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Abst rac t  

Classical model reference adaptive control schemes require the following 
assumptions on the plant: A1) minimum phase; A2) known upper bound 
of the plant order; A3) known relative degree; and A4) known sign of high 
frequency gain. It is well-known that the robustness of the adaptive sys- 
tems is a potential problem, and it requires many sophisticated techniques 
to fix it. In this paper, we consider the same model reference control prob- 
lem via robust control. By further assuming that the boundedness of the 
parameter uncertainties of the plant (which i sa  very weak assumption), 
we show that a linear time-invariant dynamic output  feedback con- 
troller can be constructed to give the following property: the closed-loop 
system is internally stable and its transfer function is arbitrarily close to 
the reference model. This method provides simple controllers and good 
robustness. It also has potential to cope with large size fast time-varying 
uncertainties. 

1 I n t r o d u c t i o n  

Both adaptive control theory and robust control theory have been developed to 

accommodate a wide range of uncertainties. Although experts have not agreed 

on the distinction between these two theories, one of their important differences 

is that adaptive controllers are nonlinear and time-varying (NLTV) while ro- 

bust controllers are usually linear and time-invariant (LTI). Despite of the over- 

whelming progress made recently on the robust control theory, we find ourselves 

constantly "bothered" with the following fundamental question: 

Q1. Can an LTI controller really compete with an NLTV controller? 

1This work is supported by the Australian Research Council. 
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A positive answer to the above question has been given to the important 

case of quardratic stabilization of linear systems which are subject to a type of 

norm-bounded uncertainty. It is shown in this case that NLTV controllers offer 

no advantage over their LTI partners for the (see, e.g., [1]). However, since the 

adaptive control is often concerned with performance (such as model matching) 

and structured uncertainty in the parameter (coefficient) space, the above result 

does not apply and the question Q1 still deserves serious attention. 

In this paper, we consider the problem of model reference control of uncertain 

linear systems and address the question Q1 from a different perspective: 

q2. Under what conditions can we find an LTI controller such that the closed- 

loop system is stable and ~matches" a given reference model in certain 

sense for all admissible uncertainties? 

Note that this is exactly the question asked by the adaptive control theory except 

that an NLTV controller is allowed there. It is well known that all the classi- 

cal model reference adaptive control (MtLAC) schemes (developed prior to the 

1980's) require the following standard assumptions: 

A1. The plant is of minimum phase; 

A2. The upper bound of the plant order is known; 

A3. The relative degree of the plant is known; 

A4. The sign of the high-frequency gain is known; 

B1. The reference model has the same relative degree as the plant; and 

B2. The reference input is bounded and piecewise continuous. 

With these assumptions, the MRAC schemes can guarantee that the closed- 

loop system becomes stable and converges to the reference model. However, the 

robustness of the classical adaptive schemes is known to be a serious problem, 

and it requires sophisticated techniques to fix it (see, e.g., [2]). Moreover, besides 

the complexity problem of the "robustified" adaptive controllers, the degree of 

robustness is often small, and additional information on the system (such as the 

size of the unmodeled dynamics and a bound on the input disturbance) is usually 

required. 

The focal point of this paper is to answer the question Q2 by showing that 

a result similar to that given by MRAC can be achieved by a model reference 
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robust control (MRB.C) technique, provided there are some additional very mild 

assumptions. More precisely, suppose assumptions A1)-A4) and the following 

additional ones are satisfied: 

A5. The set of admissible uncertain parameters is compact and known; 

A6. The transfer function of the reference model is stable and strictly proper. 

Then, we provide a technique for constructing a simple LTI controller which 

guarantees the robust stability of the closed-loop system and that the Hoo norm of 

the difference in the transfer functions of the closed-loop system and the reference 

model can be made to be arbitrarily small. Several advantages of this MRRC 

method are obvious: an LTI controller allows simple analysis of the system per- 

formaace and robust stability; it provides easy implementation and simulation; 

furthermore, robustness margins for input a~d output disturbances and addi- 

tional unstructured perturbations can be computed by using the sensitivity and 

complementary sensitivity of the closed-loop system. 

The result explained above is achieved by using feedback which possibly in- 

volves high gains. But we find in simulations that feedback gains are usually 

moderate when the plant uncertainties are not large and the requirement on 

model matching is not severe. The feedback gains need to be high when the 

plant is subject to large uncertainties apd/or the plant is very different from the 

reference model. 

