LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS¹

Peng Shi, Minyue Fu and Carlos E. de Souza

Department of Electrical & Computer Engineering
The University of Newcastle
NSW 2308 Australia

Abstract

This paper formulates a loop transfer recovery (LTR) problem for continuous-time systems with sampled output measurements in the H_{∞} setting and shows that this LTR problem is equivalent to a known filtering problem for sampled-data systems, which can be solved in terms of a pair Riccati differential and difference equations.

1. Introduction

A consideration amount of attention has been paid to the theory and application of loop transfer recovery in the last decade; see, for example, [1, 2, 3, 4, 5, 6]. The standard loop transfer recovery problem is as follows: Given a plant G(s) and a target loop $L_d(s)$, designed using state feedback control, find a dynamic output feedback controller such that the following two properties are satisfied:

- (i) the closed-loop input-output response is the same as in the state feedback case; and
- (ii) the target loop is "recovered" in some sense.

In this paper, we will design an observer-based state feedback controller for a linear continuous-time system using sampled measurements such that the input-output mapping of the closed-loop systems is the same as given by some ideal state feedback and the target loop given by the state feedback is best approximated in some H_{∞} sense. The main contributions of this paper are to set up the concept of generalized LTR in sampled-data systems and to obtain necessary and sufficient conditions for it. It will be shown that the generalized LTR problem is equivalent to an H_{∞} filtering problem for sampled-data systems.

2. Problem Formulation

Let the plant model be represented by a state-space realization:

$$\dot{x}(t) = Ax(t) + Bw(t) + Bu(t), \ x(0) = x_0$$
 (2.1)

$$y(ih) = Cx(ih) + Dv(ih)$$
(2.2)

where $x(t) \in \mathbb{R}^n$ is the state, x_0 is an unknown initial condition, $u(t) \in \mathbb{R}^l$ is the control input, $w(t) \in \mathbb{R}^p$ is the input disturbance, $y(ih) \in \mathbb{R}^m$ is the sampled output measurement, $0 < h \in \mathbb{R}$ is the sampling period, i is a positive integer, and A, B, C and D are known real timevarying bounded matrices of appropriate dimensions with A and B being piecewise continuous.

Assumption 2.1 $R_D = DD^T > 0$.

Suppose a desired state feedback control law be

$$u(t) = r(t) + z(t) = r(t) + Kx(t)$$
 (2.3)

where $r(t) \in \mathbb{R}^{\ell}$ is the reference input and $K \in \mathbb{R}^{\ell \times n}$ stands for the feedback gain.

Substituting (2.3) into the system (2.1)-(2.2), we have

$$\dot{x}(t) = (A + BK)x(t) + Br(t) + Bw(t)$$
 (2.4)

$$y(ih) = Cx(ih) + Dv(ih)$$
(2.5)

When the state is not measureable, the feedback law (2.3) needs to be replaced by an observer-based compensator, (Σ_c) , of the following form:

$$(\Sigma_c): u(t) = r(t) + z(t) = r(t) + Kx(t)$$
 (2.6)

$$\dot{\hat{x}}(t) = A_0 x(t) + B_0 u(t), \ t \neq ih, \ x(0) = x_0 (2.7)$$

$$\hat{x}(ih) = \hat{x}(ih^{-}) + L[y(ih) - C_0\hat{x}(ih^{-})]$$
 (2.8)

where $\hat{x}(t)$ is the estimate of x(t), x_0 is the best estimate of x_0 , A_0 , B_0 , C_0 , the observer gain matrix L are to be chosen, and the left limit of $x(ih^-)$ is defined as: $\hat{x}(ih) := \lim_{\varepsilon \to 0} \hat{x}(ih - \varepsilon)$ for any $\varepsilon > 0$.

The standard LTR problem, either in the continuoustime or discrete-time case, is to find an observer-based controller such that the following two conditions are satisfied:

- 1) The closed-loop transfer function from r to y is the same as in the state feedback;
- 2) The loop transfer function from w to z without closing the loop, best approximates the transfer function from w to z.

Now we can formulate the loop transfer recovery problem for the system (2.1)-(2.2) as follows:

Design a controller (Σ_c) such that

¹This work has been supported by the Australian Research Council.

- (i) (Separation principle). When we use the estimate $\hat{x}(t)$, the input-output mapping, i.e. the mapping from r(t) to y(ih) when $w(t) \equiv 0$, $v(ih) \equiv 0$ and $\hat{x}_0 = x_0 = 0$ is the same as in the state feedback case; and
- (ii) (Loop transfer recovery performance). The feedback error $z(t) \hat{z}(t)$ is as small as possible in some sense.

It can be easily shown that the separation principle is satisfied by choosing $A_0 = A$, $B_0 = B$ and $C_0 = C$.

