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Abstract

In this chapter a new systematic switching control approach to adaptive stabilization
of uncertain discrete-time systems with parametric uncertainty is presented. Our
approach is based on a localization method which is conceptually different from su-
pervisory adaptive control schemes and other existing switching adaptive schemes.
Our approach allows for slow parameter drifting, infrequent large parameter jumps
and unknown bound on exogenous disturbance. The unique feature of localization
based switching adaptive control distinguishing it from conventional adaptive switch-
ing schemes is its rapid model falsification capabilities. In the LTI case this is man-
ifested in the ability of the switching controller to quickly converge to a suitable
stabilizing controller. We believe that the approach presented in this chapter is the
first design of a switching controller which is applicable to a wide class of linear
time invariant and time varying systems and which exhibits good transient perfor-
mance. The performance of the proposed switching controllers is illustrated by many
simulation examples.



1 Introduction

Control design for both linear and nonlinear dynamic systems with unknown parameters
has been extensively studied over the last three decades. Despite significant advances in
adaptive and robust control in recent years, control of systems with large-size uncertainty
remains a difficult task. Not only are the control problems complicated, so is the analysis
of stability and performance.

It is well-known [12, 24] that classical adaptive algorithms prior to 1980 were all based on

the following set of standard assumptions or variations of them:

(i) An upper bound on the plant order is known;
(i

The plant is minimum phase;

) p phase;

(iii) The sign of high frequency gain is known;
)

(iv) The uncertain parameters are constant, and the closed-loop system is free from mea-

surement noise and input/output disturbances.

Classical adaptive algorithms are known to suffer from various robustness problems [34].
A number of attempts have been made since 1980 to relax the assumptions above. A
major breakthrough occurred in the mid 1980s [17, 21, 35] for adaptive control of LTV
plants with sufficiently small in the mean parameter variations. Later attempts were made
for a broader class of systems. Fast varying continuous-time plants were treated in [36],
assuming knowledge of the structure of the parameter variations. By using the concept of
polynomial differential (integral) operators the problem of model reference adaptive control
was dealt with in [32] for a certain class of continuous-time plants with fast time-varying
parameters. An interesting approach based on some internal self-excitation mechanism was
considered in [7] for a general class of LTV discrete-time systems. The global boundedness
of the state was proved. However, it must be noted that the presence of such self-excitation
signals in a closed-loop system is often undesirable.

In another research line, a number of switching control algorithms have been proposed
recently by several authors [2, 6, 8, 20, 23, 24, 31], thus significantly weakening the as-
sumptions in (i)-(iv). Both continuous and discrete linear time-invariant systems were
considered. Research in this direction was originated by the pioneering works of Nuss-
baum [31] and Martensson [20]. Nussbaum considered the problem of finding a smooth

stabilizing controller

{ z(t) = f(g(1), 2(1)) (1)



for the one dimensional system

&(t) = az(t) + qu(t) 2)
y(t) = 2(?)

with both ¢ # 0 and @ > 0 unknown. In [31] Nussbaum describes a whole family of

controllers of the form (1) which achieve the desired stabilization of the system (2). For

example, it was shown that every solution (z(t), 2(t)) of

i = ax + qz(2* + 1)cos(rz/2)exp 22
{ ,é:x(fol) ’ )

has the property that lim; ,o, z(t) = 0 and lim,_,, 2(¢) exists and is finite. We note that
the structure of the adaptive controller is explicitly seen from (3). Another important
result proved in [31] is that there exists no stabilizing controller for the plant (2) expressed
in terms of polynomial or rational functions. A more general result was presented by
Martensson [20]. In particular, it was shown in [20] that the only a priori information
which is needed for adaptive stabilization of a minimal linear time-invariant plant is the
order of a stabilizing controller. This assumption can even be removed if a slightly more
complicated controller is used. Consider the following dynamic feedback problem: Given
the plant

t=Ax + Bu, x € R", u € R™,
{ ()

y=Cz, ye R"

and the controller

:=Fz+Gy, z€ R (5)
u=Hz+ Ky

where m, r are known and fixed, and n is allowed to be arbitrary. It is easy to see that

this is equivalent to the static feedback problem

(6)

~ A

where & = (2720)7, 4 = (W27, § = (y'2")" and A, B, C, and K are matrices of

appropriate dimensions. Let the regulator be

{ Z g(h(k))N (h(k))y

1911* + lal[*
where N (h) is an 'almost periodic’ and dense function and h and g are continuous, scalar

(7)

functions satisfying a set of four assumptions (see [20] for more details). Martensson’s
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result reads: “Assume that [ is known so that there exists a fixed stabilizing controller of
the form (5), and that the augmentation to the form (6) has been done. Then the controller
(7) will stabilize the system in the sense that

(x(t), 2(t), k(t)) — (0, 0, ky) as t — o0 (8)

where ko < 0o “.

One such set of functions given by Martensson is
h(k) = (log k)2, k> 1, g(h) = (sin hY/? + 1)n'/? (©)

Martensson’s method is based on a “dense” search over the control parameter space, allows
for no measurement noise, and guarantees only asymptotic stability rather than exponential
stability. These weaknesses were overcome in [8] where a finite switching control method
was proposed for LTI systems with uncertain parameters satisfying some mild compact-
ness assumptions. Different modifications of Martensson’s controller aimed at achieving
Lyapunov stability, avoiding dense search procedures, as well as extending this approach
to discrete time systems have been reported recently (see, e. g., [2, 8, 19, 23]). However,
the lack of exponential stability might result in poor transient performance as pointed out
by many researchers; (see, for example, [8, 19] for simulation examples). Below we present
a simple example of a controller based on a dense search over the parameter space. This
controller is a simplified version of that presented in [19].

Example 1.1 The second order plant
z(t+1) =a1z(t) + age(t — 1) + bu(t) +£(1), z,u € R, a2 € R, b#0 (10)

with a1, b # 0 being arbitrary unknown constants and sup,s, |{(t)] < oo has to be

controlled by the switching controller
u(t) = k(t)x(t) (11)

where £(0) = h(1) and k(t) = h(i), t € (t;, t;+1] and h(i) is a function dense in R defined
so that it successively looks at each interval [—p, p|, p € N and tries points 1/27 apart,

namely,

h(1)=1 h(4)=—05 h(7) =175
h(2) =0.5 h(5)=—-1 ete.
h(3) = h(6) = 2
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Figure 1: Example of a dense search

The system performance is monitored using a function
L(t) = Mt 1) Bt ) |ati)| + v(ti) (12)
For each ¢ > 1 such that ¢;_; # oo, the switching instant is defined as

b= { min{¢ : ¢ > ti1, lz(t)| > M (ti_1)B(t;i 1) |2 (t; )| + v(ti1)} if this exists
oo otherwise

(13)
where 0 < M (t), 0 < () < 1 and 0 < v(t) are strictly positive increasing functions satis-
fying the following conditions lim;_,., M (t) = +oo, limy_,o () = 1, limy_,oc (t) = + oc.
The behaviour of the closed loop system with a; = —2.2, as = 0.3 and b = 1 is illustrated
in Fig. 1(a)-(b). <
A different switching control approach, called hysteresis switching, was reported in a num-
ber of papers [22, 27, 37] in the context of adaptive control. In these papers, the hysteresis
switching is used to swap between a number of “standard” adaptive controllers operating
in regimes of the parameter space. The switching, in these cases, is used to avoid the
“stabilizability” problem in adaptive controllers.
Conventional switching control techniques are all based on some mechanism of an exhaus-
tive search over the entire set of potential controllers (either a continuum set [20] or a
finite set [8]). A major drawback is that the search may converge very slowly, resulting in
excessive transients which renders the system “unstable” in a practical sense. This phe-
nomenon can take place even if the closed-loop system is exponentially stable. To alleviate