Having established the MRRC method for time-invariant uncertainty, we look 

into the problem of time-varying uncertainty which the adaptive control theory 

has difficulty with. We find that the MRRC approach may also be suitable for 

accommodating a certain class of time-varying uncertainties. This point will be 

made via some discussions and a conjecture. 

The endeavor of this paper should not be interpreted as an de-emphasis of 

adaptive control, it should rather be viewed as an attempt to have a better 

understanding of both the adaptive and robust control theories and as an exercise 

in our course of searching for better adaptive control schemes. More investigation 

on this subject is needed. 
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2 R e l a t e d  W o r k  o n  R o b u s t  C o n t r o l  

There axe three robust control design methods which are most pertinent to our 

MRRC technique. 

The quantitative feedback theory (QFT) by Horowitz and his colleagues [3] 

provides a first systematic procedure for designing robust controllers. This 

method uses a two-degree-of-freedom controller to achieve desired frequency re- 

sponse and the stability margin of the closed-loop system. More specifically, a 

loop compensator is used to reduce uncertainty and assuring closed-loop stability 

while a prefilter is used to shape the closed-loop input-output transfer function. 

This design method can be regarded as a model reference control method. How- 

ever, the reference model is not given in terms of a transfer function, and the 

phase of the closed-loop input-output transfer function is not paid attention to. 

The QFT method is somewhat empirical because trials and errors axe needed for 

a proper design. There is also a concern about the effectiveness of this design 

method for multi-input-multi-output systems. 

Baxmish and Wei [4] employs a unity-feedback controller for robust stabi- 

lization of an uncertain linear time-invaxiant plant satisfying assumptions A1-A4 

and some mild conditions. They show that an LTI stable and minimum-phase 

stabilizer can always be constructed for the uncertain plant. However, the model 

reference control problem is not treated in [4] because only one degree of freedom 

is used. 

The problem of model reference robust control was recently studied by Sun, 

Olbrot and Polis [5]. They consider linear single-input-single-output plants satis- 

fying Assumptions similar to A1-A6, and use the so-called =modeling error com- 

pensation" technique to show that a stabilizing controller can be constructed such 

that the closed-loop input-output transfer function is made to be arbitrarily close 

to the reference model over a finite bandwidth. However, the construction and 

analysis of the controller seems very complicated. Furthermore, model matching 

is done only on a finite bandwidth, this restriction, as we shall see, can be lifted. 

3 A N e w  A p p r o a c h  t o  M R R C  

In this section, we use a two-degree-of-freedom controller to solve the MRRC 

problem for plants and reference models satisfying assumptions A1-A6. The 
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Figure 1: Model Reference Robust Control 

schematic diagram of the closed-loop system is shown in Figure 1. The transfer 

function G(s) of the plant takes the following form: 

~i=0 bis c C s ) = g C s ) =  " ' 
~i=0 albl D(s) s" + ,,-1 , b,~ # O. (1) 

The nominM model of the plant is denoted by Go(s), and it ca= be chosen ar- 

bitrarily although its choice might effect the controller. The closed-loop input- 

output transfer function will be denoted by Go(s), i.e., 

G~(s) = F(s)C(s)G(s) 
1 + C(s)G(s)  (2) 

The main result is presented as follows: 

T h e o r e m  1. Consider an SISO uncertain linear plant G(s) and a linear ref- 

erence model Gin(a) satisfifing assumptions A1-A6. Then, given any (arbitrar- 

ily small} ~ > O, there ezist a stable transfer function F(s) and a stable and 

minimum-phase transfer function C(s) such that the closed-loop system given in 

Figure I is robustly stable and that the difference between the transfer functions 

of the closed-loop system and the reference model has Hoo norm less than e. 

To assist this theorem, we provide a simple algorithm for constructing the 

controller. The design of C(s) is simplified from the robust stabilization technique 

in [4], and that of F(s) is motivated by the QFT [3]. 

