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Abstract

A direct algorithm to estimate continuous-time ARMA (CARMA) models is proposed in this paper. In this approach, we first pass the
observed data through an input-to-state filter and compute the state covariance matrix. The properties of the state covariance matrix are then
exploited to estimate the half-spectrum of the observed data at a set of user-defined points on the right-half plane. Finally, the continuous-time
parameters are obtained from the half-spectrum estimates by solving an analytic interpolation problem with a positive real constraint. As shown
by simulations, the proposed algorithm delivers much more reliable estimates than indirect modeling approaches, which rely on estimating an
intermediate discrete-time model.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The identification of continuous-time stochastic processes
is a fundamental research issue which has received consid-
erable interest recently. Since many natural processes are
continuous-time, it is of interest in many practical applications
to identify a continuous-time model instead of a discrete-time
model (Larsson, 2004). Although the signal is in continuous-
time, in practice one works with sampled data. One popular
approach is to identify a discrete-time system from uniformly
sampled data, as shown in Larsson (2004) and references
therein. Subsequently, the estimated discrete-time model is
converted back to a continuous-time model via a nonlinear
transformation (Söderström, 1991). This approach will be re-
ferred to as the indirect approach. Apart from the obvious
difficulty of solving nonlinear equations, this approach also
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suffers from several other setbacks: (i) at a fast sampling rate,
the poles and the zeros of the associated discrete-time system
cluster close to the point 1 + i0 in the complex plane, leading
to a numerically ill-conditioned identification problem;
(ii) the continuous-time parameters can be very sensitive to the
sampled data. These issues have been discussed in detail in Fan,
Söderström, Mossberg, Carlsson, and Zhou (1999), Fan, Söder-
ström, and Zhou (1999), Larsson and Mossberg (2003), Larsson
and Söderström (2002), Söderström (1991) and Söderström
and Mossberg (2000). A second approach is to identify the
continuous-time parameters directly. The basic idea here is
to replace the differentiation operator with the delta operator
(Feuer & Goodwin, 1996; Goodwin, Middleton, & Poor, 1992).
Several methods have been developed using this approach for
autoregressive models, see Fan, Söderström, Mossberg et al.
(1999), Fan, Söderström, and Zhou (1999), Larsson and Söder-
ström (2002) and Söderström and Mossberg (2000). This ap-
proach is advantageous in many cases as it is computationally
efficient and avoids nonlinear transformations if the underly-
ing model is autoregressive. This technique also benefits from
nonuniform sampling (Larsson, 2004; Larsson & Söderström,
2002). However, it is not well understood how we can extend
this technique for an ARMA model since the mapping from
the continuous-time zeros to the equivalent discrete-time zeros
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is complicated. It is also not known how to guarantee the pos-
itivity of the estimated spectrum. Therefore, for ARMA mod-
els, the only available time domain approach seems to be the
indirect method described above (Larsson & Mossberg, 2003;
Söderström, 1991).

If we consider a discrete-time process, we can ensure the
stability of the estimated autoregressive model in a fairly
simple way (Ljung, 1999; Makhoul, 1975; Söderström &
Stoica, 1989). But unlike the discrete-time counterpart, the
mapping from the lagged covariance estimates to the system
parameters for a continuous-time system is more complicated.
Hence, the standard discrete-time algorithms cannot be ex-
tended directly. In this paper, we propose a direct approach
for modeling continuous-time stochastic processes. Specifi-
cally, we provide an estimation algorithm with the following
properties: (i) it is computationally efficient; (ii) the stability
of the estimated model is guaranteed; (iii) it can handle ir-
regularly sampled data; (iv) it is possible to circumvent the
problems associated with the sampling zeros for an ARMA
model.

Our approach uses the framework of input-to-state filter-
ing (Georgiou, 2001, 2002a, 2002b) where we first estimate
the half-spectrum and its derivatives evaluated at some pre-
specified points in the right-half plane. This is achieved using
a linear operation on the covariance matrix of the output of
an input-to-state filter. Subsequently, we present an approach
for estimating a stable rational model from the estimates of
the half-spectrum. In this step, we apply linear interpolation
combined with a regularization step similar to that proposed
in Mari, Stoica, and McKelvey (2000) and Stoica, McKelvey,
and Mari (2000). If the resulting model is unstable then a re-
cent spectral zero assignment algorithm (Byrnes, Georgiou, &
Lindquist, 2001), (see also Georgiou, 1999), is used to compute
a stable model. The approach can also be used when the data
are irregularly sampled. We provide additional insights into
the estimation of the half-spectrum, and discuss the numerical
and statistical issues involved in the estimation of such statis-
tics. We also carry out an asymptotic second-order statistical
analysis. The proposed algorithm is tested using numerical
simulations.

In the framework of input-to-state filtering it is also possible
to model the spectrum in terms of the generalized orthogonal
basis functions (Heuberger, Van den Hof, & Wahlberg, 2005).
This approach has been explored in Blomqvist and Fanizza
(2003).

