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Abstract— This paper proposes a switching control strategy
for formation maneuvering control of multi-agent systems with
guaranteed collision avoidance and connectivity maintenance
properties. The control strategy consists of three parts: forma-
tion maneuvering, collision avoidance, and connectivity mainte-
nance control. We adopt the idea of using complex Laplacian for
formation maneuvering control, which gives rise to one degree
of freedom in scaling the size of the achievable formations and
thus enables collision avoidance and connectivity maintenance
possible in the meantime. Simulation results are provided to
demonstrate the effectiveness of the control strategy.

I. INTRODUCTION

Formation control of multi-agent systems has attracted
significant attention from various fields and some progresses
have been made in recent years [1]–[4]. As a multi-agent sys-
tem evolves towards a desired formation shape, collision may
occur and the sensing or communication links may become
lost. To facilitate practical applications of formation control,
it is important to guarantee that collisions are avoided and
connectivity is maintained in formation maneuvering.

Collision avoidance is formulated as one of the important
control specifications in multi-agent systems to guarantee
that the control actions of the agents will keep the system
trajectories out of the prescribed unsafe set no matter what
control strategies are taken by the others. For the collision
avoidance issue, it is common to use the gradient-type
algorithm based on a variety of potential functions [5]–[9].
However, existing potential-based collision avoidance control
laws may lead to unbounded actuation, which are not practi-
cally applicable. For the connectivity maintenance issue, one
of the simplest methods is to specify a finite number of time
switching topologies for the network [10]. Since this scenario
is not practically applicable, a joint connectivity condition is
proposed in [11] and [12], i.e., there exist infinitely many
consecutive bounded time intervals such that the union of
graphs over every interval is connected. However, all of
these results consider the connectivity maintenance problem
under certain topology conditions. But for physically limited
sensing ranges, it may not be possible to satisfy the joint
connectivity, too.
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Cooperative control problems integrating simultaneously
formation maneuvering, collision avoidance, and connectiv-
ity maintenance are usually difficult as multiple control spec-
ifications may contradict each other, resulting in unexpected
results such as multiple equilibria, deadlock or instability.
Following our previous work on formation maneuvering
control [13], we aim to find solutions for collision avoidance
and connectivity maintenance while achieving formation ma-
neuvering. Due to the merit of having one degree of freedom
in scaling the formation for the formation maneuvering
control strategy developed in [13], we are able to design
extra control to realize the goal of collision avoidance and
connectivity maintenance. A switching control law is then
proposed based on the potential function approach. We show
that with the proposed switching control, any two agents will
become to keep a safe distance away from each other in
finite time and any two neighboring agents will remain in
the sensing range. The main contribution of the paper is that
we develop a simple, distributed switching control strategy
that solves the formation maneuvering control problem with
guaranteed collision avoidance and connectivity maintenance
properties. The control input is bounded, which is more fea-
sible than other potential-based control strategies. Moreover,
this switching control law can also be used to alter the
formation size for better adaptivity to environment changes.

Notation: C and R denote the set of complex and real
numbers, respectively. 1n represents the n-dimensional vec-
tor of ones and In denotes the identity matrix of order n.
ι =

√
−1 denotes the imaginary unit. For a complex number

c, the notations c∗, |c|, Re(c), and Im(c) denote its conju-
gate, modulus, real part, and imaginary part, respectively.
For a complex-valued matrix L, L∗ denotes its conjugate
transpose. For real numbers, the sign function is defined as

sgn(x) =







1, x > 0
0, x = 0
−1, x < 0

and for complex numbers, the

sign function is defined as sgn(a + bι) = sgn(a) + sgn(b)ι.
In a similar way, the saturation function of real numbers is

defined as sat(x) =

{

x, |x| ≤ 1
x/|x|, |x| > 1

and for complex

numbers, the saturation function becomes sat(a + bι) =
sat(a) + sat(b)ι.

II. PRELIMINARIES AND PROBLEM SETUP

This section presents some basic notions from graph
theory and several preliminary results, and then formulates
the problem we study.
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A. Basic notions in graphs

A directed graph (digraph for short) G = (V , E) consists
of a non-empty node set V = {1, 2, · · · , n} and an edge set
E ⊆ V × V . An edge of G is denoted by an ordered pair
of nodes (j, i), for which node j is called an in-neighbor of
node i and node i is called an out-neighbor of node j.