this problem, several new switching control schemes have been proposed recently. The
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so-called supervisory control of LTI systems for adaptive set-point tracking is proposed by
Morse [25, 26] to improve the transient response. An further extension of Morse’s approach
is given in [13]. A very similar, in spirit, supervisory control scheme for model reference
adaptive control is analysed in [29]. The main idea of supervisory control is to orchestrate
the process of switching into feedback controllers from a pre-computed finite (continuum)
set of fixed controllers based on certain on-line estimation. This represents a significant
departure from from traditional estimator based tuning algorithms which usually employ
recursive or dynamic parameter tuning schemes. This approach has apparently signifi-
cantly improved the quality of regulation, thus demonstrating that switching control if
properly performed is no longer just a nice theoretical toy but a powerful tool for high
performance control systems design. However, several issues still remain unresolved. For

example,
(i) a finite convergence of switching is not guaranteed. This aspect is especially important

in situations when convergence of switching is achievable. It seems intuitively that
in adaptive control of a linear time invariant system it is desirable that the adaptive

controller “converges” to a linear time invariant controller;
(ii) the analysis of the closed loop stability is quite complicated and often dependent on

the system architecture. Without a simpler proof and better understanding of the

“hidden” mechanisms of supervisory switching control its design will remain primarily

a matter of trial and error.
In this chapter, we present a new approach to switching adaptive control for uncertain dis-
crete time systems. This approach is based on a localization method, and is conceptually
different from the supervisory control schemes and other switching schemes. The local-
ization method was initially proposed by the authors for LTI systems [39]. This method
has the unique feature of fast convergence for switching. That is, it can localize a suitable
stabilizing controller very quickly, hence the name of localization. Later this method was
extended to LTV plants in [40] . By utilizing the high speed of localization and the rate of
admissible parameter variations exponential stability of the closed-loop system was proved.
The main contribution of this chapter is a unified description of the method of localization.
We show that this method is also easy to implement, has no bursting phenomenon, and
can be modified to work with or without a known bound on the exogenous disturbance.
To highlight the principal differences between the proposed framework and existing switch-
ing control schemes, in particular, supervisory switching control, we outline potential ad-
vantages of localization based switching control:

(i) The switching controller is finitely convergent provided that the system is time-invariant.



Depending on how the switching controller is practically implemented the absence of
this property could potentially have far reaching implications;

(ii) Unlike conventional switching control based on an exhaustive search over the pa-
rameter space, the switching converges rapidly thus guaranteeing a high quality of
regulation;

(iii) The closed loop stability analysis is comparatively simple even in the case of linear
time varying plants. This is in sharp contrast with supervisory switching control
where the stability analysis is quite complicated and depends on the system archi-
tecture;

(iv) Localization based switching control is directly applicable to both linear time invariant
and time varying systems;

(v) The localization technique provides a clear understanding of the control mechanism
which is important in applications.

The rest of this chapter is organized as follows. Section 2 introduces the class of LTI

systems to be controlled and states the switching adaptive stabilization problem. Two

different localization principles are studied in Sections 3,4. We also study a problem of
optimal localization, which allows us to obtain guaranteed lower bounds on the number of
controllers discarded at each switching instant and adaptive stabilization in the presence
of unknown exogenous disturbance. Simulation examples are given in Section 5 to demon-
strate the fast switching capability of the localization method. Conclusions are reached in

Section 6.
2 Problem Statement
We consider a general class of LTT discrete-time plants in the following form:
D(z")y(t) = N(z"Hu(t) + &t = 1) +n(t — 1) (14)

where u(t) is the input, y(¢) is the output, £(#) is the exogenous disturbance, 7(t) represents

1

the unmodelled dynamics (to be specified later), 2~ is the unit delay operator,

NETY = niz7 4 ngz 4+ nuz " (15)
D™ = 14+diz ' 4+ dyz™ (16)

Remark 2.1 By using simple algebraic manipulations, measurement noise and input dis-

turbance are easily incorporated into the model (14). In this case, y(t), u(t), and &(t)
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represent the measured output, computed input and (generalized) exogenous disturbance,
respectively. For example, if a linear time-invariant discrete-time plant is described by

N(z™)

y(2) = 571

D(z)

where d(z) and q(z) are the input disturbance and plant noise, respectively, the plant can

(u(z) +d(2)) + q(2)

be rewritten as
D(z )y(z) = N(z Mu(z) + (N(z )d(z) + D(z *)q(z 7))
Consequently, the exogenous input £(z) is N(z71)d(z) + D(z 1)q(z71). &
We will denote by 6 the vector of unknown parameters, i.e.,
0= (N, n9,dp, -+, dy,m)" (17)

Throughout the paper, we will use the following nonminimal state space description of the
plant (14):

et +1) = A()z(t) + B(O)u(t) + E (£(2) +n(t)) (18)
where
T
p(t)=[ut—n+1)- ult-1)[ylt-n+1) ---yt) | (19)
and the matrices A(6), B(0) and E are constructed in a standard way
( 0 1 o --- 0 --- 0 0
0 0 1 0 0 0
0 o 0 0 0 0
AW) = 0 0 o 0 1 0 (20)
0 0 0o 0 0 0 1
L Ny Np— ny  —dy —dy —d,
0T 0T
0 0
1 0
Bl)=|—1|; E=|— (21)
0 0
0 0
L nl - L 1 -




We also define the regressor vector
_ | =)
o0 =| 1) 22)
Then, (14) can be rewritten as

y(t) = 0"t — 1) +&(t = 1) +n(t — 1) (23)

The following assumptions are used throughout this section:

(A1) The order n of the nominal plant (excluding the unmodelled dynamics) is known;
(A2) A compact set 2 € R*" is known such that 6 € Q;

(A3) The plant (14) without unmodelled dynamics (i.e., n(t) = 0) is stabilizable over ().

That is, for any 6 € €, there exists a linear time-invariant controller C'(271) such

that the closed-loop system is exponentially stable;

(A4) The exogenous disturbance £ is uniformly bounded, i.e., for all t, € N

sup [£()] < ¢ (24)

t>1g

for some known constant &;

(A5) The unmodelled dynamics is arbitrary subject to

(6] < 7(t) = € sup o' *||z(k)]] (25)

0<k<t

for some constants € > 0 and 0 < o < 1 which represent the “size” and “decay rate”

of the unmodelled dynamics, respectively;

Remark 2.2 Assumption (A1) can be relazed to that only an upper bound ny.x is known.
Assumption (A4) will be used in Sections 3-4 and will be relaxed to allow & to be unknown

in Sections 2.2.2 and 2.3.1 where an estimation scheme is given for .

Remark 2.3 We note that the assumptions outlined above are quite standard and have
been used in adaptive control to derive stability results for systems with unmodelled dynam-
ics (see, e.q., [7, 16, 21, 30] for more details). <

The switching controller to be designed will be of the following form:

u(t) = Kigyx(t) (26)



where ;) is the control gain applied at time ¢, and i(t) is the switching index at time ¢,
taking value in a finite index set I. The objective of the control design is to determine the
set of control gains

K, ={K;iel} (27)

and an on-line switching algorithm for i(¢) so that the closed-loop system will be “stable”
in some sense.

We note that switching controllers can be classified according to the logic governing the
process of switching. Here are some typical examples.

1. Conventional Switching Control

The switching index is defined as

o (hit—1) i Gy <0
it) = { i(t—1)+1 otherwise (28)

where Gy is some appropriately chosen performance index. This type of switching control
is finitely convergent and based on an exhaustive search over the parameter space (see, for
example, [8, 9]).
2. Supervisory Switching Control
The switching index is defined as

i) :{ i(t=1) if t—s(t) <tg (29)

arg minge; |e;(t)|

where s(t) is the time of the most recent switching, ¢4 is a positive dwell time, and e;(t),
Vi € I is a weighted prediction error computed for the ith nominal system. This type of
switching control has been extensively studied recently by a number of researchers (see,
e.g., [25, 26]). The proof of the closed-loop stability in this case is not dependent on finite
convergence of the switching process, furthermore, supervisory switching control is not

finitely convergent in general.

3 Direct Localization Principle

The switching algorithms to be used in this section are based on a localization technique.
This technique, originally used in [39] for LTT plants, allows us to falsify incorrect controllers
very rapidly while guaranteeing exponential stability of the closed-loop system. In this
section, we describe a direct localization principle (see, e.g. [40]) for LTI plants which is
slightly different from [39] but is readily extended to LTV plants. The main idea behind this
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principle consists of simultaneous falsification of potentially stabilizing controllers based
explicitly on the model of the controlled plant. That implies the use of some effective
mechanism of discarding controllers inconsistent with the measurements.