2. Input-to-state filters

In this section, we briefly state a few key results for any
continuous-time wide-sense stationary stochastic process
u(t). As a special application, we will apply these results to
continuous-time ARMA processes in the later sections. Anal-
ogous results for discrete-time processes have been derived in
Georgiou (2001, Theorem 1), Georgiou (2002a) and Georgiou
(2002b, Corollary 1). The extensions for continuous-time case
can be found in Georgiou (2002a, Section V).

Consider a scalar and real-valued continuous-time stochastic
process u(t) having an autocorrelation function

r� := E{u(t + �)u(t)}.
Then, the spectrum of the process is defined as

�(s) :=
∫ ∞

−∞
d� r�e−s�, Re(s) = 0.

In this work, we use the so-called half-spectrum f (s) of u(t),
which is defined as

f (s) :=
∫ ∞

0
d� r�e−s�, Re(s)�0.

This leads to

�(s) = f (s) + f (−s), Re(s) = 0. (1)

In the following, we estimate f (s) and its derivatives at a pre-
defined set of points {sk}mk=1 from the observed continuous-time
signal u(t). The points {sk}mk=1 are referred to as the interpola-
tion points and satisfy Re(sk) > 0, ∀k. The main idea here is
to use an input-to-state filter

ż(t) = Fz(t) + gu(t), (2)

where F has eigenvalues at {−sk}mk=1 and the pair (F, g) is
controllable. We assume that the filter in (2) has a pole of order
nk at −sk , while the order of the filter is n, i.e., F is a n × n

matrix, and
∑m

k=1 nk=n. We show that the covariance matrix of
the output z(t) can be used to extract the estimates of f (sk) and
its derivatives. In particular, a pole of order nk at −sk enables us
to extract the derivatives of f (s) up to order nk −1 evaluated at
sk . The following proposition is the first step in that direction.

Proposition 1. Assume that f (∞) is bounded. Let E be the
unique positive definite solution to the Lyapunov equation

FE + EF ′ + gg′ = 0. (3)

Then there exist scalar-valued functions {wk}n−1
k=0 of F and f (s)

such that

P := E{z(t)z′(t)} = WE + EW ′, (4)

where

W := 1

2�i

∮
CR

ds f (−s)[sI − F ]−1 =
n−1∑
k=0

wkF
k (5)

with CR being the infinite semicircular contour encircling the
entire right-half plane traversed in the clock-wise direction.
Moreover, the coefficients {wk}n−1

k=0 are invariant of the choice
of the coordinates of z(t).

Proof. The proof of (4) and (5) is similar to Theorem 1 in
Georgiou (2001); see also Mahata and Fu (2005) for a more
direct proof. To show the invariance of {wk}n−1

k=0, consider the
state sequence z1(t) of the input-to-state filter (F1, g1), where

F1 = LFL−1, g1 = Lg,
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for some nonsingular matrix L. Let the covariance matrix of
z1(t) be P1. It follows that P1 =LPL′ and the solution E1 to the
Lyapunov equation F1E1+E1F

′
1+g1g

′
1=0 satisfies E1=LEL′.

Then (4) gives

P1 = W1E1 + E1W
′
1,

where W1 =LWL−1. Now, from (5) we can verify our assertion
that W1 = ∑n−1

k=0 wkF
k
1 . �

Next, we state a method for computing {f (sk)}mk=1 and its
derivatives.

Theorem 1. Let F be chosen such that its Jordan form has the
block-diagonal structure

diag{J (−s1, n1), . . . , J (−sm, nm)}, (6)

where for each k ∈ {1, 2, . . . , m}, the matrix J (−sk, nk) is an
elementary nk × nk Jordan block having −sk along the main
diagonal, ones along the first upper sub-diagonal, and zeros
elsewhere. Define the polynomial

�(s) :=
n−1∑
k=0

wks
k .

Denote the rth derivative of f (s) evaluated at s=sk by f (r)(sk).
Then

f (r)(sk) = (−1)r�(r)(−sk), 0�r < nk, 1�k�m. (7)

Proof. The proof is similar to Theorem 2 in Georgiou (2001);
see also Mahata and Fu (2005) for a direct proof. �

Remarks.

(1) If we allow multiple Jordan blocks of F with the same eigen-
value −sk , then the information present in the associated
Jordan blocks is redundant, and we are unable to extract n
pieces of statistics about f (s). See the proof in Mahata and
Fu (2005) for details.

(2) Extracting statistics from the data for modeling discrete-
time processes is often accomplished by estimating the co-
variances of the observed data. The theory of input-to-state
filtering is not necessary in this development (Ljung, 1999).
However, Theorem 1 is vital for continuous-time processes.

Next, we express the vector of f (j)(sk) as a linear function
of the coefficients {wk}n−1

k=0. Define

fk :=

⎡
⎢⎢⎣

f (0)(sk)

...

f (nk−1)(sk)

⎤
⎥⎥⎦ , w :=

⎡
⎢⎢⎣

w0

...

wn−1

⎤
⎥⎥⎦ . (8)

From (7) we get fk = Dkw for k = 1, . . . , m, where Dk is a
nk × n matrix defined as

[Dk]ij = (−1)i−1
[

di−1

dsi−1 {sj−1}
]

s=−sk

.