For a directed graph G, a node v is said to be reachable
from another node u if there exists a path from u to v. A
directed graph G is said to be rooted if there exists a node,
from which every other node is reachable. For a directed
graph G, a node v is said to be 2-reachable from a non-
singleton subset of nodes {u1, . . . , uk} if there exists a path
from a node in {u1, . . . , uk} to v after removing any one
node except v. A directed graph G is said to be 2-rooted if
there exists a subset of two nodes, from which every other
node is 2-reachable.

For a digraph G, we associate to each edge (j, i) a weight
wij 6= 0. Then the Laplacian L of G is defined in the way
that its (i, j)th off-diagonal entry is the negative weight −wij

if (j, i) is an edge and 0 otherwise, and its (i, i)th diagonal
entry is the negative row sum of all the off-diagonal entries
in the same row. The weights wij’s can be real or complex
numbers, for which the Laplacian is called real-valued Lapla-
cian and complex-valued Laplacian, respectively. Certainly,
any Laplacian matrix L satisfies L1n = 0.

B. Problem setup

Consider a group of agents labeled as 1, . . . , n. The agents
are governed by a single-integrator kinematic model

żi = ui,

where zi ∈ C represents the position of agent i and ui ∈ C

represents the control input of the agent i. For convenience,
we use a complex variable to represent a 2-dimensional
vector.

Each agent is assumed to have the following sensing and
communication capabilities.

• Long-range sensors. Each agent i carries an onboard
long-range sensor, to make them able to sense the
relative positions (namely, zj − zi) of a few others.
In general, mutual sensing may not be possible. Thus,
we use a directed graph G of n nodes to represent
the sensing graph of the system for which each node
represents an agent and an edge (j, i) indicates the
availability of relative position measurement (zj − zi)
by agent i.

• Proximity sensor for collision avoidance. In addition
to a long-range sensor for multi-agent interaction, each
agent also carries a proximity sensor, which is used to
avoid collisions with others that may not be detected
by its long-range sensor. Usually, the proximity sensor
is omnidirectional with a very short sensing radius R1.
We assume that the proximity sensors of all the agents
have the same sensing radius R1.

• Communication. Each agent is supposed to be able to
communicate with a few others, called communication

neighbors, which may be different from the neighbors
sensed by its long-range sensor. Usually, communica-
tion is bidirectional, meaning that if agent i can talk
to agent j, then agent j can also talk to agent i. We
use a bidirectional graph H of n nodes to represent the
communication graph, for which each node represents
an agent and a bidirectional edge (j, i) indicates that
agent j can communicate to agent i each other.

This paper aims to develop control for the agents to
achieve a desired formation shape, maneuver with a constant
velocity, and meanwhile avoid collisions. By a desired for-
mation shape, we mean that the achieved formation is similar
to a target configuration ξ = [ξ1, ξ2, · · · , ξn]T defined in a
specific coordinate system. That is, the formation maneuver-
ing problem with four degrees of freedom is formally stated
as to make

lim
t→∞

z(t) = c11n + c2ξ + vst1n (1)

for some c1, c2 ∈ C, where z is the aggregate position vector
of all the agents and vs ∈ C is the group maneuvering
velocity, which is not pre-specified.

To be more specific, the following two problems will be
studied.

Problem 1: Suppose that the sensing graph G is static and
directed. As shown in [14], a 2-rooted graph is necessary to
encode a formation shape with four degrees of freedom in
the plane. So we assume that the sensing graph is 2-rooted
in this paper. Moreover, the communication range is often
greater than the sensing range in many practical applications.
Therefore, we assume that the communication graph H is
rooted and contains the sensing graph H as a subgraph. In
addition, assume that each agent has a physical size modelled
as a cylinder with radius r. That means, collision with agent
i occurs if some agents come into the region

Ωc
i = {q ∈ C : ||zi − q|| ≤ r}.

We call it the collision region. An illustration is given in
Fig. 1, in which

Dc
i = {q ∈ C : r < ||zi − p|| ≤ R1}

is called the collision potential region, where R1 is the
sensing radius of each proximity sensor.

i

r

R1

Dc
i

Ωc
i

Fig. 1. Collision region and collision potential region.

In such a scenario, how to devise a distributed control law
to solve the formation maneuvering problem with guaranteed
collision avoidance?
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Problem 2: In real applications, the sensing graph G may
not be static due to limited sensing ranges. Therefore, we
consider in this problem that the long-range sensors on all
the agents have a fixed sensing radius R. That means, the
connection with agent i becomes lost if some agents are R
distance away from agent i, or equivalently to say, some
agents are in the region

Ωd
i = {q ∈ C : ||zi − q|| > R}.