The specific notion of stability to be used in this section is described below:

Definition 3.1 The system (14) satisfying (A1)-(A5) is said to be globally &-exponentially
stabilized by the controller (26) if there exist constants My, > 0, 0 < p < 1, and a function
My(+) : Ry — Ry with My(0) = 0 such that

()] < Myp"10 (ko) || + Ma(€) (30)
holds for all ty >0, x(ty), £ > 0, and £(-) and n(-) satisfying (A4)-(A5), respectively.

The definition above yields exponential stability of the closed loop system provided that

€ = 0 and exponential attraction of the states to an origin centred ball whose radius is

related to the magnitude of the exogenous disturbance.

First, we decompose the parameter set {2 to obtain a finite cover {€2;}X, which satisfies

the following conditions:

Cl. Q,CcQ Q4 #{}, i=1,---,L;

C2. UZ-L:1 Q; = Q;

C3. Foreachi=1,---,L, let §; and r; > 0 denote the “centre” and “radius” of €);, i.e.,
0; € Q; and ||0 — 6;|| < r; for all # € €2;. Then, there exist K;, i = 1,---, L, such that

[ Amax(A(0) + BO)K)| <1, V|0 —6;]| <r;, i=1,---, L. (31)

Conditions C1 - C2 basically say that the uncertainty set €1 is presented as a finite union of
nonempty subsets while condition C3 defines each subset €2; as being stabilizable by a single
LTT controller K;. It is well-known that such a finite-cover can be found under assumptions
(A1)-(A3) ( see, e.g., [8, 24, 25] for technical details and examples). More specifically, there
exist (sufficiently large) L, (sufficiently small) r;, and suitable K;, i = 1,---, L, such that
(C1)-(C3) hold. Leaving apart the computational aspects of decomposing the uncertainty
set satisfying conditions C1 - C3 we just note that decomposition can be conducted off -
line, moreover, some additional technical assumptions (see, for example, C3’ below) make
the process of decomposing pretty trivial. The computational complexity of decomposing
the uncertainty set, in general, depends on many factors including the “size” of the set,
its dimension and “stabilizability” properties, and has to be evaluated on a case by case

basis.

10



The key observation used in the localization technique is the following fact: Given any
parameter vector § € €); and a control gain K,y for some i(t),j = 1,---, L. If i(t) = j,
then it follows from
y(t) = 0"t — 1) + &t — 1) +n(t 1) (32)

that

1076t = 1) —y()] < rjllo(t = DI+ E+q(t = 1) (33)
This observation leads to a simple localization scheme by elimination: If the above in-
equality is violated at any time instant, we know that the switching index i(¢) is wrong
(i.e., i(t) # j), so it can be eliminated. In identification theory this concept is sometimes
referred to as falsification; see, e.g. a survey [15] and references therein. The unique feature
of the localization technique comes from the fact that violation of (33) allows us not only
to eliminate i(¢) from the set of possible controller indices, but many others. This is the
key point! As a result, a correct controller can be found very quickly.
We now describe the localization algorithm. Let I(¢) denote the set of “admissible” control

gain indices at time ¢ and initialise it to be
I(tg) =41,2,---,L} (34)
Choose any initial switching index i(¢y) € I(ty). For t > t,, define
I(t)={j:(33) holds , j=1,---,L} (35)
Then, the localization algorithm is simply given by
1) =1(t—1)(1(t), Vt>t (36)

The switching index is updated by taking!

Z,(t):{ i(t—1) if t >ty and i(t — 1) € I(t)

any member of I(?) otherwise (37)

A simple geometrical interpretation of localization algorithm (36) is given in Fig. 2. One
possible way to view the localization technique is to interpret it as family set identification
of a special type, that is, family set identification conducted on a finite set of elements.
Interpreted in this way the localization technique represents a significant departure from

traditional family set identification ideas. Either strip depicted in Fig. 2 contains only those

!n fact, we will see in Section 2.2.1 that there may be “clever” ways of selecting i(t) when i(t — 1) is
falsified.
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elements which are consistent with the measurement of the input/output pair {y(t), u(t —
1)}. The high falsifying capability of the proposed algorithm observed in simulations can
informally be explained in the following way. Let the index i(¢) be falsified, then the discrete
set of elements {6; : ¢ € I(t)} consistent with all the past measurements is separated from

the point 6;;) by one of the hyperplanes

07 ot — 1) = y(t) +rjllo(t = DI+ €+ 7t — 1) (38)

or

07 ot — 1) = y(t) —ryllo(t = 1)|| = €~ 7t — 1) (39)
dividing the parameter space into two half-spaces. It is also clear that every element
belonging to the half-space containing the point 6 is falsified by the algorithm of local-
ization (36) at the switching instant ¢. We note that the rigorous analysis of the problem
of optimal localization conducted in Section 2.2.1 allows us to derive a guaranteed lower
bound on the number of controllers falsified at an arbitrary switching instant. A different
non-identification based interpretation of localization can be given in terms of the predic-
tion errors e; = |0] ¢(t —1) —y(t)|, j = 1,2,--- L computed for the entire set of “nominal”
models. Thus, any model giving a large prediction error is falsified. The following technical
lemma describes the main properties of the algorithm of localization (36).
Lemma 3.1 Given the uncertain system (14) satisfying Assumptions (A1)-(A5), suppose
the finite cover {Q;}E, of Q satisfies Conditions (C1)-(C3). Then, the localization algo-
rithm given in (34)-(37) applied to a LTI plant (14) possesses the following properties:

(1) 1) #{ }, Vi =to;

(ii) There exists a switching index j € 1(t) for all t > ty such that the closed-loop system
with u(t) = K;x(t) is globally exponentially stable.

Proof. The proof is trivial: Suppose the parameter vector 6 for the true plant is in €); for

some j € {1,---,L}. Then, the localization algorithm guarantees that j € I(t) for all ¢.

Hence, both (i) and (ii) hold. {

To guarantee exponential stability of the closed-loop system, we need a further property of

the finite cover of ). To explain this, we first introduce the notion of quadratic stability [3].

Definition 3.2 A given set of matrices {A(0) : 0 € Q} is called quadratically stable if

there exist symmetric positive-definite matrices H, () such that

AT(O)HAWO) - H < —Q, YHeQ (40)

12



PARAMETER SPACE

UNCERTAINTY SET

Figure 2: LOCALIZATION
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It is obvious that the finite cover {Q}L, of Q can always be made such that each €2; is
“small” enough for the corresponding family of the “closed-loop” matrices {A(0)+B(0)K; :

6 € Q;} to be quadratically stable with some K;.

In view of the observation above, we replace the Condition (C3) with the following:

C3’. Foreachi=1,---,L, let 6; and r; > 0 denote the “centre” and “radius” of €);, i.e.,
0; € Q; and ||0 — 6;|| < r; for all § € €;. Then, there exist control gain matrices K;,
symmetric positive-definite matrices H; and Q);, 7 = 1,---, L, and a positive number
q such that

(A(0) + B(0) K:)" Hi(A(0) + B(¢ )Kz) — H; < —Q;,
=1, (41)

VI0—0ill <(ri+q)i=1,---,L

Remark 3.1 Condition C3’ requires that every subset €; obtained as a result of decom-
position be quadratically stabilized by a single LTI controller. We also note that a finite
cover which satisfies (C1)-(C2) and (C3’) is guaranteed to exist. Moreover, Condition C3’
translated as one requiring the existence of a common quadratic Lyapunov function for any

subset §; further facilitates the process of decomposition.