A real-valued implementation of the input-to-state filter requires
a self-conjugate set of interpolation points. However, if sj is
the complex conjugate of sk , then fj is the complex conju-
gate of fk . Hence, it is sufficient to consider the interpolation
points having nonnegative imaginary parts. Let the number of
real-valued interpolation points be nr , and the number of in-
terpolation points with strictly positive imaginary parts be nc.
Clearly, m = nr + 2nc. Without loss of generality, we assume
that {sk}nr

k=1 are real-valued, and {sk}nr+nc

k=nr+1 have strictly posi-
tive imaginary parts. Define the vectors

fR :=

⎡
⎢⎢⎣
f1

...

fnr

⎤
⎥⎥⎦ , fC :=

⎡
⎢⎢⎣
fnr+1

...

fnr+nc

⎤
⎥⎥⎦ , f :=

⎡
⎢⎣

fR

Re(fC)

Im(fC)

⎤
⎥⎦ . (9)

From the above discussion it follows that

f = Dw, (10)

where

D =
⎡
⎢⎣

D1

Re(D2)

Im(D2)

⎤
⎥⎦ , D1 =

⎡
⎢⎢⎣
D1

...

Dnr

⎤
⎥⎥⎦ , D2 =

⎡
⎢⎢⎣
Dnr+1

...

Dnr+nc

⎤
⎥⎥⎦ .

Using the results derived so far, we propose an algorithm below
for the estimation of f. The justification behind the algorithm
will be given in Section 3. In the algorithm, we implement the
input-to-state filter in the controllable canonical form. Let the
characteristic polynomial of F be

�(s) :=
n∏

k=1

(s + sk) = sn +
n∑

k=1

�ks
n−k . (11)

The state space matrices for the input-to-state filter in the con-
trollable canonical form are then given by

F� =

⎡
⎢⎢⎢⎢⎢⎣

−�1 · · · −�n−1 −�n

1 · · · 0 0

...
. . .

...
...

0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

, g� =

⎡
⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎦

.

The associated state vector and the state covariance are denoted
by z�(t) and P�, respectively.

ż�(t) = F�z�(t) + g�u(t), P� := E{z�(t)z
′
�(t)}. (12)

From (4) and (5) we have

P� =
n−1∑
k=0

wk{Fk
� E� + E�(F

′
�)

k}, (13)
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where E� is the solution to the Lyapunov equation

F�E� + E�F
′
� + g�g

′
� = 0. (14)

Therefore, computing w from P� amounts to solving a least-
squares problem. In Section 3, we show that it is enough to
consider only the diagonal elements in the matrix-valued (13).
In the following, for a n × n real-valued matrix H we denote

d[H ] = [[H ]1,1 · · · [H ]n,n]′.
Considering only the diagonal elements of (13) we get

d[P�] = X�w, (15)

where

X� :=
[d[2E�]d[F�E� + E�F

′
�] · · · d[Fn−1

� E� + E�(F
′
�)

n−1]].
Since F� and g� are user defined, X� is assumed to be known in
the following algorithm. We assume further that the observed
process u(t) is known for t ∈ [0, T ].

Algorithm.

(1) Compute the state output z�(t) in (12), and obtain an esti-
mate of P� by computing

P̂� := 1

T

∫ T

0
dt z�(t)z

′
�(t). (16)

(2) Compute the estimates of w and f as

ŵ = X−1
� d[P̂�], f̂ = Dŵ. (17)

From a practical point of view one might prefer to implement
(16) in discrete-time, where the integral is approximated by a
Riemannian summation

P̌� = 1

N

N−1∑
k=0

z�(kts)z
′
�(kts),

where ts is the sampling interval and T = Nts . In fact, P̌� is
a consistent estimate of P�. Provided ts is sufficiently small,
decreasing ts any further has no effect on the accuracy of P̌�

(Wahlberg, 1990). Obviously, it is also possible to estimate P�

using nonuniform sampling of z�(t).
It is often assumed that the observed data are the sampled

version of the continuous-time process. Then, it is re-
quired to implement the input-to-state filter (12) using a
discretization technique (Garnier & Young, 2004; Middleton
& Goodwin, 1990, p. 33). The systematic errors intro-
duced due to such approximation are not significant (Garnier
& Young, 2004) for practical values of ts . Analysis of
such systematic errors is beyond the scope of this paper.
However, if the continuous-time signal is available to the
user, it is possible to avoid systematic errors by imple-
menting (12) using analog devices for which several ef-
ficient architectures are readily available (Kailath, 1980,
p. 35). The hardware implementation requires a bank of analog

integrators and static gain circuits. Such circuits can be imple-
mented reliably using operational amplifiers (Franco, 2001).
The output z�(t) from the input-to-state filter can then be sam-
pled for the computation of P̂�.

3. Some computational and statistical aspects

In this section, we focus on the computational and the sta-
tistical aspects involved in the estimation of the half-spectrum.
The primary aim is to justify the algorithm for computing ŵ

and f̂ proposed in Section 2. First, we examine the rank of the
system of equations to be solved in order to determine ŵ. We
also comment on the choice of the coordinates of the state of
the input-to-state filter. Finally, we determine the second-order
statistics of ŵ and f̂. To this end, we need some additional no-
tation. Define

H := {H ∈ Rn×n : [H ]i,j = (−1)jhi+j−1}

for some real-valued {hk}2n−1
k=1 , and

H0 := {H ∈ H : [H ]i,j = 0 when i + j is odd}.

