NB 00PkC1
NAC

�
P d�1kC1

�0
A; (B.19)

T 0k D B
0
0PkC1Bd C†

NB 00PkC1
NBd C

�
P d�1kC1

�0
Bd ; (B.20)

T
j

k
D B 00P

j�1

kC1
�

jX
iD1

�
T d�iiCk

�0
R�1iCkT

j�i

iCk
C
�
P
d�j�1

jCkC1

�0
Bd ; j D 1; : : : ; d � 1; k > n: (B.21)

So, T 0
k

is derived as

T 0k D A
0PkC1B0 C† NA

0PkC1 NB0 C A
0P d�1kC1 :
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Thus, (35)–(37) become

Pk D QC A
0PkC1AC† NA

0PkC1 NA � T
0
kR
�1
k Tk; (B.22)

P 0k D A
0PkC1Bd C† NA

0PkC1 NBd � T
0
kR
�1
k T 0k ; (B.23)

P
j

k
D A0P

j�1

kC1
� T 0kR

�1
k T

j

k
; j D 1; : : : ; d � 1; k > n: (B.24)

Next, (38) and (39) are to be shown for k D n � 1. The following equations will be proved
inductively on m D 1; : : : ; d :

E
�
B 0d .n1/Sn

�
D
�
Pm�1nm

�0
E
h
ˆd�mn

i
C

d�1�mX
fD0

"
B 0dP

f

nCd
�

d�1X
iDd�m

T d�i�1nCi

0
R�1nCiT

fCd�i
nCi

#
E
h
…f
n

i
;

(B.25)

E
�
B 0d .n1/S

j
n

�
D
�
Pm�1nm

�0
E
h
ˆd�m;jn

i

C

d�1�mX
fD0

"
B 0dP

f

nCd
�

d�1X
iDd�m

�
T d�i�1nCi

�0
R�1nCiT

fCd�i
nCi

#
E
h
…f;j
n

i

�

d�1X
iDd�m

�
T d�i�1nCi

�0
R�1nCiT

j�i
nCi C

d�2X
iDd�m

�i;j

�
P d�i�2nCiC1

�0
Bd

C �d�1;j
�
B 0dPnCdBd C†

NB 0dPnCd
NBd
�
;

(B.26)

where nm
:
D nC d �m. First, consider m D 1. Applying (B.1)–(B.4), we obtain

ˆdn D ˆ
1
n1
ˆd�1n C

d�2X
fD0

ˆ1;fC1n1
…f
n ;

ˆd;jn D ˆ1n1ˆ
d�1;j
n C

d�2X
fD0

ˆ1;fC1n1
…f;j
n Cˆ

1;j�dC1
n1

;

…d�1
n D …0

n1
ˆd�1n C

d�2X
fD0

…0;fC1
n1

…f
n ;

…d�1;j
n D …0

n1
ˆd�1;jn C

d�2X
fD0

…0;fC1
n1

…f;j
n C…

0;j�dC1
n1

:

Employing the aforementioned equations in (B.11) and (B.12) generates

E
�
B 0d .n1/Sn

�
D XE

h
ˆd�1n

i
C

d�2X
fD0

h
Yf C B

0
dP

f

nCd

i
E
h
…f
n

i
; (B.27)

E
�
B 0d .n1/S

j
n

�
D XE

h
ˆd�1;jn

i
C

d�2X
fD0

h
Yf C B

0
dP

f

nCd

i
E
h
…f;j
n

i
C Yj�d ; (B.28)

where

X D E
�
B 0d .n1/PnCdˆ

1
n1

�
C B 0dP

d�1
nCd…

0
n1
;

Yf D E
h
B 0d .n1/PnCdˆ

1;fC1
n1

i
C B 0dP

d�1
nCd…

0;fC1
n1

; f D �1; : : : ; d � 2:
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By means of (B.6)–(B.8), X and Yf can be calculated as

X D E
�
B 0d .n1/PnCdA.n1/

�
�
°
E
�
B 0d .n1/PnCdB0.n1/

�
C B 0dP

d�1
nCd

±
R�1n1 Tn1 ;

Yf D �fC1;0E
�
B 0d .n1/PnCdBd .n1/

�
�
°
E
�
B 0d .n1/PnCdB0.n1/

�
C B 0dP

d�1
nCd

±
R�1n1 T

fC1
n1

:

From (B.20) and (B.23), it is easy to obtain

X D
�
P 0n1

�0
;

Yf D �fC1;0
�
B 0dPnCdBd C†

NB 0dPnCd
NBd
�
�
�
T 0n1

�0
R�1n1 T

fC1
n1

:

By applying the aforementioned equations in (B.27) and (B.28), (B.25) and (B.26) form D 1 can
be derived.

Inductively, assume that (B.25) and (B.26) are true for m D t � 1. It will be shown that they hold
for m D t . Equations (B.1)–(B.8) imply that ˆs

k
; ˆ

s;j

k
;…s

k
and …s;j

k
are FŒk;kCs�1�-measurable.

