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Abstract

We investigate a switching adaptive control scheme based on falsi"cation which is conceptually di!erent from existing switching
adaptive control schemes. A feature of the proposed localization method is its fast model falsi"cation capability. In the LTI case this is
manifested as the rapid convergence of the switching controller. By analysing the geometry of localization we give a complete solution
to the problem of optimal localization. ( 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Adaptive control; Discrete-time systems; Switching algorithms

1. Introduction

Conventional switching adaptive control techniques
(Bai, 1988; Chang & Davison, 1995; Fu & Barmish, 1986;
Martensson, 1985; Morse, 1993) are all based on some
mechanism of an exhaustive search over the entire set of
potential controllers (either a continuum set (Marten-
sson, 1985) or a "nite set (Fu & Barmish, 1986). A major
drawback of such approaches is that the search may
converge very slowly, resulting in excessive transients
which renders the system `unstablea in a practical sense.
To alleviate this problem, several new switching control
schemes have been proposed recently. Supervisory con-
trol for adaptive set-point tracking of LTI systems is
proposed in Morse (1993) to improve the transient re-
sponse. Similar supervisory control schemes were ana-
lysed in Hocherman-Frommer, Kulkarni and Ramadge
(1995) and Narendra and Balakrishnan (1994). However,
several issues still remain unresolved, in particular, with-
out a simpler proof and better understanding of the
mechanisms of supervisory switching control its design
will remain mainly a matter of trial and error.

Our primary objective is to analyse a new class of
adaptive switching controllers applicable to a wide range
of LTI/LTV systems. Our approach is based on a local-
ization method, which incorporates simultaneous falsi"-
cation of a large number of models (Zhivoglyadov,
Middleton & Fu, 1997, 2000) The main contribution of
this paper is a complete solution to the problem
of optimal localization. The potential advantages of
localization-based switching control include "nite
convergence of switching for LTI systems, fast model
falsi"cation capabilities of the controller and simplicity of
the stability analysis and realization.

The rest of the paper is organized as follows. In Sec-
tions 2 and 3 we introduce the class of uncertain systems
to be studied and review some recent results on localiza-
tion-based switching control (Zhivoglyadov, Middleton
& Fu, 1997, 2000) adding an in-depth description of the
basic localization scheme. In Section 4 we solve the
problem of optimal localization aimed at minimizing the
worst-case number of controller switchings. A simulation
example demonstrating the rapid falsi"cation capabilities
of the localization method and conclusions are given in
Sections 5 and 6, respectively.

2. Problem statement

We consider a general class of SISO discrete-time
plants in the following form:

D(t, z~1)y(t)"N(t, z~1)u(t)#m(t!1)#g(t!1), (1)
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where u(t) is the input, y(t) is the output, m(t) is the
exogenous disturbance, g(t) represents the unmodelled
dynamics (see Assumption (A5) below), z~1 is the unit
delay operator, and

N(t, z~1)"n
1
(t)z~1#n

2
(t)z~2#2#n

n
(t)z~n,

D(t, z~1)"1#d
1
(t)z~1#2#d

n
(t)z~n.

(2)

We will denote by h(t)"(n
n
(t),2, n

2
(t),!d

n
(t),2,

!d
1
(t), n

1
(t))T the vector of unknown time-varying para-

meters. Throughout the paper, we will use the following
nonminimal state-space description of plant (1):

x(t#1)"A(h(t))x(t)#B(h(t))u(t)#E(m(t)#g(t)), (3)

where

x(t)"[u(t!n#1)2u(t!1)Dy(t!n#1)2y(t)]T

and the matrices A(h(t)), B(h(t)) and E are constructed in
a standard way. We also de"ne the regressor vector
as /T(t)"[x(t) D u(t)]. Then, (1) can be rewritten as
y(t)"/T(t!1)h(t!1)#m(t!1)#g(t!1).