We call it the disconnection region. An illustration is given
in Fig. 2, in which another relevant region

Dd
i = {q ∈ C : R2 < ||zi − q|| ≤ R}

is called the disconnection potential region, where R2 is a
parameter less than R.

i
r

R

R1
R2

Dd
i

Ωd
i

Fig. 2. Disconnection region and disconnection potential region.

In such a scenario, the problem is to devise a distributed
control law to solve the formation maneuvering problem
with guaranteed collision avoidance and connectivity main-
tenance.

III. MAIN RESULTS

This section aims to provide the main results for Problem
1 and 2.

A. Formation maneuvering with collision avoidance

We propose the following distributed control law to solve
Problem 1:

ui = uf
i + uc

i , i = 1, . . . , n, (2)

which consists of two parts: one (namely, uf
i ) for formation

maneuvering and the other (namely, uc
i ) for collision avoid-

ance.
The formation maneuvering control uf

i takes the form
from our previous work [13], i.e.,



























η̇i =
∑

j∈Mi

αij(ηj − ηi),

ζ̇i = −aζi −
∑

j∈N+

i

wij(zj − zi),

uf
i = ηi −

∑

j∈N+

i

w∗
ijζi +

∑

j∈N−

i

w∗
jiζj ,

(3)

where the auxiliary dynamics of ηi is to synchronize the
velocity of the agents when they reach the desired formation
and the auxiliary dynamics of ζi is to help ensure the
convergence toward the desired formation shape. The control
parameters in (3) should satisfy the following conditions.

1) αij ∈ R and αij > 0;
2) a ∈ R and a > 0;
3) wij ∈ C satisfying

∑

j∈N+

i

wij(ξj − ξi) = 0 for i = 1, . . . , n (4)

where Mi is the neighbor set of agent i in the communica-
tion graph H while N+

i is the neighbor set of agent i in the
sensing graph G.

The collision avoidance control uc
i is designed as follows.

We consider the following potential function

Pij :=

{
(

|zi−zj|
2−(2R2

1−r2)
|zi−zj|2−r2

)2

− 1, if zj ∈ Dc
i

0, otherwise.

The function Pij is continuous with respect to |zi − zj| for
|zi− zj| > r. An illustrative example is given in Fig. 3 with
r = 10 and R1 = 40.
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Fig. 3. The Potential function Pij with respect to |zi − zj |.

It can be known that if |zi − zj| ≥ R1, then

∂Pij

∂zi
= 0,

and if r < |zi − zj | < R1, then
∣

∣

∣

∣

∂Pij

∂zi

∣

∣

∣

∣

6= 0.

Let
si = −

∑

zj∈Dc
i

∂Pij

∂zi
, i = 1, . . . , n.

Then, the collision avoidance control uc
i is chosen as

uc
i = (|uf

i |+ b)sgn(si), i = 1, . . . , n, (5)

where b is a positive number.
Remark 3.1: The implementation of uf

i as shown in (3)
requires the following information via the long-range sensor:

• (zj − zi) of in-neighbors in the sensing graph G,

and the following information via communications:

• the auxiliary state ηj from all communication neighbors,
• the auxiliary information w∗

jiζj from all out-neighbors
in the sensing graph G.

The implementation of uc
i as shown in (5) needs additionally

the relative position information (zj − zi) for all zj ∈ Dc
i

via the proximity sensor.
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Remark 3.2: Since the sgn(x) in uc
i is discontinuous, we

can replace it by the saturation function sat(x) to keep
continuity.

Denote z = [z1, z2, . . . , zn]
T, ζ = [ζ1, ζ2, . . . , ζn]

T, η =
[η1, η2, . . . , ηn]

T, and uc = [uc
1, u

c
2, . . . , u

c
n]

T ∈ Cn. More-
over, let L be the complex Laplacian associated to the
sensing graph G with complex weights wij and let H be
the real Laplacian associated to the communication graph H
with real weights αij . Then, the overall system becomes





ż

ζ̇
η̇



 =





0 −L∗ In
L −aIn 0
0 0 −H









z
ζ
η



+





uc

0
0



 (6)

Intuitively, the control uc
i propels all nearby agents out

of the collision potential region Dc
i . Consequently, collision

is avoided for the system (6). We present our main result
below.

Theorem 3.1: If the initial condition satisfies |zi(0) −
zj(0)| > r for all i and j, the control law (2) solves the
formation maneuvering problem with guaranteed collision
avoidance.