The following theorem contains the main result for the LTI case:

Theorem 3.1 Given a LTI plant (14) satisfying Assumptions (A1)-(A5). Let {Q;}E,

be a finite cover of Q) satisfying Conditions (C1)-(C2) and (C3’). Then, the localization

algorithm given in (34)-(37) will guarantee the following properties when € (i.e., the “size”

of unmodelled dynamics) is sufficiently small:

(i) The closed-loop system is globally &-exponentially stable, i.e., there exist constants My >
0,0< p<1, and a function My(-) : Ry — Ry, My(0) = 0 such that

le@)]] < Mip!" || (to) || + Ma(E) (42)

holds for all t > ty and x(to);
(ii) The switching sequence {i(ty),i(tg + 1), -} is finitely convergent, i.e., i(t) =const,
YVt >t for some t*.

Proof. See Appendix A. ¢

The proof of the theorem presented in Appendix A is based on the observation that between
any two consecutive switchings the closed loop system behaves as an exponentially stable
LTI system subject to small parametric perturbations and bounded exogenous disturbance.

This is the key point offering a clear understanding of the control mechanisms.
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It follows from the proof of Theorem 3.1 that the constant M, in the bound (42) is pro-
portional to the total number of switchings made by the controller while the parameter p
is dependent on the “stabilizability” property of the uncertainty set 2. This further em-
phasizes the importance of fast switching capabilities of the controller for achieving good

transient performance.

3.1 Optimal Localization

The localization scheme described above allows an arbitrary new switching index in ()
to be used when a switching occurs. That is, when the previous switching index (¢t — 1)
is eliminated from the current index set I(¢), any member of I(t) can be used for i(t).
The problem of optimal localization addresses the issue of optimal selection of the new
switching index at each switching instant so that the set of admissible switching indices
I(t) is guaranteed to be pruned down as rapidly as possible. The problem of optimal
localization is solved in this section in terms of the indices of localization defined below.
In the following for notational convenience we drop when possible the index ¢ from the

description of the set of indices I(¢). Also we make the technical assumption
(A7) ri=rj=r, Vi,j=1,2,---,L, and some r > 0.

For any set I C {1,2,---,L}, © = {0, : i € I}, afixed j € I and any z # 0, z € R*",

define the function

Mz 5,0) = [{0;: (0; = 0,)"2 >0, i € T}| (43)
where | - | denotes the cardinal number of a set. Then
ind (6, ©) = min A(z.J.0) (44)

will be referred to as the index of localization of the element 6; with respect to the set ©.

Lemma 3.2 The index of localization ind(6;, ©) represents a guaranteed lower bound on
the number of indices discarded from the localization set 1(t) at the next switching instant
provided that u(t) = K;z(t).

Proof: Without loss of generality we assume that (¢ + 1) is the next switching instant,

and controller K is discarded. From (35) we have j ¢ I(t + 1), equivalently,

0j 6(t) > y(t + 1) + (r; + llo®)]] + €+t + 1) (45)
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07 o(t) <y(t+1) = (r; + llo@)|| =€ —(t +1) (46)

Taking z = —o(t)/||o(t)|| for (45), or z = ¢(t)/||4(t)|| for (46) and using (43) we see
that there are A(z,7,©) number of controller indices which do not belong to I(t + 1).
We note that ¢(t) # 0, because otherwise it is easy to see from (23) that there exists no
element 0; € O satisfying (45) or (46), and, consequently, switching is not possible. Since
ind(;,0) < A(z, J, ©), we conclude that there are at least ind(#;, ©) number of controllers
to be discarded at the switching instant (¢ 4+ 1). <

In terms of (44) the index of localization of the discrete set © is defined as
ind © = max{ind(¢,,0) : j € I} (47)
j

That is, ind ©, is the largest attainable lower bound on the number of controllers eliminated
at the time of switching, assuming that the regressor vector can take any value. The

structure of an optimal switching controller is described by
ult) = Kiyo(t) (48)
i(t) = i(t—1) if i(t —1) € I(1); (49)
| tope(t) = arg max;{ind(6;,O(t)) : j € I(t)} otherwise

The problem of optimal localization reduces to determining the optimal control law, that
is, specifying the switching index ,y(¢) at each time instant when switching has to be

made. To solve this problem we introduce the notion of separable sets.

Definition 3.3 Given a finite set © C R" and a subset J C O; J is called a separable set
of order k if

(1) |J]=Fk;
(ii) co {J}Nco {© — J} ={} where co {-} stands for the convex hull of a set.

The main properties of separable sets are listed below:

(a) A vertex of co {©} is a separable set of order 1;

(b) The order of a separable set k£ < |O|;

(c) For each separable set J of order k, k > 1, there exists a set J' C J such that J' is a
separable set of order (k — 1).
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Proof: (a), (b) are obvious. To prove (c), we note that for each separable set .J, there
exists a hyperplane P separating J and © — J. Let 7 be the normal direction of P. Move
P along 77 towards J until it hits J. Two cases are possible.

Case 1: One vertex is in contact. In this case move P a bit further to pass the vertex. The
remaining points in J form J'.

Case 2: Multiple vertices are in contact. One can always change 71 slightly so that P still

separates J and © — J, but there is only one vertex in contact with P, and we are back to
Case 1. ¢

Lemma 3.3 Let ©F be the set of all separable sets of order k and EF = Us,cor Jk-
Then,
ind © =1+ arg m]?x{k :BF £ 0} (50)

Proof: Follows immediately from Definition 3.3 and the property of separable sets (c).

Indeed, suppose that the index of localization satisfies the relation
ind ® =m>1+arg mgx{k : 2F £ 0} (51)
then there must exist an element §; € ©, such that ind(;, ©) = m, moreover,
0; ¢ 2" 90 —E™! (52)

since otherwise, by definition of separable sets ind(§;,©) < m — 1. But it follows from (51)
that © — E™~! = {}. On the other hand by Definition 3.3 and the properties of separable
sets (b),(c) the index of localization of the set © can not be smaller than that given by
(50). This concludes the proof.
Denote by V(-) the set of vertices of co (-). The complete solution to the problem is given
by the following iterative algorithm.
Algorithm A
Step 1. Initialize k = 1. Compute @' = {{#} : 6 € V(O)}
Step 2. Set k =k + 1. Compute

OF ={J,_1Ub;: Sy, € 1 0, € V(O — Ji_1), Jr_1U0; is separable}.
Step 3. If EF = O, then ind © = k, and stop, otherwise go to Step 2.
The properties of localization based switching control are summarized in the following

theorem. Let sub{-} denote the set of subscripts of all the elements in {-}.
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Theorem 3.2

(1) the solution to the problem of optimal localization may not be unique and is given by
the set
Ly = sub{® — ™1} (53)

where
m =ind © =1+ arg mgx{k : 2F £ 0} (54)

(ii) for any € >0, € > 0, the total number of switchings | made by the optimal switching
controller (48),(49) applied to LTI plant (14) satisfies the relation
-1

I<L-Y ind Ot,) —2 (55)

p=0
where t,, p=20,1,---,1 —1 denote the switching instants.

Proof. The proof of (i) follows directly from Lemma 3.3. To prove (ii) we note that
|©(t1)] < L —ind O(tg) + 1;
|©(t2)] < [O(t1)] —ind O(t1) +1 < L —ind O(ty) — ind O(t1) + 2;

then
Ot)] <y =L-Ytind O() +1 - 1.

Since v; > 1 the result follows. <

Algorithm A applied to an arbitrary localization set © indicates that except for a very spe-
cial case, namely, {0,};c; = V(©), localization with any choice of the switching index i(¢)
such that ;) ¢ V(©) will always result in elimination of more than one controller at any
switching instant. This is a remarkable feature distinguishing localization based switching
controllers from conventional switching controllers. Moreover, a simple geometrical anal-
ysis ( see, e.g., Fig. 2 ) indicates that for “nicely” shaped uncertainty sets (for example,
a convex () ) and large L the index of localization is typically large, that is, ind(6) >> 1.
Theorem 3.2 gives a complete theoretical solution to the problem of optimal localization
formulated above in terms of indices of localization. However, it must be pointed out that
the search for optimality in general is involved and may be computationally demanding. To
alleviate potential computational difficulties we propose one possible way of constructing

a suboptimal switching controller.
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Algorithm B
Step 1. Initialize £ = 1. Compute I'" = V(0).
Step 2. Set k = k + 1. Compute
Th = Th-1J V(0 — TF1).
Step 3. If T'* = {}, then ind © > k, and stop, otherwise go to Step 2.