The following assumptions are used throughout the
paper:

(A1) The order n of the nominal plant (excluding the
unmodelled dynamics) is known.

(A2) There exists a known compact set )3R2n such
that h(t)3) for all t3N.

(A3) Plant (1) with frozen parameters and zero un-
modelled dynamics (i.e. g(t),0) is stabilizable over ).
That is, for any h(t),h3), there exists a linear time-
invariant controller C(z~1) such that the closed-loop
system is exponentially stable.

(A4) sup
tzt0

Dm(t)D4mM for some mM 50 and for any t
0
3N.

(A5) The unmodelled dynamics are arbitrary subject to
Dg(t)D4g6 (t)"e sup

0ykyt
pt~kDDx(k)DD for some e'0 and

04p(1 which represent the `sizea and `decay ratea of
the unmodelled dynamics, respectively.

(A6) The uncertain parameters are allowed to have two
types of time variations:

(i) slow parameter drift described by DDh(t)!h(t!1)DD
4a, ∀t't

0
for some a'0, and

(ii) infrequent large jumps constrained by +t`qN
i/t

s
i
4q

for all t50, where q'0 and N'0 are constants
with 1/N representing the `frequencya of large
jumps, and s

i
"0 if DDh(i)!h(i!1)DD4a and s

i
"1

otherwise.

We note that the assumptions outlined above are quite
standard and have been used in adaptive control to
derive stability results for time-varying systems (see, e.g.,
Ioannou & Sun, 1996; Middleton & Goodwin, 1988 for
more details).

The switching controller to be designed will be of the
form u(t)"K

i(t)
x(t) where K

i(t)
is the controller gain

applied at time t, and i(t) is the switching index at time t,
taking value in a "nite index set I. The objective of the

control design is to determine the set of control gains
K

I
"MK

i
, i3IN and an on-line switching algorithm for

i(t) so that the closed-loop system is `stablea in some
sense.

De5nition 2.1. System (1) satisfying (A4)}(A6) is said to
be globally mM -exponentially stabilized by the switching
controller if there exist constants M

1
'0, 0(o(1,

and a function M
2
( ) ) :R

`
PR

`
with M

2
(0)"0 such

that DDx(t)DD4M
1
o(t~t0)DDx(t

0
)DD#M

2
(mM ) holds for all

t
0
50, x(t

0
), mM 50, and m( ) ) and g( ) ) satisfying (A4) and

(A5), respectively.

3. Description of the basic localization scheme

In this section we review some results on localization-
based switching control reported in Zhivoglyadov et al.
(1997, 2000) adding an in-depth discussion of the `ge-
ometrya of localization needed for further development.
The localization technique being the key element in the
proposed method implies appropriate decomposition of
the uncertainty set ) and an e!ective online mechanism
of discarding incorrect controllers.

Consider any decomposition of the parameter set
) satisfying the following conditions:

(C1) )
i
L), )

i
O0, i"1,2,¸;

(C2) 6L
i/1

)
i
");

(C3) for each i"1,2,¸, &h
i
3)

i
(`centrea), r

i
'0

(`raduisa), K
i

(control gain), q'0 (scalar param-
eter) and symmetric positive-de"nite matrices
H

i
and Q

i
such that (A(h)#B(h)K

i
)TH

i
(A(h)#

B (h )K
i
)!H

i
4!Q

i
, ∀ D Dh!h

i
D D4r

i
#q , i"

1,2,¸.

Conditions (C1) and (C2) basically say that the uncer-
tainty set ) is presented as a "nite union of nonempty
subsets while condition (C3) de"nes each subset )

i
as

being quadratically stabilizable by a single LTI control-
ler K

i
. It is well known that such a "nite cover can be

found under assumptions (A1)}(A3) (see, e.g., Fu & Bar-
mish, 1986; Morse, 1993 for technical details and exam-
ples). The complexity of decomposing the uncertainty set,
in general, depends on many factors including the `sizea
of the set, its dimension and `stabilizabilitya properties.