A key property of the set H0 is that if H ∈ H0 and i + j = 2�

for some positive integer ��n. Then

[H ]i,j = (−1)j−�[H ]�,�.

It is also straightforward to verify that H ∈ H implies
H + H ′ ∈ H0.

Proposition 2. The matrix P� defined in (12) is a member
of H0.

Proof. Denote the differentiation operator by p. Since (F�, g�)

is in the controllable canonical form, we have

z�(t) = [z1(t) · · · zn(t)]′, zj (t) := pn−j

�(p)
u(t),

where the polynomial �(·) is defined in (11). By the definition
of P�, we get

[P�]jk = E{zj (t)zk(t)}

= 1

2�

∫ ∞

−∞
d��(i�)

(i�)n−j (−i�)n−k

|�(i�)|2 . (18)

Note that the spectrum �(�) is an even function of �. There-
fore, if j + k is an odd integer the integral vanishes because
the integrand is an odd function of �. If j + k = 2� for some
integer �, then we have

(i�)n−j (−i�)n−k = �2n−2�(i)2n−2�(−1)n−k

= �2n−2�(−1)k−�.
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Consequently, it follows from (18) that

[P�]jk = (−1)k−�

2�

∫ ∞

−∞
d�

�2n−2��(i�)

|�(i�)|2

= (−1)k−�E

{
pn−�

�(p)
u(t) · pn−�

�(p)
u(t)

}

= (−1)k−�[P�]��.

From the last equality, it is straightforward to verify that
P� ∈ H0. �

Remark. If u(t) is a continuous-time white noise (i.e., deriva-
tive of the Weiner process) of unit variance, then P� = E�; see
(14). Consequently, E� ∈ H0.

In the following proposition, we show that the matrices in-
volved in (13) belong to H0.

Proposition 3. The matrix Xk := Fk
� E� ∈ H for any positive

integer k.

Proof. In this proof, we use the Matlab notation H(j : k, :
), j �k to denote the sub-matrix of H composed of the jth to
kth rows of H. Similarly, H(:, j : k), j �k denotes the sub-
matrix of H composed of the jth to kth columns of H. From the
structure of F� we have for k�0 that

Xk+1(2 : n, :) = F�(2 : n, :)Xk = [In−10(n−1)×1]Xk

= Xk(1 : n − 1, :). (19)

Next, we show using mathematical induction that

Xk+1(:, 2 : n) = −Xk(:, 1 : n − 1). (20)

Consider the case k = 0. Note that,

X1 + X′
1 = −g�g

′
�.

Since [g�g
′
�]jk = 0 unless j = k = 1, we get

X1(:, 2 : n) = − X′
1(:, 2 : n) = −[X1(2 : n, :)]′

= − [X0(1 : n − 1, :)]′ = −X′
0(:, 1 : n − 1)

= − X0(:, 1 : n − 1),

where in the third equality we have used (19) and the last
equality follows because X0 =E� is a symmetric matrix. Thus,
(20) holds for k = 0. Now, assume that (20) holds for k =
0, 1, . . . , � − 1. Then

X�+1(:, 2 : n) = F�X�(:, 2 : n) = −F�X�−1(:, 1 : n − 1)

= − X�(:, 1 : n − 1).

Hence, (20) follows by induction. Now X0=E� ∈ H. Apply-
ing (19) and (20) recursively it is readily verified that Xk ∈ H

for all k�0. Hence the proposition follows. �

It follows from Proposition 3 that Xk + X′
k ∈ H0 for all k.

Since P� ∈ H0, the number of independent equations in the
matrix (13) is only n. Even if the input-to-state filter is not
implemented in the controllable canonical form, it is natural to
expect that the number of independent equations is n. Indeed,
if z(t) = Lz�(t) for some nonsingular L, then using (13) and
Proposition 1 we get

LP �L
′ =

n−1∑
k=0

wkL(Xk + X′
k)L

′.

Hence

[L ⊗ L]vec[P�] =
n−1∑
k=0

wk[L ⊗ L]vec[Xk + X′
k]. (21)

This is a weighted version of (13). Note that we denote the
matrix Kronecker product by ⊗. Since the underlying sys-
tem of equations is not overdetermined, the weighting has
no effect on the final solution. However, in a practical sce-
nario, the true covariance matrix P� is unknown, and we work
with an estimate P̂� not necessarily belonging to H0. Then
we might expect that solving an overdetermined system with
proper weighting (21) may give more accurate estimates of
{wk}n−1

k=0. We explore the second-order statistical properties of

P̂� to examine this aspect. We first state the following basic
result.

Proposition 4. Let uA(t), uB(t), uC(t) and uD(t) be jointly
Gaussian real and scalar-valued continuous-time stationary
stochastic processes. Let us define

P̂AB(�) := 1

T

∫ T

0
dt uA(t + �)uB(t),

PAB(�) := E{uA(t + �)uB(t)}.