Cons t ruc t ion  of C(s) and F(s): 

• Choose Ne(s) to be any (n-m-1)th stable polynomial; 
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• Choose 1/Dc(s, a) to be any paxameterized stable unity gain low-pass filter 

(parameterized in a > O) with relative degree no less than n-m-l, and and 

the cutoff frequency ~ oo as a --* O. For example, take 

1 
l/D¢Cs) = (as + 1)"-"-* ; (3) 

• Take 
go( ) 

= KDo(  '- (4) 

[ _c(.)ao(.).1-' 
F(.) = LCs, p)amCs) 1 + cCs)GoCs)l (5) 

where L(s, p) is either a unity gain or a pararneterized unit-gain low-pass 

filter with cutoff frequency --* oo when # --~ 0. K, a and p are design 

parameters to be tuned; 

• Choose K sufficiently large and a and p sufficiently small (which are guar- 

anteed to exist) such that 

l ine(s )  - am(S)lloo < (6) 

for all admissible G(s) satisfying assumptions A1)-A5). 

Remark I. The purpose of the stable polynomial N¢(s) is to assure that N¢(s)G(s) 
is a minimum phase transfer function with relative degree equal to one so that 

with C(s) = KNc(8) and sufficiently large K, the characteristic equation of the 

closed-loop system is robustly stable and its sensitivity function is sufficiently 

small. The reason for 1/D~(s,a) to be a low-pass filter of the required form 

is to guarantee the properness of C(s) while preserving the above property of 

the closed-loop system when a is sufficiently small. The function F(s) is used 

to shape the closed-loop transfer function so that it approximates the reference 

model. The low-pass filter L(s, p) is optional, only for reducing the unnecessary 

high-frequency gain of the dosed-loop system. These points should be considered 

in tuning the controller. The proof of Theorem 1 is omitted, for the construction 

of the controller and this remark have explained the validity of the result. 
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4 B e y o n d  T i m e - i n v a r i a n t  P a r a m e t e r  U n c e r t a i n t y  

The purpose of this section is to look into the possibility of using the MRRC 

technique to deal with time-varying parameter uncertainty. In certain sense, the 

discussions in this section might be "the center of gravity" of the paper. 

As we pointed out earlier, the adaptive control theory is applicable only to 

uncertainties which are time-invariant (or varying "sufficiently slowly"). The 

robust control methods mentioned in Section 2 and the MRRC technique in 

Section 3 are in general also restricted to time-invariant uncertainties due to 

their dependency on frequency domain analysis. However, the fact the MRRC 

technique requires only a simple LTI controller seems to suggest that it might 

be able to tolerate time-varying uncertainty better the adaptive schemes. This 

intuition is supported by a number of simulations carried out by the author. 

Motivated by these simulations, it is suspected by the author that & result similar 

to Theorem 1 in Section 3 also holds for plants with time-varying uncertainties. 

To be more precise, we consider an uncertain plant described by the following 

input-output differential equation: 

n ~ l  Trt 

yc ) + a,(t)yC') = b,(t)uCi) (7) 
i=0 i=O 

where u(t) and y(t) are the input and output of the plant, respectively. It is 

assumed that the assumptions A1-A6 hold. Here, the minimum-phase should be 

interpreted as that the zero dynamics of the plant: 

= 0 (8) 
i=0 

is "stable" in certain sense. Then, the following conjecture is put forward: 

Conjecture:  Consider the uncertain plant in (7) and reference model Gin(s) 

satisfying assumptions A1-A6. Then, under some additional mild assumptions 

and an appropriate definition for stability, there ezists a linear time-invariant 

controller such that the closed-loop system is stable and the induced norm of the 

operator from r,~(t) to y(t) - y~(t) can be made arbitrarily small. 

Possible additional assumptions might be that the coefficients ai(t) and hi(t) 

are differentiable and their derivatives are bounded. And investigation is needed 
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for different types of stability such as Lyapunov, bounded-input-bounded-output, 

and exponential. Since time-varying systems are considered, frequency domain 

analysis is no longer valid. Therefore, new techniques need to be developed for 

proving or disproving the conjecture. A promising avenue is to apply the singular 

perturbation theory, this will be studied. 

5 Conclusion 

In this paper, we have demonstrated the potentials of an MP~C technique. 

This technique provides a non-Hoe method for designing a low order robust LTI 

controller to solve the model reference problem, and it is able to handle large size 

parametric uncertainties. An important feature of this technique is its potential 

of handling'large-size fast time-varying parametric uncertainties, this is a matter 

which deserves further research. 

It is, however, noted that the MRRC technique potentially requires a high- 

gain feedback controller, when the size of uncertainties is large and/or the plant 

is vastly different from the reference model. The tradeoffs between the MRAC 

and MRRC techniques need to be further investigated. 
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