For convenience, we denote the ideal feedback at the sampling instants ih and its estimate by

$$z_d(ih) = Kx(ih) \tag{2.9}$$

$$\hat{z}_d(ih) = K\hat{x}(ih) \tag{2.10}$$

respectively. In order to measure the loop transfer recovery performance, we define the following index:

$$J(R,T) = \sup_{w,v,x_0} \left[\frac{\lambda_1 ||z - \hat{z}||_{[0,T]}^2 + \lambda_2 ||z_d - \hat{z}_d||_{(0,T)}^2}{||w||_{[0,T]}^2 + ||v||_{(0,T)}^2 + x_0^T R x_0} \right]^{\frac{1}{2}}$$

where T defines the time-horizon, $(w, v, x_0) \in L_2[0,T] \oplus \ell_2(0,T) \oplus \mathbb{R}^n$ is such that $||w||_{[0,T]}^2 + ||v||_{(0,T)}^2 + x_0^T R x_0 \neq 0$, $R = R^T > 0$ is a weighting matrix for x_0 , and $\lambda_1 \geq 0$ and $\lambda_2 \geq 0$ are weighting parameters for the continuous-time error $z - \hat{z}$ and discrete-time error $z_d - \hat{z}_d$, respectively, satisfying $\lambda_1 + \lambda_2 = 1$. In the above, $||\cdot||_{[0,T]}$ and $||\cdot||_{(0,T)}$ will refer to the $L_2[0,T]$ norm and $\ell_2(0,T)$ norms, respectively.

The generalized LTR problem is as follows:

Given a scalar $\gamma > 0$ and a matrix $R = R^T > 0$, find observer gain L for the controller (2.6)-(2.8) with $A_0 = A$, $B_0 = B$ and $C_0 = C$ such that $J(R, T) < \gamma$.

3. Solution

In the following, we will show that the generalized LTR problem is equivalent to a filtering problem in sampled-data systems. Note that this equivalence has been demonstrated in both the continuous-time and discrete-time cases [6, 7].

Theorem 3.1 Consider the system (2.1)-(2.2) satisfying Assumption 2.1, and let $\gamma > 0$ be a given scalar. Then, there exists an observer gain L for the controller (2.6)-(2.8) such that $J(R,T) < \gamma$ if and only if there exists a bounded symmetric matrix function Q(t) > 0, $\forall t \in [0,T]$, which satisfies the Riccati differential equation with jumps

$$\dot{Q}(t) = AQ(t) + Q(t)A^{T} + \gamma^{-2}Q(t)K^{T}KQ(t) + BB^{T}, t \neq ih, \ Q(0) = R^{-1}$$
 (3.11)
$$Q(ih) = [Q^{-1}(ih^{-}) - \gamma^{-2}K^{T}K + C^{T}R_{D}^{-1}C]^{-1},$$

$$ih \in (0,T) \tag{3.13}$$

Under the above condition, a suitable observer gain matrix is given by

$$L(ih) = Q(ih)C^{T}(ih)R_{D}^{-1}(ih), ih \in (0,T) \quad (3.13)$$

A solution to the generalized loop transfer recovery problem for the system (2.1)-(2.2) over an infinite horizon $[0,\infty)$ is provided in the next theorem.

Theorem 3.2 Consider the system (2.1)-(2.2) satisfying Assumption 2.1, and let $\gamma > 0$ be a given scalar. Then, there exists an observer gain L for the controller (2.6)-(2.8) such that $J(R,\infty) < \gamma$ if and only if there exists a stabilizing solution $Q(t) = Q^T(t) > 0$, $\forall t \in [0,\infty)$, to the Riccati differential equation with jumps

$$Q(ih) = [Q^{-1}(ih^{-}) - \gamma^{-2}K^{T}K + C^{T}R_{D}^{-1}C]^{-1},$$

$$ih \in (0, \infty)$$
(3.15)

When such a solution exists, a suitable observer gain matrix is given by

$$L(ih) = Q(ih)C^{T}(ih)R_{D}^{-1}(ih), ih \in (0, \infty).$$
 (3.16)

Remark 3.1 In view of the results in [8], Theorems 3.1 and 3.2 imply that the generalized LTR problem for the system (2.1)-(2.2) is equivalent to an H_{∞} sampled-data filtering problem.

References

- [1] M. Athans. A tutorial on the LQG/LTR method. In *Proc. 1986 American Control Conf.*, 1289-1296, Seattle, WA, 1986.
- [2] J. C. Doyle. Guaranteed margins for LQG regulators. *IEEE Trans. Automat. Control*, 23(4):756-757, 1978.
- [3] A. Saberi and P. Sannuti. Observer design for loop transfer recovery and for uncertain dynamical systems. *IEEE Trans. Automat. Control*, 35(8):878-897, 1990.
- [4] G. Stein and M. Athans. The LQG/LTR procedure for multivariable feedback control design. *IEEE Trans. Automat. Control*, 32(2):105-114, 1987.
- [5] J. C. Doyle and G. Stein. Robustness with observers. *IEEE Trans. Automat. Control*, 24(4):607-611, 1979.
- [6] M. Fu and C. E. de Souza. H_{∞} filtering and loop transfer recovery. *Proc. 9th Int. Symp. on Math. Theory of Networks and Systems*, Vol. 2, 311–316, Kobe, Japan, 1991.
- [7] Z. Zhang and J. S. Freudenberg. Loop transfer recovery for nonminimum phase plants. *IEEE Trans. Automat. Control*, 35(5):547-553, 1990.
- [8] P. Shi, C. E. de Souza, and L. Xie. Robust H_{∞} filtering for uncertain systems with sampled-data measurements. *Proc. 32nd IEEE Conf. Decision & Control*, 793–798, San Antonio, Texas, USA, 1993.