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Abstract

This paper formulates a loop transfer recovery (LTR)
problem for continuous-time systems with sampled out-
put measurements in the Ho, setting and shows that this
LTR problem is equivalent to a known filtering problem
for sampled-data systems, which can be solved in terms
of a pair Riccati differential and difference eqnations.

1. Introduction

A consideration amount of attention has been paid to the
theory and application of loop transfer recovery in the
last decade; see, for example, [1, 2, 3, 4, 5, 6]. The stan-
dard loop transfer recovery problem is as follows: Given
a plant G(s) and a target loop Lg4(s), designed using
state feedback control, find a dynamic output feedback
controller such that the following two properties are sat-
isfied:

(1) the closed-loop input-output response is the same as
in the state feedback case; and

(it) the target loop is “recovered” in some sense.

In this paper, we will design an observer-based state feed-
back controller for a linear continnous-time system using
sampled measurements such that the input-output map-
ping of the closed-loop systems is the same as given by
some ideal state feedback and the target loop given by the
state feedback is best approximated in some H,, sense.
The main contributions of this paper are to set up the
concept of generalized LTR in sampled-data systems and
to obtain necessary and sufficient conditions for it. It will
be shown that the generalized LTR problem is equivalent
to an Hoo filtering problem for sampled-data systems.

2. Problem Formulation

Let the plant model be represented by a state-space re-
alization:
z(t) = Az(t) + Bw(t) + Bu(t), =(0) = zo
y(th) = Cz(ih) + Duv(ih)

(2.1)
(2.2)
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where x(t) € R" is the state, Tg is an unknown initial
condition, u(t) € R’ is the control input, w(t) € R? is
the input disturbance, y(¢h) € R is the sampled output
measurement, 0 < A € R is the sampling period, 7 is a
positive integer, and A, B, C and D are known real time-
varying bounded matrices of appropriate dimensions with
A and B being piecewise continuous.

Assumption 2.1 Rp = DD7 > 0.
Suppose a desired state feedback control law be

w(t) = r(t) + 2(1) = »(t) + Ka(t)  (2.3)

where r(t) € R’ is the reference iput and K& € RY*"
stands for the feedback gain.

Substituting (2.3) into the system (2.1)-(2.2), we have

z(t) = (A + BK)a(t) + Br(t) + Bw(t)
y(ih) = Cx(ih) + Dv(ih)

(2.4)
(2.5)

When the state is not measureable, the feedback law (2.3)
needs to be replaced by an observer-based compensator,
(X:), of the following form:

(Ze) su(t)y =r{)+ z(t) = r(t) + Kx(2) (2.6)
2(1) = Aox(t) + Bou(t), t # ih, £(0) = xy (2.7)
&(ih) = 2(th™) + Ly(ih) — Cha(ih™)] (2.8)

where £(t) is the estimate of z(t), 2y is the best esti-
mate of ®o, Ao, Bo, Co, the observer gain matrix L are
to be chosen, and the left limit of z(2h7™) is defined as :
£(ih) = lime g &(ih — €) for any £ > 0.

The standard LTR problem, either in the continuous-
time or discrete-time case, is to find an observer-based
controller such that the following two conditions are sat-
isfied:

1) The closed-loop transfer function from 7 to y is the
same as in the state feedback;

2) The loop transfer function from w to z without closing
the loop, best approximates the transfer function from w
to 2.

Now we can formulate the loop traunsfer recovery problem
for the system (2.1)-(2.2) as f{ollows:

Design a controller (X.) such that



(i) (Separation principle). When we use the es-
timate £(t), the input-output mapping, i.e. the map-
ping from r(t) to y(ih) when w(t) = 0, v(¢h) = 0 and
Zo = g = 0 is the same as in the state feedback case;
and

(ii) (Loop transfer recovery performance). The
feedback error 2(t) — #(t) is as small as possible in some
sense.

It can be easily shown that the separation principle is
satisfied by choosing Ag = A, By = B and Cy = C.

For convenience, we denote the ideal feedback at the sam-

pling instants ih and its estimate by
z4(th) = Kz(zh)
24(th) = K&(zh)

(2.9)
(2.10)

respectively. In order to measure the loop transfer recov-
ery performance, we define the following index:

1
Mllz = Hlfo zy + Aellza = Zallfor) |

J(RvT = sup
) ”w”ﬁ).’]‘] + ||v||?0‘T) + ﬂ?g R.’l)(,

w,v,To

where T defines the time-horizon, (w,v,29) €
Ly[0,T] @ £5(0,7) & R™ is such that ||w||f0 7+
||v“(20 ryt+ ¥ Reo # 0, R = RT > 0 is a weighting
matrix for g, and Ay > 0 and Az > 0 are weighting pa-
rameters for the continuous-time error z— # and discrete-
time error zg — Z4, respectively, satisfying Ay + As = 1.
In the above, || - {lor] and || - [|(o,7) Will refer to the
L»[0,T] norm and ¢5(0, T') norms, respectively.

The generalized LTR problem is as follows:

Given a scalar ¥ > 0 and a matrix R = RT > 0, find
observer gain L for the controller (2.6)-(2.8) with Ay =
A, By = B and Cj = C such that J(R,T) < 7.

3. Solution

In the following, we will show that the generalized LTR
problem is equivalent to a filtering problem in sampled-
data systems. Note that this equivalence has been
demonstrated in both the continuous-time and discrete-
time cases [6, 7).

Theorem 3.1 Consider the system (2.1)-(2.2) sat-
isfying Assumption 2.1, and let v > 0 be a given
scalar. Then, there exisis an observer gain L for
the controller (2.6)-(2.8) such that J(R,T) < v if
and only if there exists a bounded symmelric malriz

funetion Q1) > 0, Vt € [0,T], which satisfies the
Riccatr differential equation with jumps

Q) = AQ(M) +QWAT +7* QKT KQ(t)
+BBT t £ ih, Q)= R™'  (3.11)

[Q (k™) -y KT K + CTR, ],
ih € (0,T) (3.12)

Q(ih)
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Under the above condition, a suitable observer gain
matriz 15 given by

L(ih) = QGh)CT (ih)Rp (ih), ih € (0,T) (3.13)

A solution to the generalized loop transfer recovery prob-
lem for the system (2.1)-(2.2) over an infinite horizon
[0, 00) is provided in the next theorem,

Theorem 3.2 Consider the system (2.1)-(2.2) sat-
isfying Assumplion 2.1, and let v > 0 be a given
scalar. Then, there exists an observer gain L for
the controller (2.6)-(2.8) such that J(R,o00) < v if
and only if there exists a stabilizing solution Q(t) =
QT(t) > 0, Vt € [0,00), to the Riccati differential
equation with jumps

Q) = AQW)+QMWA” + 7y *QKT KQ(1)
+BBT 1t #£ih, QUO)=R™'  (3.14)
QGh) = [Q YNih™)—~+*KTK +CTR'C]Y,

ih € (0, ) (3.15)

When such a solution exists, a suitable observer gain
matriz is given by

L(ih) = Q(ih)CT(ih)Ry (ih), ih € (0,20). (3.16)

Remark 3.1 In view of the results in [8], Theorems
3.1 and 3.2 imply that the generalized LTR problem
for the system (2.1)-(2.2) us equivalent lo an Hq,
sampled-daia filtering problem.
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