The cross-spectrum �AB(i�) of uA(t) and uB(t) is given by

�AB(i�) =
∫ ∞

−∞
d�PAB(�)e−i��.

Assume that each of the functions PAC(�)PBD(�) and
PAD(�)PBC(�) tend to zero as � → ∞ at a rate faster than
�−2. Then as T → ∞ the asymptotic covariance between
P̂AB(0) and P̂CD(0) is given by

E{P̂AB(0) − PAB(0)}{P̂CD(0) − PCD(0)}

= 1

2�T

∫ ∞

−∞
d�[�AC(i�)�DB(i�) + �AD(i�)�CB(i�)].
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Proof. By straightforward algebra, we have

E{P̂AB(0) − PAB(0)}{P̂CD(0) − PCD(0)}
= E{P̂AB(0)P̂CD(0)} − PAB(0)PCD(0)

= 1

T 2

∫ T

0

∫ T

0
dt1dt2[E{uA(t1)uB(t1)uC(t2)uD(t2)}

− E{uA(t1)uB(t1)}E{uC(t2)uD(t2)}]

= 1

T 2

∫ T

0

∫ T

0
dt1dt2[E{uA(t1)uC(t2)}E{uB(t1)uD(t2)}

+ E{uA(t1)uD(t2)}E{uB(t1)uC(t2)}]

= 1

T 2

∫ T

0

∫ T

0
dt1dt2[PAC(t1 − t2)PBD(t1 − t2)

+ PAD(t1 − t2)PBC(t1 − t2)]

= 1

T 2

∫ T

−T

dt (T − t)[PAC(t)PBD(t) + PAD(t)PBC(t)],

where in the second equality we have used a well-known for-
mula for the fourth-order moment of a jointly Gaussian ran-
dom variables (Janssen & Stoica, 1988). Since the functions
PAC(�)PBD(�) and PAD(�)PBC(�) tend to zero as � → ∞ at
a rate faster than �−2, we can write as T → ∞
E{P̂AB(0) − PAB(0)}{P̂CD(0) − PCD(0)}

= 1/T

4�2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dt d�1 d�2 ei(�1+�2)t

× [�AC(i�1)�BD(i�2) + �AD(i�1)�BC(i�2)]

= 1

2�T

∫ ∞

−∞

∫ ∞

−∞
d�1 d�2 �(�1 + �2)

× [�AC(i�1)�BD(i�2) + �AD(i�1)�BC(i�2)]

= 1

2�T

∫ ∞

−∞
d�[�AC(i�)�BD(−i�)

+ �AD(i�)�BC(−i�)].
Hence, the proposition follows. �

Since P� ∈ H0, each element along an anti-sub-diagonal of
P̂� gives the estimates of the same quantity (up to a sign factor).
Our next proposition explores the correlation structure of the
elements in {[P̂�]ij : i + j = 2�} for a fixed �.

Proposition 5. Let P̂� be given by (16). Then for i+j=k+l=2�

it holds as T → ∞ that

cov{[P̂�]ij , [P̂�]kl} = (−1)j−lcov{[P̂�]��, [P̂�]��}, (22)

where cov{x1, x2} denotes the covariance between two random
variables x1 and x2. Furthermore, for the diagonal elements of

P̂� it holds for T → ∞ that

cov{[P̂�]ii , [P̂�]jj } = 2

T
var

{
p2n−i−j

�2(p)
us(t)

}
, (23)

where us(t) is a stationary stochastic process having a spectral
density �2

u(i�).

Proof. Recall that [z�(t)]i={pn−i/�(p)}u(t), where p denotes
the differentiation operator. Consider the case i+j =k+ l=2�.
Then (−1)k = (−1)2�−l = (−1)−l = (−1)l . Proposition 4 gives

cov{[P̂�]ij , [P̂�]kl}

= 1

2�T

∫ ∞

−∞
d�

|�u(i�)|2
|�(i�)|4

× [(i�)2n−i−l (−i�)2n−j−k + (i�)2n−i−k(−i�)2n−j−l]

= 1

2�T

∫ ∞

−∞
d�

|�u(i�)|2
|�(i�)|4 (i�)4n−i−j−k−l

× [(−1)j+k + (−1)j+l]

= 1

2�T

∫ ∞

−∞
d�

|�u(i�)|2
|�(i�)|4 (i�)4(n−�)[(−1)j−l + (−1)j−l]

= 2(−1)j−l

2�T

∫ ∞

−∞
d�

�4(n−�)|�u(i�)|2
|�(i�)|4 . (24)

Now putting j = l = � in (24) we get (22). The calculation
leading to (23) is similar i.e.,

cov{[P̂�]ii , [P̂�]jj } = 1

2�T

∫ ∞

−∞
d�

|�u(i�)|2
|�(i�)|4

× [(i�)2n−i−j (−i�)2n−i−j

+ (i�)2n−i−j (−i�)2n−i−j ],
which gives (23). �

Since P� ∈ H0, every element of the set S� := {(−1)k−�

[P̂�]j,k : j + k = 2�} gives an estimate of [P�]�,�. However,
from (22) it follows that the asymptotic covariance matrix of
the elements in S� is of rank one. Hence, it is not possible to
improve the statistical accuracy of estimated [P�]�,� by taking
a linear combination of the elements in S�. In practice, T must
be large enough to ensure the reliability of the extracted statis-
tics. For such practical values of T, the inference made from the
asymptotic analysis is still valid. Numerical simulation results
also confirm this observation. Thus, we conclude that there is
no improvement in statistical accuracy if we solve the overde-
termined system of equations (21), and the coordinates of z(t)

have no effect on the statistical accuracy of ŵ. The observations
so far justify the algorithm described in Section 2.