The key observation used in the localization technique
is the following fact: Given any parameter vector h3)

j
and a control gain K

i(t)
for some i(t), j"1,2,¸, suppose

that i(t)"j, then it follows from the description of the
plant that

DhT
j
/(t!1)!y(t)D4r

j
DD/(t!1)DD#mM #g6 (t!1). (4)

If the above inequality is violated, then the switching
index i(t) is wrong (i.e. i(t)Oj), so it can be eliminated
(falsi"ed; see, e.g., Haber & Unbehauen, 1990). The
unique feature of the localization technique comes from
the fact that violation of (4) allows us not only to elimin-
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1 In fact, we will see in Section 4 that there are `clevera ways of
selecting i(t) when i(t!1) is falsi"ed.

Fig. 1. Localization.

ate a single index, i(t), (if i(t)Oj) from the set of possible
controller indices, but many others.

Let I(t) denote the set of `admissiblea control gain
indices at time t and initialize it to be I(t

0
)"M1, 2,2,¸N.

Choose any initial switching index i(t
0
)3I(t

0
). For t't

0
,

de"ne IK (t)"M j: (4) holds, j3I(t
0
)N. Then, the localization

algorithm is simply given by

I(t)"I(t!1)WIK (t), ∀t't
0
. (5)

The switching index is updated by taking1

i(t)"G
i(t!1) if t't

0
and i(t!1)3I(t),

any member of I(t) otherwise.

(6)

One possible way to view the localization technique is to
interpret it as family set identi"cation conducted on
a "nite set of elements. The strip depicted in Fig. 1 con-
tains only those elements which are consistent with the
measurement of the input/output pair My(t),u(t!1)N. The
high falsifying capability of the proposed algorithm ob-
served in simulations can informally be explained in the
following way. Let the index i(t) be falsi"ed, then the
discrete set Mh

i
: i3I(t)N consistent with all the past

measurements is separated from the point h
i(t)

by one of
the hyperplanes hT

j
/(t!1)"y(t)#r

j
DD/(t!1)DD$mM $

g6 (t!1) dividing the parameter space into two half-
spaces. Moreover, every element belonging to the half-
space containing h

i(t)
is falsi"ed by the algorithm of

localization (5) at the instant t.

Theorem 3.1 (Zhivoglyadov et al., to appear). Any
localization algorithm given in (5) and (6) guarantees the
following properties when e (i.e., the `sizea of unmodelled
dynamics) is suzciently small:

(i) The closed-loop system is globally mM -exponentially
stable, i.e., there exists constants M

1
'0, 0(o(1, and

a function M
2
( ) ) :R

`
PR

`
with M

2
(0)"0 such that

DDx(t)DD4M
1
o(t~t0 )DDx(t

0
)DD#M

2
(mM ) (7)

holds for all t5t
0

and x(t
0
);

(ii) The switching sequence Mi(t
0
), i(t

0
#1),2N is xnitely

convergent.

The proof of the theorem is based on the observation
that between any two consecutive switchings the closed-
loop system behaves as an exponentially stable LTI sys-
tem subject to small parametric perturbations and
bounded exogenous disturbance. Moreover, this prop-
erty does not depend on the possible evolution of the
parameters in time. This is the key point o!ering a clear
understanding of the control mechanisms.

We note that the constant M
1

in (7) is proportional to
the total number of switchings while the parameter o is
dependent on the `stabilizabilitya property of the set ).