The proof of Theorem 3.1 will use the following result.
Theorem 3.2 ( [13]): A network of agents achieves the

desired formation shape ξ and maneuvers with a constant
velocity if each agent takes the distributed control law (3).
Proof of the Theorem 3.1: We consider

V =

n
∑

i=1

n
∑

j=1

Pij .

Then it is known that V ≥ 0 if |zi − zj| > r for all i and
j and V = 0 if |zi − zj | > R1. Taking the derivative along
the solution of (6), we have

V̇ = 2
∑n

i=1

∑n
j=1 Re((∂Pij

∂zi
)∗żi)

= −2
∑n

i=1 Re(s∗i żi)
= −2

∑n

i=1 Re(s∗i [u
f
i + uc

i ])

= −2
∑n

i=1 Re(s∗i [u
f
i + (|uf

i |+ b)sgn(si)])
= −2

∑n
i=1{Re(si)Re(uf

i + (|uf
i |+ b)sgn(si))

+ Im(si)Im(uf
i + (|uf

i |+ b)sgn(si))}.

Now let us come to look at the sign of Re(uf
i + (|uf

i | +
b)sgn(si)). We know that |uf

i | < |uf
i |+ b for b > 0. Then it

follows that −(|uf
i |+b) < Re(uf

i ) < |uf
i |+b. If Re(si) > 0,

we have

Re(uf
i + (|uf

i |+ b)sgn(si)) = Re(uf
i + (|uf

i |+ b)) > 0.

On the other hand, if Re(si) < 0, we have

Re(uf
i + (|uf

i |+ b)sgn(si)) = Re(uf
i − (|uf

i |+ b)) < 0.

Thus, it is concluded that Re(uf
i + (|uf

i | + b)sgn(si)) has
the same sign with Re(si). By the same argument, we
can conclude that the imaginary part has the same feature.
Therefore, V̇ < −ε for a positive constant ε if at least one
agent is in the collision potential region Dc

i of another agent
i. With the negative derivative of potential function V , all
the agent will move towards edge of the collision potential

region of any other agent. In the end, the agents will at
least R1 distance away from each other, which means that
collision will not occur. And when uc

i will vanish in finite
time. Then by using Theorem 3.2, it can be concluded that
z(t) of system (6) asymptotically converges to a desired
formation shape ξ with a constant maneuvering velocity.

B. Formation maneuvering with collision avoidance and
connectivity maintenance

In this subsection, we come to solve Problem 2. For this
problem, as the long-range sensing radius is limited, we have
to ensure that all the neighboring agents maintain their links
by not departing away from each other too much. For this
purpose, we add an extra control term ud

i when two agents
are in the disconnection potential region. Thus, the control
law becomes

ui = uf
i + uc

i + ud
i , i = 1, . . . , n, (7)

where uf
i is the formation maneuvering control given in (3),

uc
i is the collision avoidance control given in (5) given in (3).

The connectivity maintenance control ud
i will be designed in

this subsection.
We adopt the following potential function

Qij =

{
(

|zi−zj |
2−(2R2

2−R2)
|zi−zj |2−R2

)2

− 1, if zj ∈ Dd
i

0, otherwise.

It can be known that if |zi− zj| ≥ R or |zi− zj| < R2, then

∂Qij

∂zi
= 0.

If R2 < |zi − zj | < R, then
∣

∣

∣

∣

∂Qij

∂zi

∣

∣

∣

∣

6= 0.

An illustrative example is given in Fig. 4 with R2 = 70 and
R = 100.

0 10 20 30 40 50 60 70 80 90 100 110
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1000

Qij

R2 R

Fig. 4. The potential function Qij with respect to |zi − zj |.

Let
ri = −

∑

zj∈Dd
i

∂Qij

∂zi
, i = 1, . . . , n.

Then the connectivity maintenance control ud
i is designed as

follows: Design

ud
i = (|uf

i |+ b)sgn(ri), i = 1, . . . , n, (8)
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where b is a positive number.

Let ud = [ud
1, u

d
2, . . . , u

d
n]

T ∈ Cn. Then the whole system
has following form




ż

ζ̇
η̇



 =





0 −L∗ In
L −aIn 0
0 0 −H









z
ζ
η



+





uc + ud

0
0



 .

(9)

When choosing R2 > R1, the control uc
i and ud

i works in
the different regions. So they do not affect each other. The
total potential function is

Tij = Pij +Qij ,

given in Fig. 5.

0 10 20 30 40 50 60 70 80 90 100 110
0

500
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1500

2000

2500

3000

3500

4000

4500

5000

Tij

r RR1 R2

Fig. 5. The total potential function Tij .