Proposition 6. As the observation time T → ∞ the asymptotic
covariance matrix Cŵ of

√
T ŵ in (17) is given by

Cŵ = X−1CP (X′)−1, (25)
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where P̂� is given in (16) and CP is the asymptotic covariance
matrix of

√
T d[P̂�], which is a Hankel matrix given by

[CP ]i,j = 2 var

{
p2n−i−j

�2(p)
us(t)

}
, (26)

where us(t) is a stationary stochastic process having spectral
density �2

u(i�). Consequently, the asymptotic covariance ma-
trix of

√
T f̂ is given by

Cf = DCŵD′. (27)

Proof. The expression for CP in (26) follows directly from
(24), while (25) and (27) are consequences of (17). �

4. Fitting a rational model

The algorithm at the end of Section 2 gives the estimates
of f (s) at the interpolation points. In this section, we propose
an approach to fit a rational model to the interpolation data.
Assume that u(t) has a strictly proper rational spectrum of order
	, i.e.,

�(s) = c(s)c(−s)

a(s)a(−s)
, (28)

where

a(s) = s	 +
	∑

k=1

aks
	−k, c(s) =

	∑
k=1

cks
	−k .

Then the half-spectrum f (s) also admits a strictly proper ra-
tional representation as

f (s) = b(s)

a(s)
, b(s) =

	∑
k=1

bks
	−k

such that


(s) := c(s)c(−s) = a(s)b(−s) + b(s)a(−s). (29)

Our approach in this work is to identify the real-valued param-
eters {ak}	k=1 and {bk}	k=1 from the data. Subsequently, we can
evaluate the right-hand side of the equation (29). Then a spec-
tral factorization of (29) will lead to the parameters {ck}	k=1.
Note that the right-hand side of (29) needs to be positive real in
order to ensure the existence of a stable spectral factor. Another
important issue is to ensure the stability of the estimated poly-
nomial a(s). The problem of computing a(s) and b(s) from the
interpolation conditions originating from f (s) and its deriva-
tives evaluated at {sk}mk=1 is in fact a linear problem. However,
when we impose the stability constraint on a(s) and positiv-
ity constraint on the right-hand side of (29), we have to solve
a Nevanlinna–Pick interpolation problem with a degree con-
straint (Delsarte, Genin, Kamp, & Van Dooren, 1982; Kimura,
1987), which is more difficult.

In order to keep the description simple, we do not con-
sider interpolation conditions involving first and higher order
derivatives of f (s). However, the following discussion can be
generalized1 to account for the interpolation conditions involv-
ing first and higher order derivatives of f (s). Thus, from now
on we consider the case nk = 1 for k ∈ {1, . . . , m}.

Let f̂k be the estimate of f (sk). Once n�2	, it is straight-
forward to solve

f̂ka(sk) = b(sk), k ∈ {1, . . . , n} (30)

in the least-squares sense. It is also straightforward to incorpo-
rate weights and solve a weighted least-squares problem. In or-
der to derive the statistical properties of the resulting estimates,
we need to express the problem in terms of the real-valued vec-
tor f̂ as defined in (17). For that we need some notation. Define

�k :=

⎡
⎢⎢⎢⎢⎢⎣

s	−1
k

...

sk

1

⎤
⎥⎥⎥⎥⎥⎦

, �R :=

⎡
⎢⎢⎣

�1

...

�nr

⎤
⎥⎥⎦ , �C :=

⎡
⎢⎢⎣

�nr+1

...

�nr+nc

⎤
⎥⎥⎦ ,

R :=

⎡
⎢⎢⎣

s	
1

...

s	
nr

⎤
⎥⎥⎦ , C :=

⎡
⎢⎢⎣

s	
nr+1

...

s	
nr+nc

⎤
⎥⎥⎦ ,  :=

⎡
⎢⎣

R

Re(C)

Im(C)

⎤
⎥⎦ ,

F :=
⎡
⎢⎣

diag(fR) 0 0

0 diag{Re(fC)} −diag{Im(fC)}
0 diag{Im(fC)} diag{Re(fC)}

⎤
⎥⎦ ,

� := [�′
R Re(�′

C) Im(�′
C)]′.

Also, see (9) for definitions of fR and fC . In the following, we
denote the estimate of F derived from f̂ by F̂. Let us introduce

�1 := [a1 · · · a	 b1 · · · b	]′,
G = [−F� �], Ĝ = [−F̂� �].
It can be verified that G�1=F. Consequently, the least-squares
estimate of �1 is given by

�̂1 = [Ĝ′�Ĝ]−1Ĝ′�F̂,

where � is a positive-definite weighting matrix chosen by the
user. The following proposition quantifies the asymptotic co-
variance matrix of �̂1.