Algorithm B allows for a simple geometrical interpretation, namely, at each step a new set
T'* is obtained recursively by adding the set of vertices of (© — T'*~1). The simplicity of the
proposed algorithm is explained by the fact that we no longer need to check the property
of separability (see Step 2 in Algorithm A).

The main property of the Algorithm B is presented in the following proposition.

Proposition 3.3 The index of localization ind © satisfies the inequality
ind © > 1+ arg ml?x{k :TF £ 0} (56)

Proof: The proof is very simple and follows from the fact that for any § € O, such that
6 ¢ V(O) it is true that ind (6,©) > 2. By applying this rule recursively we obtain (56). <

Example 3.1 To illustrate the idea of optimal (suboptimal) localization we consider a
simple localization set © = {6;}7_, depicted in Fig. 3.
We note that the point 65 is located exactly in the centre of the square (61, 6, 04, 03).
Applying Algorithm A to the set © we obtain

©' = {{6:}, {6}, {65}, {0s}},

©? = {{0h, 02}, {61, 65}, {6, 0.}, {03, 0}},

O3 = {{6, 0y, 05},{61, 03, 05},{0s, 04, O5},{0s, 04, 05}}
Since Ujees J = O we conclude that ind © = 3 and the optimal switching index is given
by i(t) = 5. To compute a guaranteed lower bound on the index of localizaton ind ©
Algorithm B is used. We have

T = {6y, 6., 03, 04},

I?= {01, 0y, 03, 04, 05} = O,
therefore, ind © > 2. We note that in this particular example the optimal solution, that

is, i(t) = 5 coincides with the suboptimal one. &
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Figure 3: Example of Optimal Localization

Remark 3.2 To deal with the problem of optimal (suboptimal) localization different sim-
ple heuristic procedures can be envisioned. For example, the following “geometric mean”
algorithm of computing a new switching index is likely to perform well in practice, though
it is quite difficult in general to obtain any guaranteed lower bounds on the indices of

localization. At any switching instant t we choose

i(t) = arg min ||6; — > 6:/|0(0)] I (57)

il (t)

%

3.2 Localization in the Presence of Unknown Disturbance Bound

In this section we further relax Assumption (A4) to allow the disturbance bound ¢ to be
unknown. That is, we replace (A4) with

(A4’) The exogenous disturbance ¢ is uniformly bounded,

sup [£(1)] < € (58)

t>1g

for some unknown constant &.

We further relax assumptions (A1)-(A5) by allowing parameters to be slowly varying. To
this end we introduce the following additional assumption

(A7) The uncertain parameters are allowed to have slow drifting described by
16() =00t = D[ < a, V1> 1 (59)
for some constant a > 0.
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Following the results presented in previous sections, we introduce a generalized localization
algorithm to tackle the new difficulty. The key feature of the algorithm is the use of
an on-line estimate of £. This estimate starts with a small (or zero) initial value, and
is gradually increased when it is invalidated by the observations of the output. With
the tradeoff between a larger number of switchings and a higher complexity, the new
localization algorithm guarantees qualitatively similar properties for the closed-loop system
as for the case of known disturbance bound.

Let £(t) be the estimate for £ at time ¢. Define

I(t,E(t) = (i : 16] o(t=1)=y(D)] < (ri+a)l|o(t=1)[+E(E-1)+7(t-1), j =1,---, L} (60)

That is, 1(t,£(t)) is the index set of parameter subsets which can not be falsified by any
exogenous disturbance sup,,, [£(t)] < &(t — 1).
Denote the most recent switching instant by s(t). We define s(¢) and £(¢) as follows:

S(to) = o (61)
E(ty) = 0 o (62)
0= { ts(t —1) Ol‘cfher;v];;;étl) T el = and £ =0(0) 2 (63)

where t; is some positive integer representing a length of a moving time interval over
which validation of a new estimate £(¢) is conducted ; u is any small positive constant
representing a steady state residual (to be clarified later), and §(¢) is an integer function

defined as follows:
5(t) = min{d: Mf_, (K, E(k — 1) +dp) # {},0 € N} (65)

The main idea behind the estimation scheme presented above is as follows. At each time
instant when the estimate £(t — 1) is invalidated, that is, ﬂfczs(t)f(k,f_(k —1)) = {} we
determine the least possible value 6 € N which guarantees that no exogenous disturbance
sup,s, [€(t)| < (€(t — 1) + 6p) would have caused the falsification of all the indices in the
current localization set. This is done by recomputing the sequence of localization sets over
the finite period of time [s(t),¢] whose length is bounded from above by t,. Since the total
number of switchings caused by the “wrong” estimate £(t) is finite and for every sufficiently

large interval of time the number of switchings due to slow parameter drifting can be made
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arbitrary small by decreasing the rate of slow parameter drifting « it is always possible to

choose a sufficiently large ¢; which would guarantee global stability of the system.

The algorithm of localization is modified as follows:

I(t) = ﬁfc:s(tq)f(k; £(k)) (66)

But the switching index i(t) is still defined as in (37).

The key properties of the algorithm above are given as follows:

Theorem 3.4 For any constant pu > 0, there exist a parameter drifting bound o > 0, a
“size” of unmodelled dynamics € > 0 (both sufficiently small), and an integer ty (sufficiently
large), such that the localization algorithm described above, when applied to the plant (14)
with Assumptions (A1)-(A3), (A4’) and (A7), possesses the following properties:

(1) 1(t) # {} for all t = to;

(2) SuPtztof_(t) < f_"' M-

Subsequently, the following properties hold:

(3) The closed-loop system is globally (€ + p)-exponentially stable, i.c., there exists con-
stants My > 0, 0 < p < 1, and a function Ms(-) : Ry — Ry with M5(0) = 0 such
that

la@)]] < Mip!" || (to) || + Ma (€ + 1) (67)

holds for all t > ty and x(ty);

(4) The switching sequence {i(ty),i(to + 1),---} is finitely convergent, i.e., i(t) =const,

YVt >t* for some t* if the uncertain parameters are constant.

Proof. See Appendix B. ¢

We note that even though the value p can be arbitrarily chosen, the estimate of the
disturbance bound, £(t), can theoretically be larger than € by the margin p. Consequently,
the state is only guaranteed to converge to a residual set slightly larger than what is given
in Theorem 3.4. Our simulation results indicate that £(¢) very likely converges to a value
substantially smaller than £. Nevertheless, there are cases where £(t) exceeds €. One
possible solution is to reduce the value of ;. However, a small g may imply a large number

of potential switchings.
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4 Indirect localization Principle

The idea of indirect localization was first proposed in [39] and is based on the use of a
specially constructed performance criterion as opposed to direct localization considered in
the previous section. To this end the output of the plant is replaced by some auxiliary
output observation of which is subsequently used for the purpose of model falsification. The
notion of “stabilizing sets” introduced below is central in the proposed indirect localization
scheme.

We first define an auxiliary output, z(t), as
2(t) = Cz(t), O e R, (68)
and the inclusion:
oo 2] < Allz(t =D + o (69)

Definition 4.1 7, is said to be a stabilizing inclusion of the system (18) if I, being satisfied
for all t >ty and boundedness of &(t), (£(t) € l) , implies boundedness of the state, x(t),

and in particular, there exist ag, By and o € (0,1) such that:

2@l < oo™ |z (to)ll + Boll€ellen

Remark 4.1 Note that the inclusion, Z; is transformed into a discrete-time sliding hy-
perplane [11] as A — 0,¢o — 0. In contrast with conventional discrete-time sliding mode
control we explicitly define an admaissible vicinity around the sliding hyperplane by specifying
the values A > 0 and ¢y > 0. $

Definition 4.2 The uncertain system (18) is said to be globally (C, A)-stabilizable if
1. Z; is a stabilizing inclusion of the system (18), and

2. there exists a control, u(t) = —Kx(t), such that after a finite time, I, is satisfied.