We then present our main result for Problem 2.

Theorem 3.3: If the initial condition satisfies |zi(0) −
zj(0)| > r for any i and j, and the sensing graph G is
2-rooted such that |zi − zj | < R for all j ∈ Ni, then the
control law (7) solves the formation maneuvering problem
with guaranteed collision avoidance and connectivity main-
tenance.

Proof: Take

V =

n
∑

i=1

n
∑

j=1

Tij .

Then by the same argument, it can be shown that any two
agents will come to satisfy |zi − zj| > R1 and any two
neighbor agents in G will come to satisfy |zi − zj | < R2

in finite time, and thus both uc
i and ud

i vanishes. Therefore,
collisions will not occur and the connectivity is maintained,
i.e., if two agents are neighbors initially in the sensing graph
G, they remain to be neighbors. Thus, by using Theorem 3.2,
it is obtained that the agents will reach a desired formation
shape ξ while maneuvering with a constant velocity. �

Remark 3.3: From the proof of Theorem 3.3, if we choose
the minimal distance dmin and the maximal distance dmax

between any two neighboring agents in the sensing graph
G such that dmax

dmin
= R2

R1
, then the formation size can also

be determined. So by changing the values of R1 and R2,
the formation size can be altered for better adaptivity to
environment changes.

IV. SIMULATION

In this section, we present several simulations to demon-
strate the effectiveness of our proposed control laws. Con-
sider a system consisting of 7 agents labelled as 1, . . . , 7.
Suppose that the target configuration is the one shown in
Fig. 6(a), i.e., with respect to a coordinate system, the
formation vector is

ξ =
[

6ι 4ι 2ι −
√
3 + ι

√
3 + ι −2

√
3 2

√
3
]T

.

The simulation example has the sensing graph G given
in Fig. 6(a), which is 2-rooted, and has the communication
graph H given in Fig. 6(b), which is rooted and contains
the sensing graph G as a subgraph. The complex Laplacian
L of the sensing graph G and the real Laplacian H of the
communication graph H are chosen to satisfy the conditions
as required.

1

2

3

4 5

6 7

Im

Re

(a) The desired formation ξ and the
sensing graph G.

1

2

3

4 5

6 7

(b) The communication graph
H.

Fig. 6. The desired formation and graph topologies.

A. Formation maneuvering with collision avoidance

For the first simulation with only collision avoidance
control, the dynamics is given in system (6), and we choose
a = 5, b = 10, r = 2 and R1 = 6. The simulation result
is shown in Fig. 7. Fig. 7(a) plots the trajectories of seven
agents, from which we can see that they asymptotically con-
verge to a desired formation. Fig. 7(b) shows the evolution
of the minimal distance between any two agents with and
without collision avoidance control. As we can see, with the
collision avoidance control, the minimal distance is always
greater than r = 2 and becomes greater than R1 = 6 in finite
time, meaning that no collision occurs. However, collision
occurs for the control law without the collision avoidance
term as the minimal distance goes below r = 2.

B. Formation maneuvering with collision avoidance and
connectivity maintenance

The second simulation is concerned with the control law
with both collision avoidance and connectivity maintenance
control. The resulting closed-loop dynamics is (9), for which
we choose a = 5, b = 10, r = 2, R1 = 6, R2 = 40 and
R = 85. The simulation result is shown in Fig. 8. Fig. 8(a)
plots the simulation trajectories of seven agents, from which
we can see that they also asymptotically converge to the
desired formation. Fig. 8(b) shows the evolution of the
maximal distance between any two neighboring agents in
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Fig. 7. Simulation results with collision avoidance control.

the sensing graph G and the minimal distances between any
two agents. As we can see, the neighboring agents remain
to be neighbors as their distances are kept less than the
disconnection radius R = 85. Also, no collision occurs,
which is the same as the first simulation.

V. CONCLUSION

This paper develops a simple, distributed switching control
approach for the design of extra control to achieve collision
avoidance and connectivity maintenance during the conver-
gence of a multi-agent system to a desired formation shape.
This switching control is based on a distance-based potential
function, and the sign of the negative gradient of this poten-
tial function is the switching signal. Thus this control inputs
can propel all the agents to leave out the collision potential
regions and the disconnection potential regions. Since our
previous work on formation maneuvering has one degree of
freedom in scaling the size of formation, we can use this
distance based control to achieve collision avoidance and
connectivity maintenance, but have no influence on achieving
formation maneuvering.
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