1 To illustrate how to set up a linear problem in terms of interpolation
constraints involving derivatives of f (s) note that

df (s)

ds
a(s) + da(s)

ds
f (s) = db(s)

ds
.

Here, we estimate f (s) and df (s)/ds for known s values, giving the inter-
polation conditions. Thus, the above equation is still linear in {ak}	

k=1 and
{bk}	

k=1. Now, the procedure can be repeated successively for higher order
derivatives.
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Proposition 7. Define

U =
⎡
⎢⎣

diag(UR) 0 0

0 diag{Re(UC)} −diag{Im(UC)}
0 diag{Im(UC)} diag{Re(UC)}

⎤
⎥⎦ ,

where

UR =

⎡
⎢⎢⎣

a(s1)

...

a(snr )

⎤
⎥⎥⎦ , UC =

⎡
⎢⎢⎣

a(snr+1)

...

a(snr+nc )

⎤
⎥⎥⎦ .

Then the asymptotic covariance matrix of
√

T �̂1 is given by

C�̂1
= TE{(�̂1 − �1)(�̂1 − �1)

′}

= [G′�G]−1G′�UCf U ′�G[G′�G]−1, (31)

the optimal choice of � is given by

� = (UCf U ′)−1,

and the associated covariance matrix of the optimum estimate
of

√
T �1 is [G′(UCf U ′)−1G]−1.

Proof. In this proof, we denote �a = [a1 · · · a	]′. Using
a standard technique of deriving the asymptotic accuracy of
the least-squares-based estimates (Söderström & Stoica, 1989,
p. 285), one can show that the asymptotic estimation error is
given by

�̂1 − �1 = [Ĝ′�Ĝ]−1Ĝ′�(F̂ − Ĝ�1)

≈ [G′�G]−1G′�(F̂ − Ĝ�1)

= [G′�G]−1G′�(F̂ − F)( + ��a)

= [G′�G]−1G′�U(f̂ − f).

Now, it is straightforward to derive (31). The remaining part
of the proposition follows from the theory of the best linear
unbiased estimates (Ljung, 1999, p. 555). �

The implementation of the optimally weighted least-squares
estimator requires a bootstrapping procedure. First, we need an
initial estimate of the system parameters obtained without any
weighting. This knowledge is used to compute Cf , which is
then used to implement the optimally weighted estimator.

Let â(s), b̂(s) and 
̂(s) denote the estimates of a(s), b(s)

and 
(s), respectively, derived from �̂1. The requirement for
spectral factorization


̂(s) > 0, Re(s) = 0 (32)

may not hold, in general. This can be fixed by using a regular-
ization procedure described below. The idea here is to perturb
the coefficients of 
̂(s), so that (32) is enforced. This actually
amounts to solving a linear matrix inequality (LMI). In fact,
we can use the results in Stoica et al. (2000) (see also Mari

et al., 2000) for estimation of moving average processes. Using
a bilinear transformation s = (z − 1)/(z + 1), we define


̂d(z) := (z + 1)2	

z	 
̂

{
z − 1

z + 1

}

= [(1 + z)(1 + z−1)]	
̂
{

z − 1

z + 1

}
=

	∑
j=−	

�j z
j .

It is straightforward to verify that �j = �−j , ∀j and that 
̂d(z)

is real-valued for |z| = 1. Using the property of the bilinear
transformation we can express (32) as


̂d(z) > 0, |z| = 1. (33)

However, (33) is equivalent to the constraint that 
̂d(e
−i�) is

the spectral density function of a moving average process. This
problem occurs naturally in identifying an order-	 moving aver-
age process, where {�j }	j=0 represent the covariances estimated
from the data. Also, it is not guaranteed that (33) holds. There-
fore, it is required to modify the vector � = [�0 �1 · · · �	]′.
We may obtain the modified vector �̂=[�̂0 �̂1 · · · �̂	]′ using

�̂ = arg min
�̄

‖� − �̄‖2 (34)

subject to

	∑
j=−	

�̄j z
j > 0, |z| = 1, (35)

where �̄ = [�̄0 · · · �̄	]′. The above optimization problem can
be cast as a semidefinite programming problem (Stoica et al.,
2000), thus can be solved numerically in a computationally
efficient way. To show this let us partition

�̄ = [�̄0 �̄
′
1]′, � = [�0 �′

1]′

and define A ∈ R	×	 and b ∈ R	 as

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0

...
. . .

. . .

. . . 1

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎦

.

Then minimizing (34) subject to (35) is equivalent to solving
the semidefinite programming problem (Stoica et al., 2000):

min
�̄,Q

�

s.t.

[ � �̄
′ − �′

�̄ − � I

]
> 0,

[
Q − AQA′ �̄1 − AQb

�̄1 − b′QA′ �̄0 − b′Qb

]
> 0

and �̂ is given by the argument minimizer with respect to �̄.
Let 
̌d(z) be the spectral density computed from �̂. An in-

verse bilinear transformation gives a refined version 
̌(s) of
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̂(s) such that 
̌(i�) > 0 for all real-valued �. We compute

̌(s) as


̌(s) = z	

(z + 1)2	 
̌d(z)

∣∣∣∣
z=(1+s)/(1−s)

.