We will show below that stabilizing sets can be effectively used in the process of localization.
Before we proceed further we need some preliminary results. Assume for simplicity that

n(t) = 0. The case 7(t) # 0 is analysed similarly, provided ¢ is sufficiently small.

Lemma 4.1 Let sup,s,, [§(t)| < oo, CB > 0. Then there exists a co such that the system
(18) is globally (C,0)-stabilizable if and only if

[Amax(PA)| < 1 (70)
where

P=(I-(CB)"'BC) (71)
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Proof: First, suppose that (70) is violated, that is
|[Amax (PA)| > 1 (72)

We now show that Z; is not a stabilizing inclusion for any ¢y > 0. To do this, we take
£(t) =0, and u(t) = —(CB)~'C Az(t). With this control we note from (18) that z(t) = 0
for t > 0, and so for any ¢q > 0, z(t) satisfies (69). The equation for the closed-loop system

takes the form

x(t+1) = Az(t) + Bu(t) = PAx(t) (73)

which is not exponentially stable. Therefore, (72) implies that there is no ¢y such that Z,
is a stabilizing inclusion. We now establish the converse. Suppose (70) is satisfied. Then

we can rewrite (18) as:
z(t+1) = PAxz(t)+ Bu(t) + CLB(BCA)a:(t) + E¢(t)

_ pAs(t) + C%(z(t +1)— CEE@®) + BE() (74)

From (74) it is clear that if z and & are bounded, then in view of (70), z(¢) is bounded.

Therefore, Z; is a stabilizing inclusion for any c¢y. Finally, we take the control

1

u(t) = =5 (CA)() (75)

which gives
z(t+1) = CE((t) (76)

Therefore, for ¢g > |CE|sup, [£(t)|, Z; is satisfied for all ¢ > 0, and the proof is complete. <

Remark 4.2 The control, (75), is a ‘one step ahead’ control on the auziliary output, z(t).
It then follows that the stability condition (70), (71) is equivalent to the condition that
C(2I — A)™'B be relative degree 1, and minimum phase. <)

Remark 4.3 If the original plant transfer function, (14), is known to be minimum phase,
and relative degree 1 then it suffices to take C = E'', and the system is then ¢y stabilizable
for any ¢y > 0.

If the original plant transfer function is nonminimum phase, then let:

C=1fo.fr -~ fo-2,9001 "~ gn—1] (77)
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The transfer function from u(t), via (14) to z(t) is then:

2(t) = F(gu(t) +G(qy(t)
D(q)F(q) + G(¢)N(q)
(PO e o m

where F(q) = (fo+ fig+ - + fa2q""?) and G(q) = (90 + 1a + -+ + gn1q""").
Therefore, for a nonminimum phase plant, knowledge of a C' such that Z; is a stabilizing in-

clusion is equivalent to knowledge of a (possible improper) controller {u(t) = —G(q)/F(q)y(t)}
which stabilizes the system. Because we are dealing with discrete time systems, it s not

clear whether this corresponds to knowledge of a proper, stabilizing controller for the set. $

Remark 4.4 Because of the robustness properties of exponentially stable linear time in-

variant systems, Lemma 4.1 can easily be generalized to include non-zero, but sufficiently
small A. &

Lemma 4.2 Any Q) which satisfies Assumptions (A2) and (A83) has a finite decomposition

mnto compact sets:

Q= LLJ Qf (79)

such that for each {, there exists a Cy, Ay and coyp such that, for all (A, B) € Q4T is a

stabilizing inclusion, and CyB has constant sign.

Proof: (Outline)
It is well known that (see, for example, [8]) that © has a finite decomposition into sets
stabilized by a fixed controller. From Remark 4.3, the requirements for knowledge of a
Cy such that Z(Cy,-,+) is a stabilizing set on €) are less stringent than knowledge of a
stabilizing controller for the set Q¢ <
We now introduce our control method, including the method of localization for determining
which controller to use. The first case we consider, is the simplest case where there is a
single set to consider.
Case 1: L =1 (sign of CB known)
This case covers a class of minimum phase plants, plus also certain classes of nonminimum
phase plants.
For L =1 we have:

Q=0'=J W (80)



Fori=1...s we define a control law:

1
CB;

u(t) = —K(t) & ———CAx(t) (81)

where the plant model, A;, B; is in the set €2;. We require knowledge of a A such that:

B
(A= 4, (G DI < A5 Vi V(A B) € 0 (52)

and Z; is a stabilizing inclusion on €2; for all . Note that for any bounded (2, for which
we can find a single C' which gives C'(z] — A)~' B minimum phase and relative degree 1

we can always find, for s large enough, a A with the required properties (see, for example,

[8]).
At any time ¢ > 0, the auxiliary output z(¢ + 1)* which would have resulted if we applied
u(t)® = —K;z(t) to the true plant is, using (18),

CAxz(t) + CBu(t) + CEE(t)
= 2(t+1) = CB (u(t) - u(t)’) (83)

2(t+ 1)

Note that if the true plant is in the set €2;, then from (83) and (81)

At+1)=C (A .y (g—g)) 2(t) + CEE(t) (84)

and therefore, if the true plant is in €, then from (82), and with ¢y = |CE{]
12(t+ 1) < Allz(t)]] + <o (85)

Our proposed control algorithm for Case 1 is as follows (where, without loss of generality,
we take CB > 0).
Algorithm C

1.1 Initialisation

Define
So=411,2, --- s} (86)
1.2 If t > 0,
If z(t) > Alx(t — 1) + ¢o then set Sy = S;—1 — {k, ... Js—1, Js}
If —z(t) > Alz(t — 1)| + ¢o then set Sy = Si—1 — {j1,J2, ... , k}
otherwise, S; = S;_1.
where k,j; ... js and s are integers from the previous time instant (see 1.4, 1.5).
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1.3 Ift>0,
For all 7 € S;, compute u(t)" as in (81).
1.4 Order u(t)!, i € S, such that:

< u(t)’ (87)

1.5 Apply the “median” control:

where k£ = jLS/QJ,

1.6 Then wait for the next sample and return to 1.2.
We then have the following stability result for this control algorithm.

Theorem 4.1 The control algorithm, (86) - (88), applied to a plant where C' is known, and
where the decomposition (80) has the properties that (82) is satisfied and Iy is a stabilizing

inclusion, has the following properties:
(a) The inclusion:
L [2(0)] < Alle(t = D[ + co (89)
is violated no more than N = |log,(s)]| times, and

(b) All signals in the closed loop system are bounded. In particular, there exist constants

o, < oo,0 € (0,1) such that all trajectories satisfy, for any to, T > 0,

l=(to + T)|| < a0 [|z(to) || + 8 (90)

Proof:
(a) Suppose at time (¢t + 1), (89) is violated. This can occur in one of two ways which we

consider separately:
(i)
2(t+1) = z(t+1)" > Allz(?)| + co (91)
In this case, because of the ordering of u(¢)" in (87), and the definition of z(¢ + 1)’ in
(83), then

2(t+1)" > Allw(t)]] + co (92)
for alli € {k, -~ jo_1,7s}
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(i)
2(t+1) = 2(t+1)" < — (Al|z(t)]| + co) (93)

In this case
2(t+1)" < — (Allz(t)]| + o) (94)

for alli = {ji1, ja2, -+ k}. In either case, we see that if (91) is violated at time ¢, then
1
St41 < 55t (95)

from which the result follows.

(b) Firstly, we note that the control is well defined, that is, S; is never empty. This follows
since there is at least one index, namely the index of the set €2; which contains the true
plant, which is always an element of S;.

Next, we note that although we cannot guarantee that we converge to the correct control,
from (a) we know (85) is satisfied all but a finite number of times.

Since Zp is a stabilizing inclusion, then by definition the states and all signals will be
bounded.