So, ˆ1nt is independent of ˆd�tn and ˆd�t;jn , and ˆ1;fCtnt is independent of …f
n and …f;j

n for f D
0; : : : ; d � t � 1. Hence, it can be deduced from (B.1)–(B.4) that

E
h
ˆd�tC1n

i
D E

�
ˆ1nt

�
E
h
ˆd�tn

i
C

d�t�1X
fD0

E
h
ˆ1;fCtnt

i
E
h
…f
n

i
;

E
h
ˆd�tC1;jn

i
D E

�
ˆ1nt

�
E
h
ˆd�t;jn

i
C

d�t�1X
fD0

E
h
ˆ1;fCtnt

i
E
h
…f;j
n

i
CE

h
ˆ1;j�dCtnt

i
;

E
h
…d�t
n

i
D …0

nt
E
h
ˆd�tn

i
C

d�t�1X
fD0

…0;fCt
nt

E
h
…f
n

i
;

E
h
…d�t;j
n

i
D …0

nt
E
h
ˆd�t;jn

i
C

d�t�1X
fD0

…0;fCt
nt

E
h
…f;j
n

i
C…0;j�dCt

nt
:

Substitution of the aforementioned equations into (B.25) and (B.26) with m D t � 1 results in

E
�
B 0d .n1/Sn

�
DXE

h
ˆd�tn

i
C

d�t�1X
fD0

2
4Yf � d�1X

iDd�tC1

�
T d�i�1nCi

�0
R�1nCiT

fCd�i
nCi CB 0dP

f

nCd

3
5E h…f

n

i
;

(B.29)

E
�
B 0d .n1/S

j
n

�
DXE

ĥ
d�t;j
n

i
C

d�t�1X
fD0

2
4Yf � d�1X

iDd�tC1

�
T d�i�1nCi

�0
R�1nCiT

fCd�i
nCi CB 0dP

f

nCd

3
5Eh…f;j

n

i

C Yj�d �

d�1X
iDd�tC1

�
T d�i�1nCi

�0
R�1nCiT

j�i
nCi C

d�2X
iDd�tC1

�i;j

�
P d�i�2nCiC1

�0
Bd

C �d�1;j
�
B 0dPnCdBd C†

NB 0dPnCd
NBd
�
;

(B.30)
where

X D
�
P t�2ntC1

�0
E
�
ˆ1nt

�
C

0
@� d�1X

iDd�tC1

�
T d�i�1nCi

�0
R�1nCiT

�t�i
nCi C B

0
dP

d�t
nCd

1
A…0

nt
;

Yf D
�
P t�2ntC1

�0
E
h
ˆ1;fCtnt

i
C

0
@� d�1X

iDd�tC1

�
T d�i�1nCi

�0
R�1nCiT

�t�i
nCi C B

0
dP

d�t
nCd

1
A…0;fCt

nt
;

f D �1; : : : ; d � t � 1:
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By employing (B.6)–(B.8), it is easy to obtain

X D
�
P t�2ntC1

�0
A �

2
4�P t�2ntC1

�0
B0 C B

0
dP

d�t
nCd �

d�1X
iDd�tC1

�
T d�i�1nCi

�0
R�1nCiT

�t�i
nCi

3
5R�1nt Tnt ;

Yf D �fCt;0
�
P t�2ntC1

�0
Bd �

2
4�P t�2ntC1

�0
B0 C B

0
dP

d�t
nCd �

d�1X
iDd�tC1

�
T d�i�1nCi

�0
R�1nCiT

�t�i
nCi

3
5R�1nt T fCtnt

:

From (B.21) and (B.24),
�
T t�1nt

�0
and

�
P t�1nt

�0
are

�
T t�1nt

�0
D
�
P t�2ntC1

�0
B0 �

d�1X
iDd�tC1

�
T d�i�1iCn

�0
R�1iCnT

�i�t
iCn C B

0
dP

d�t
nCd ;

�
P t�1nt

�0
D
�
P t�2ntC1

�0
A �

�
T t�1nt

�0
R�1nt Tnt :

Thus, X and Yf can be further calculated as

X D
�
P t�1nt

�0
; Yf D �fCt;0

�
P t�2ntC1

�0
Bd �

�
T t�1nt

�0
R�1nt T

fCt
nt

:

Employing the aforementioned equations in (B.29) and (B.30) leads to (B.25) and (B.26) for
m D t . As a result, we have shown (B.25) and (B.26) for m D 0; : : : ; d in an inductive way. In
particular, setting m D d yields

E
�
B 0d .n1/Sn

�
D
�
P d�1n

�0
E
�
ˆ0n
�
;

E
�
B 0d .n1/S

j
n

�
D
�
P d�1n

�0
E
�
ˆ0;jn

�
�

d�1X
iD0

�
T d�i�1nCi

�0
R�1nCiT

j�i
nCi C

d�2X
iD0

�i;j

�
P d�i�2nCiC1

�0
Bd

C �d�1;j
�
B 0dPnCdBd C†

NB 0dPnCd
NBd
�
:

From (B.5), it follows that ˆ0n D I and ˆ0;jn D 0. Also, in consideration of T j�i
kCi
D 0 for j < i ,

the aforementioned equations can be further written as (38) and (39) with k D n � 1. Thus, the
proof is completed. �
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