The general structure of the switching controller for
the LTV case is similar to the time-invariant case except
that the localization algorithm needs some modi"cation.
More speci"cally, the switching index set I(t) is initialized
as I(t)"M1,2,¸N. At each t't

0
, the set IK (t) is computed

using (4) where r
j

is replaced by (r
j
#q), that is,

IK (t)"M j: DhT
j
/(t!1)!y(t)D4(r

j
#q)DD/(t!1)DD

#mM #g6 (t!1), j"1,2,¸N. (8)

By doing this we make the decomposition of the
uncertainty set ) slightly redundant. This avoids rapid
switching of the controller caused by the parameters
drifting slowly along the boundary of two (or more)
neighbouring subsets. The localization set I(t) is updated
by

I(t)"G
I(t!1)WIK (t) if I(t!1)WIK (t)O0,

IK (t) otherwise.
(9)

This discrete forgetting scheme eliminates the need for
persistency of excitation which is required in many adap-
tive control schemes.

Theorem 3.2 (Zhivoglyadov et al., to appear). The local-
ization scheme described above guarantees the following
property when e (i.e., the `sizea of unmodelled dynamics) is
suzciently small:

The closed-loop system is globally mM -exponentially stable
if M(1`*Na@q+)l

1
oN(1 where M

1
and o are constants in (7),

a, N are constants used in Assumption (A6) to describe the
&&rate'' of parameter variations and the `frequencya of large
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2For notational convenience we drop when possible the index t from
the description of the set I(t).

parameters jumps, q is given in Condition (C3), and l de-
notes the maximum number of switchings for the LTI case.

Remark 3.1. We note that the constants M
1
, l and o cor-

responding to the LTI case have been deliberately in-
cluded in the condition of Theorem 3.2 to con"rm the
intuitive conjecture that the high falsi"cation capability
of the algorithm of localization is of great importance.

4. Optimal localization

The problem of optimal localization addresses the
issue of optimal selection of the new switching index at
each switching instant so that the set of admissible
switching indices I(t) is guaranteed to be pruned down as
rapidly as possible. The problem is solved in this paper in
terms of the indices of localization de"ned below. We
assume the following for simplicity of notation.2

(A7) r
i
"r

j
"r, ∀i, j"1,2,2,¸, and some r'0.

For any set ILM1,2,2,¸N, #"Mh
i
: i3IN, a "xed j3I

and any zO0, z3R2n, de"ne the function j(z, j,#)"
DMh

i
: (h

i
!h

j
)Tz50, i3IND where D ) D denotes the cardinal

number of a set. Then ind(h
j
, #)"min

@@z@@/1
j(z, j,#) will

be referred to as the index of localization of the element
h
j

with respect to the set #.

Lemma 4.1. The index of localization ind(h
j
,#) represents

a guaranteed lower bound on the number of indices dis-
carded from the localization set I(t) at the next switching
instant provided that u(t)"K

j
x(t).

Proof. Without loss of generality, we assume that (t#1)
is the next switching instant, and controller K

j
is dis-

carded. From (8) we have jNIK (t#1), equivalently,

hT
j
/(t)'y(t#1)#(r

j
#q)DD/(t)DD#mM #g6 (t) (10)

or

hT
j
/(t)(y(t#1)!(r

j
#q)DD/(t)DD!mM !g6 (t). (11)

Taking z"!/(t)/DD/(t)DD for (10), or z"/(t)/DD/(t)DD for
(11) we see that there are j(z, j,#) number of controller
indices which do not belong to IK (t#1). We note that
/(t)O0, because otherwise it is easy to see that there
exists no element h

j
3# satisfying (10) or (11), and, conse-

quently, switching is not possible. Since ind (h
j
,#)4

j(z, j, #), we conclude that there are at least ind(h
j
, #)

number of controllers to be discarded at the switching
instant (t#1). h

Then ind#"max
j
Mind (h

j
, #): j3IN will de"ne the in-

dex of localization of the discrete set #. That is, ind#, is
the largest attainable lower bound on the number of
controllers eliminated at the time of switching, assuming
that the regressor vector can take any value. Thus the
problem of optimal localization reduces to determining
the index i(t)"i

015
(t)"argmax

j
Mind (h

j
,#(t)): j3I(t)N at

each switching instant.