Furthermore, since 7, is a stabilizing inclusion, there exist «g, Fy and o € (0,1) such that
if the inclusion, (89) is satisfied, for ¢ € [tg, o + 1), then

(o + )| < cwo™ [l (to)l + Bo (96)

(Note that if this is not the case, then from the definition, Z; is not a stabilizing inclusion).
Also, there exist a and 3 such that when (89) is violated:

(¢ + DI < all=@)] + 8 (97)

If we define a; = @ and 31 = (apafy+ P+ aof), then after some algebraic manipulations
we can show that for any to,7 > 0 such that (89) is violated not more than once in the
interval, (¢y,to + 1), then

(o + 1)l < aro™ flz(to)ll + By (98)

Also, we can show that with a, = 2904 — i—i‘%, and By = [y + B+ apaf = (1 + apa +
(p)?) Bo(1+ap@) B, provided (89) is not violated more than twice in the interval [to, to+T),
then

(o + Tl < co” [la(to)l + B (99)
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Repeating this style of argument leads to the conclusion that with

ax = (a00) (22)" i = (00" + | QL 54 9)
o/ (@) —
then if there are not more than N switches in [tg,to + 1), then
(o + TNl < ano™ flx(to)]| + By (100)

The desired result follows from (a) since we know that there are at most N = |logy(s)]

times at which (89) is violated. <
Case 2: L >1
Suppose that we do not know a single C' such that Z; is a stabilizing inclusion, and C'B

is of known sign, then using finite covering ideas [8], as in Remark 4.3 let

L L st
o-UJo=U U, (101)

=1 =1m=1
where for each ¢, we know Cy, Ay, ¢ such that Z; is a stabilizing inclusion on ¢ and the
sign of (C,B) is constant for all plants in QF.
At this point, one might be tempted to apply localization, as previously defined, on the
sets 2 individually and switch from Qf should the set of valid indices, S*, become empty.
Unfortunately, this procedure cannot be guaranteed to work. In particular, if Qf does not
contain the true plant, Z; needs not be a stabilizing inclusion, and so divergence of the
states may occur without violating (89). To alleviate this problem, we use the exponential
stability result, (90), in our subsequent development.
Algorithm D
We initialise (i) =0, Ry = {1,2, ... L} and take any ¢y € Ry.
We then perform localization on Q, with the following additional? steps:

If at any time

le(®)]l > ao'= (@) + 8 (102)

(where «, o, 3 are the appropriate constants for ¢ from Theorem 4.1), then we set S* = {}.
If at any time ¢, S becomes empty, we set Ry = R;_; — {¢},t(i) = t, and we take a new ¢
from R;.

With these modifications, it is clear that Theorem 4.1 can be extended to cover this case

as well:

2In fact, we can localize simultaneously within other Q7,7 # £, however for simplicity and brevity we
analyse only the case where we localize in one set at a time.
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Corollary 4.1 The control algorithm (86)-(88) with the above modifications applied to a

plant with decomposition as in (101) satisfies:

(a) There are no more than: L — 1+ S5 |log,(s¢)] instants such that
[2(t+ 1) = Ag [l @)l + cos, (103)

(where £, denotes the value of £ at time t),

(b) All signals in the closed loop are bounded. In particular, there exist constants &, f <
00,0 € (0,1) such that for any to, T > 0

[a(to + T)|| < ac" ||z (to)[| + B (104)
Proof: Follows from Theorem 4.1.

4.1 Localization in the presence of unknown disturbance

In the previous section the problem of indirect localization based switching control for
linear uncertain plants was considered assuming that the level of the generalized exogenous
disturbance &(t) was known. This is equivalent to knowing some upper bound on &£(¢). The
flexibility of the proposed adaptive scheme allows for simple extension covering the case
of exogenous disturbances of unknown magnitude. This can be done in the way similar to
that considered in Section 2.2.2. Omitting the details we just make the following useful
observation. The control law described by Algorithms C, D is well defined, that is, R, # {}
for all ¢ > g if ¢f > sup,s,, |CeEE(E)], VO =1, ... L. This is the key point allowing us to

construct an algorithm of on-line identification of the parameters ¢§, ¢ =1, ... L.

5 Simulation Examples

Extensive simulations conducted for a wide range of LTI, LTV and nonlinear systems
demonstrate the rapid falsification capabilities of the proposed method. We summarize
some interesting features of the localization technique observed in simulations which are

of great practical importance.

(i) falsification capabilities of the algorithm of localization do not appear to be sensitive to
the switching index update rule. One potential implication of this observation is as
follows. If not otherwise specified any choice of a new switching index is admissible

and will most likely lead to good transient performance;
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(ii) the speed of localization does not appear to be closely related to the total number
of fixed controllers obtained as a result of decomposition. The practical implica-
tion of this observation (combined with the quadratic stability assumption) is that
decomposition of the uncertainty set €2 can be conducted in a straightforward way
employing, for example, a uniform lattice which produces subsets €2;, 1 = 1,2,---L

of an equal size

Example 5.1 Consider the following family of unstable (possibly nonminimum phase)
LTV plants:

y(t) =12y(t —1) — 1.22y(t — 2) + b1 (t)u(t — 1) + ba(t)u(t — 2) + £(t) (105)

where the exogenous disturbance £(t) is uniformly distributed on the interval [—0.1, 0.1],
and by (t) and by(t) are uncertain parameters. We deal with two cases which correspond to

constant parameters and large-size jumps in the values of the parameters.
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Figure 4: Example of Localization: Constant Parameters

Case 1: Constant Parameters

The a priori uncertainty bounds are given by
bi(t) € [-1.6, —0.15] U [0.15, 1.6], bo(t) € [-2, —1] U1, 2] (106)
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ie, Q={[-16, —0.15] U [0.15, 1.6] x [-2, —1] U [1, 2]}. To meet the requirements of
the localization technique, we decompose €2 into 600 non-intersecting subsets with their

centres 0; = (by;, by;),i =1,---,600 corresponding to
by € {-1.6, —1.5,---,—-0.3, 0.2, 0.2, 0.3,---,1.5, 1.6}

by € {—2, —1.9,---,-1.1, =1, 1, 1.1,---,1.9, 2}

respectively.

Figures 4(a)-(c) illustrate the case where 6 is constant. The switching sequence {i(1),(2),-- -}

depicted in Fig. 4(a) indicates a remarkable speed of localization.

Case 2: Parameter Jumps

The results of localization on the finite set {6;}%% are presented in Fig. 5(a)-(e). Random

abrupt changes in the values of the plant parameters occur every 7 steps. In both cases

above the algorithm of localization in Section 2 is used. However, in the latter case the

algorithm of localization is appropriately modified. Namely, I(¢) is updated as follows
[(t):{{(t_l)mj(t) if[(t__l)ﬂj(t)#{} (107)

I(t) otherwise

Once the switching controller, based on (107) has falsified every index in the localization set

it disregards all the previous measurements, and the process of localization continues (see,

[40] for details). In the example above a pole placement technique was used to compute

the set of the controller gains {K;}%. The poles of the nominal closed loop system were
chosen to be (0, 0.07, 0.1). &

Example 5.2 Here we present an example of indirect localization considered in Section 4.

The model of a third order unstable discrete time system is given by
y(t+1) = ary(t) + agy(t — 1) + azy(t — 2) + u(t) + £(t) (108)

where ay, as, a3 are unknown constant parameters, and £(t) = &ysin(0.9¢) represents ex-

ogenous disturbance. The a priori uncertainty bounds are given by
a; € [-1.6, —=0.1] [J [0.1, 1.6], b, € [-1.6, —0.1] [ J [0.1, 1.6], a3 €[0.1,1.6] (109)

ie., Q={[-1.6, —0.1] U[0.1, 1.6] x [-1.6, —0.1] U [0.1, 1.6] x [0.1,1.6]}. Choosing the

vector C' and the stabilizing set Z as prescribed in Section 4, we obtain
T:z(t+1)] < Allz(t)]|] + co (110)
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where C'= (0, 0, 1) and A = 0.6. We decompose € into 256 non-intersecting subsets with

their centres 0; = (a4, ag;, as;), i = 1,---,256 corresponding to
ay € {~0.3,-0.7,-1.1,-1.5, 0.3, 0.7, 1.1, 1.5} (111)
as € {—0.3,-0.7,-1.1,~1.5, 0.3, 0.7, 1.1, 1.5} (112)
az € {0.3, 0.7, 1.1, 1.5} (113)

respectively. This allows us to compute the set of controller gains { K;}2%%, K; = (ku, kos, k3:).
Each element of the gain vector k;j, i € {1,2,3}, j € {1,---,256} takes values in the sets
(111), (112), (113), respectively. The results of simulation with & = 0.1, a; = —1.1,
as = —0.7, a3 = 1.4, are presented in Fig. 6(a)-(b). Algorithm C has been used for this

study.
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Figure 6: Example of Indirect Localization