De5nition 4.1. Given a "nite set #LRn and a subset
JL#; J is called a separable set of order k if
(i) DJD"k;
(ii) coMJNWcoM#!JN"0 where co M ) N stands for the

convex hull of a set.

Some properties of separable sets are listed below:

(a) a vertex of coM#N is a separable set of order 1;
(b) the order of a separable set k4D#D;
(c) for each separable set J of order k, k'1, there exists

a set J@LJ such that J@ is a separable set of order
(k!1).

Lemma 4.2. Let Hk be the set of all separable sets of order
k and Nk"6

Jk|#kJ
k
. Then,

ind#"1#arg max
k

Mk: NkO#N. (12)

Proof. Follows immediately from De"nition 4.1 and the
property of separable sets (c). Indeed, suppose that the
index of localization satis"es the relation

ind#"m'1#argmax
k

Mk :NkO#N, (13)

then there must exist an element h
j
3#, such that

ind (h
j
, #)"m, moreover, h

j
NNm~1, h

j
3#!Nm~1

since otherwise, by de"nition of separable sets
ind (h

j
, #)4m!1. But it follows from (13) that

#!Nm~1"0. On the other hand by De"nition 4.1 and
the properties of separable sets (b) and (c) the index of
localization of the set # cannot be smaller than that
given by (12). This concludes the proof. h

Denote by <( ) ) the set of vertices of co ( ) ). The com-
plete solution to the problem optimal localization is
given by the following iterative algorithm.

Algorithm A (Optimal localization). Step 1: Initialize
k"1. Compute H1"MMhN: h3<(#)N

Step 2: Set k"k#1. Compute

Hk"MJ
k~1

Xh
i
: J

k~1
3Hk~1,

h
i
3<(#!J

k~1
), J

k~1
Xh

i
is separableN.

Step 3: If Nk"#, then ind#"k, and stop, otherwise
go to Step 2.
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Fig. 2. Example of optimal localization.

This can be formulated as

Theorem 4.1. (i) The solution to the problem of optimal
localization may not be unique and is given by the set
I
015

"sub M#!Nm~1N where

m"ind#"1#argmax
k

Mk: NkO#N (14)

and subM ) N denote the set of subscripts of all the elements
in M ) N.

(ii) For mM 50,e50, the total number of switchings l
made by the optimal switching controller applied to the
LTI plant (1) satisxes the relation +l~1

p/0
ind#(t

p
)4¸!1

where t
p
, p"0,1,2, l!1 denote the switching instants.

Proof. The proof of (i) follows directly from Lemma 4.2.
To prove (ii) we note that

D#(t
1
)D4¸!ind#(t

0
),

D#(t
2
)D4D#(t

1
)D!ind #(t

1
)

4¸!ind#(t
0
)!ind#(t

1
),2

then

D#(t
l
)D4l

l
"¸!

l~1
+
i/0

ind#(t
i
).

Since l
l
51 the result follows. h

Algorithm A applied to an arbitrary localization set
# indicates that except for a very special case, namely,
Mh

j
N
j | I

"<(#), localization with any choice of the
switching index i(t) such that h

i(t)
N<(#) will always result

in elimination of more than one controller at any switch-
ing instant. This feature distinguishes localization-based
switching controllers from conventional switching con-
trollers. Moreover, a simple geometrical analysis (see,
e.g., Fig. 1) indicates that for `nicelya shaped uncertainty
sets (for example, a convex )) and large ¸ the index of
localization is typically large, that is, ind(h)<1. To al-
leviate potential computational di$culties we propose
a suboptimal localization scheme.

Algorithm B (Suboptimal localization). Step 1: Initialize
k"1. Compute C1"<(#).

Step 2: Set k"k#1. Compute Ck"Ck~1X
<(#!Ck~1).

Step 3: If Ck"0, then ind#5k, and stop, otherwise
go to Step 2.

Algorithm B allows for a simple geometrical inter-
pretation, namely, at each step a new set Ck is obtained
recursively by adding the set of vertices of (#!Ck~1).
The simplicity of the proposed algorithm is explained by
the fact that we no longer need to check the property of
separability (see Step 2 in Algorithm A).

Proposition 4.2. The index of localization ind# satisxes
the inequality

ind#51#arg max
k

Mk : CkO#N. (15)

Proof. The proof is simple and follows from the fact
that for any h3#, such that hN<(#) it is true that
ind(h,#)52. By applying this rule recursively we
obtain (15). h

Example 4.1. To illustrate the idea of optimal (subopti-
mal) localization we consider a simple localization set
#"Mh

j
N5
j/1

in Fig. 2. We note that the point h
5

is
located exactly in the centre of the square
(h

1
, h

2
, h

4
, h

3
). Applying Algorithm A to the set #

we have H1"MMh
1
N, Mh

2
,N, Mh

3
N, Mh

4
NN, H2"MMh

1
, h

2
N,

Mh
1
, h

3
N, Mh

2
, h

4
N, Mh

3
, h

4
NN, and H3"MMh

1
, h

2
, h

5
N,

Mh
1
, h

3
, h

5
N, Mh

3
, h

4
, h

5
N, Mh

2
, h

4
, h

5
NN. Since 6

J|#3J"#
we conclude that ind#"3 and the optimal switching
index is given by i(t)"5. To compute a lower bound on
the index of localizaton ind # Algorithm B is used. We
have C1"Mh

1
, h

2
, h

3
, h

4
N, C2"Mh

1
, h

2
, h

3
, h

4
, h

5
N"

#, therefore, ind#52.

Remark 4.1. To deal with the problem of suboptimal
localization di!erent heuristic procedures can be en-
visioned. For example, the following `geometric meana
algorithm of computing a new switching index
i(t)"argmin

j
DDh

j
!+

i|I(t)
h
i
/D#(t)D DD is likely to perform

well, though it is quite di$cult, in general, to theoretically
substantiate it.

5. Simulation example

Some interesting features of the localization technique
observed in simulations include the low sensitivity of the
speed of localization to the total number of "xed control-
lers and the switching index update rule, and the ability
of the controller to successfully cope with time-varying
uncertainty including frequent parameter jumps.
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Fig. 3. Example of localization: parameters jump every 7 steps.

Consider the following family of unstable (pointwise
nonminimum phase) LTV plants: y(t)"1.2y(t!1)!
1.22y(t!2)#b

1
(t)u(t!1)#b

2
(t)u(t!2)#m(t) where

the disturbance m(t) is uniformly distributed on the inter-
val [!0.1, 0.1], and b

1
(t), b

2
(t) are uncertain time-vary-

ing parameters. The a priori parameter uncertainty
bounds are given by b

1
(t)3[!1.6,!0.15]X[0.15, 1.6];

b
2
(t)3[!2,!1]X[1, 2]. With the parameters b

1i
and b

2i
taking values from the sets M!0.2,!0.3,2,

!1.6, 0.2, 0.3,2, 1.6N and M!1.1,!1.2,2,!2, 1.1,
1.2,2, 2N, respectively, the results of localization on the
"nite set Mh

i
N600
i/1

are presented in Figs. 3(a)}(e). The
algorithm of localization in Section 3 was applied and
a pole placement technique was used to compute the set
of controller gains MK

i
N600
i/1

. The poles of the nominal
closed-loop system were chosen to be (0, 0.07, 0.1). We
note that we are not aware of any successful attempts to
develop a switching controller for LTV systems, but for
the LTI case the quality of regulation is similar to that
produced by supervisory switching control (Morse, 1993)

6. Conclusions

In this paper we have presented a discussion of a new
type of adaptive switching control, namely, localization-
based switching control (Zhivoglyadov et al., 1997, 2000).
In our discussion the emphasis is placed on the `ge-
ometrya of localization paving the way for optimal con-
trol design.
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