6 Conclusions

In this chapter we have presented a new unified switching control based approach to adap-

tive stabilization of parametrically uncertain discrete-time systems. Our approach is based
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on a localization method which is conceptually different from the existing switching adap-
tive schemes and relies on on-line simultaneous falsification of incorrect controllers. It
allows slow parameter drifting, infrequent large parameter jumps and unknown bound on
exogenous disturbance. The unique feature of localization based switching adaptive con-
trol distinguishing it from conventional adaptive switching controllers is its rapid model
falsification capabilities. In the LTI case this is manifested in the ability of the switch-
ing controller to quickly converge to a suitable stabilizing controller. We believe that the
approach presented in this chapter is the first design of a falsification based switching con-
troller which is applicable to a wide class of linear time invariant and time varying systems

and which exhibits good transient performance.
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Appendix A
Proof of Theorem 3.1. First we note that it follows from Lemma 3.1 and the switching

index update rule (37) that the total number of switchings made by the controller is
finite. Let {t;,2,---,t} be a finite set of switching instants. By virtue of (31)-(33)
the behaviour of the closed-loop system between any two consecutive switching instants
ts,t5, 1 <s,5 < [, t; > ¢, is described by

£(t+1) = (A(B) + B0) K)o (t) + B(E(D) + n(1)) = 114)
(AlBi) + BB Ko )o®) + Bt

where  [1)(t)| < rigyll0()|] + & +7(t).
Therefore, taking into account the structure of the parameter dependent matrices A(6)
and B(f), namely the fact that only the last rows of A(f) and B(6) depend on 6 the last

equation can be rewritten as

x(t+1) = (A(Oiw,) + A0(t)) + B(Oir,) + AO(1)) Kir, ) (t) + Eé(t) (115)

for some Af(t) : ||AO(¢)|| < rig,) +¢q and 1£(t)| < €+ 7(t). This is a direct consequence of
the fact that the last equation in (114) can be rewritten as y(t + 1) = 6, 6(t) + () and
that maxag <1 ||A0TG(t)]| = ||¢(t)|| holds for any ¢(¢). By Definition 3.2 and condition
C3’ the system (115) is quadratically stable with £(¢) = 0 and ¢, being fixed; moreover,

there exists a positive definite matrix H/ = H,, such that

[[A(Ost) + AO(t)) + B(Oyr,) + AO(t)) Kigr )l 1, <1 (116)

2

max
1AO)|[<rices)+a

Here ||z||z = (#THz)Y? and for any matrix A € R, ||A]|g = max|y, -1 ||Az||x de-
notes the corresponding induced matrix norm. The equation (115) along with the property
of quadratic stability guarantee that between any two consecutive switchings the closed
loop system behaves as an exponentially stable LTI system subject to small parametric

perturbations A#(t) and bounded disturbance £(¢) and this property holds regardless of
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the evolution of the plant parameters. This is the key point making the rest of the proof
transparent.
Assume temporarily that 7(¢) = 0, then it follows from (115),(116) that

[ty + Dllm, < Pullz(t)llm, +&. (117)
(s + 2, < P22t |, + (P, + D, (118)
~ k -
la(ts + F)ls,, < PENw(t)a, + € P (119)
=1

k
[l (ts + B < onae (o) /A (Hi )2 PE N ()] + & D2 P i (H)M? - (120)

i=1
where &, = maxg ¢ ||E||m,,.
Denote
— . 1/2 — .
M - tlnﬁl?éz ()\ma:r(Hts)/)\mm(Hts)) , P = tlngl?gxtl R < 1: (121)
2 2y (N2 S pi-l
M(E) = ma &/ Ovnin (H)2 Y P! < o0 (122

j=1
Since ;) € 0(1y,), Ky € {K;}, for all t € N, i(t) € I, there exist constants 0 < M, <
00, Yo = max¢<¢||E§|| < oo such that

[|z(to)[| < Mol (ts — D[ + 70 (123)

for any switching instant t; < t; <.

Hence,
[to, t1) = [la(t)]] < Molla(ts — )| + 70 < MoMp" =07 H[w(to) | + MoM(€) +70  (124)

||z (t2)[] < Molla(ts — 1)|| + 70 < MgM?p" 7272 ||(to)|| + Ma(E) (125)
where Ma(€) = My(M(MoM(€) + 7o) + M(€)) +70;

[t,00) : [Ja(8)]] < MM p ="~ || (ko) || + M (€) - (126)

Having denoted M; = (MoM/p)', My(€) = M(€) < oo we obtain (42). To conclude the
proof we note that the result above can be easily extended to the case 7(t) # 0, provided
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that the “size” of unmodelled dynamics € is sufficiently small. Indeed, let n(t) # 0. First,
we note that due to the term 7(¢) in the algorithm of localization (33)-(37) the process of
localization can not be disrupted by the presence of small unmodelled dynamics. In view
of (A5),(117)-(126) it is easy to show that provided that e is sufficiently small

[t1,00) = [la()]] < MgM' ! (to)|| + Mi(€) + Myella(to) | (127)
with M, being a positive constant independent of x(ty). Therefore,
eI < (Mip'™" + Mye)||(to)[| + M(E) (128)

is valid for all ¢y € N, ¢t > ¢;. From (128) and Assumption (A5) exponential stability of the
closed loop system (if M;(€) = 0) or exponential convergence of the states to the residual
set (if M;(€) > 0) can be easily established. Indeed, in this case it is always possible to
specify a sufficiently large integer T' such that (M;p" + M,e) < 1. This, in turn, trivially
implies stability. The finite number of the controller switchings follows directly from the
switching index update rule (37). This also implies the finite convergence of switching,
however, it is quite difficult, in general, to put an upper bound on ¢;. This obviously does
not affect the stability properties of the closed loop. <

Appendix B

Proof of Theorem 3.4. First we note that the property (1) follows directly from the
structure of the algorithm of localization (66). It is straightforward to verify that relations
(60)-(65) guarantee that the sequence of localization sets I(t) is well defined.

To prove (2) consider first the case o = 0. It is clear that
t A~ —
(N 1(k,&(k—1)) # {} (129)

if mingepg{{(k + 1)} > & for all ¢ > ¢ . Since, according to (64), the estimate
£(t) is updated only if (129) does not hold, and taking into account the discrete nature of
updating expressed by (65) we conclude that

sup(t) < €+ p (130)

t>to

Let @ > 0. Then it is easy to see that the arguments above remain valid for any finite
interval of time [s(t), s(t) +1t4), provided that the rate of parameter variations is sufficiently
small, namely, o < ¢/t4. To conclude the proof of (130) it suffices to note that the estimate
£(t) in (64) does not change if t — s(t) > tg.
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Proof of statements (3), (4) follows closely those of Theorem 3.1. Here we present a brief
sketch of the proof. Consider a finite time interval T' = [s(t), s(t) + t4), < tq < 0o. Let
£(s(t)) > &, then the total number of switchings s made by the controller over T satisfies
the condition s <1 if a < g/ty . Therefore, the states are bounded by (126) with ¢,
replaced by s(t). Moreover, (126) is valid for any time interval T = [s(t), s(t) + 1), T > t4
such that

_ﬂ( )f(k,S(S(t))) 74 (131)

Relying on (126) and taking into account the fact that the index s(t) is reset every time
when (131) is violated for t — s(t) > t4 it is always possible to choose sufficiently large
integer ¢, such as to guarantee exponential stability of the closed-loop system. Let & be
unknown, then for any £(ty) > 0 the inequality (126) can be possibly violated no more
than ([¢/p] +1) times. Relying on this fact and using standard arguments exponential
stability of the closed-loop system is easily established. ¢
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