From 
̌(s), we can compute a consistent estimate č(s) of c(s)

by solving the spectral factorization problem


̌(s) = č(s)č(−s).

For a large enough observation length the condition (32) is
satisfied since �̂1 comes sufficiently close to �1 due to the
consistency properties. Then the regularization procedure is
not needed. Therefore, the asymptotic covariance expression in
Proposition 7 remains valid. Also, by the same reasoning, we
can extend the result to derive the asymptotic covariance of the
estimated c-parameters. This is done in the following proposi-
tion. Here, for the simplicity of notation, we extend the defini-
tions of ak , bk and ck so that ak = bk = ck = 0 for k > 	 and
k < 0. Also, we define b0 = c0 = 0 and a0 = 1.

Proposition 8. Denote �a = [a1 · · · a	]′, �b = [b1 · · · b	]′
and �c = [c1 · · · c	]′. Also define

� = [�′
a �′

b �′
c]′

and let �̂ denote the estimate of � derived in above. Let us define
the 	 × 	 matrix V(�a) as

[V(�a)]jk = (−1)	−ka2j−k . (36)

We also define V(�b) and V(�c) similarly. Then the asymptotic
covariance matrix of

√
T �̂ is given by

C�̂ := TE{(�̂ − �)(�̂ − �)′} = V C �̂1
V ′,

where C�̂1
is given in Proposition 7, and

V =
⎡
⎢⎣

I 0

0 I

V−1(�c)V(�b) V−1(�c)V(�a)

⎤
⎥⎦ . (37)

Proof. Denote the estimation error in �a , �b and �c by �̃a , �̃b

and �̃c, respectively. Also ã(s), b̃(s) and c̃(s) denote the as-
sociated perturbations in the polynomials a(s), b(s) and c(s),
respectively. Then, we have the following asymptotic perturba-
tion expansion of the first order:

a(s)b̃(−s) + a(−s)b̃(s) + b(s)ã(−s) + b(−s)ã(s)

= c(s)c̃(−s) + c(−s)c̃(s). (38)

Now, we equate the coefficients of {sk}2	
k=0 on both sides of

(38). In matrix notation, we have

{S1(�a) + S2(�a)}
[ 0

�̃b

]
+ {S1(�b) + S2(�b)}

[ 0

�̃a

]

= {S1(�c) + S2(�c)}
[ 0

�̃c

]
, (39)

where S1(�a), S2(�a) are (2	+ 1)× (	+ 1) matrices defined
element-wise as

[S1(�a)]jk = (−1)	−j+kaj−k ,

[S2(�a)]jk = (−1)	+1−kaj−k .

Then for an even j we see that

[S1(�a)]jk + [S2(�a)]jk = {(−1)	−2	+k + (−1)	+1−k}aj−k

= {(−1)	−k + (−1)	+1−k}aj−k

= 0.

Similarly, for an odd j we have

[S1(�a)]jk = (−1)	−2	−1+kaj−k

= (−1)	+1−kaj−k = [S2(�a)]jk .

Therefore, every even numbered row of (39) vanishes. Also
the first row of (39) vanishes, because the coefficient of s2	+1

vanishes on both sides of (38). Now, retaining only the relevant
terms in (39) corresponding to the third, fifth, …, (2	 + 1)th
rows we get

V(�a)�̃b + V(�a)�̃b = V(�c)�̃c ⇒ �̂ − � = V (�̂1 − �1),

where [V(�a)]jk = [S2(�a)]2j+1,k+1 = (−1)	−ka2j−k . Now
(37) is straightforward from the last equality, since V(�c) is
nonsingular by construction (36). �

If the roots of â(s) obtained from the linear interpolation
approach are in the left-half plane, then we get a consistent es-
timate of the CARMA process transfer function as č(s)/â(s).
However, â(s) may have roots in the right-half plane in some
rare occasions. In that case a second regularization step is re-
quired. One popular but heuristic approach to handle this prob-
lem is to reflect the unstable roots of â(s) to the left-half
plane about the imaginary axis. Another possibility is to use
the spectral zero assignability approach in Georgiou (1999).
Note that we have a reliable estimate č(s) of c(s). Therefore,
the convex optimization algorithm in Byrnes et al. (2001) can
be used to re-estimate a(s) using 	 + 1 interpolation data. A
natural way to choose this subset of size 	 + 1 is be to pick
up the interpolation data with lower statistical variation. The
expression (27) can be used for that purpose. Numerical simu-
lations show that the heuristic strategy of reflecting the unsta-
ble poles of â(s) to the left-half plane works as good as the
Byrnes–Georgiou–Lindquist algorithm in Byrnes et al. (2001).

5. An illustrative example

In this section, we illustrate the proposed direct modeling ap-
proach using numerical simulations. To conduct the simulation,
we first need to simulate the sampled version of a continuous-
time stochastic process u(t). We do so by using the method
in Larsson (2004) and Söderström (2002) as follows. First, we
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express the continuous-time process u(t) in state space:

�̇(t) = Ac�(t) + bce(t),

u(t) = cc�(t), (40)

where �(t) is the state vector, and e(t) is a unity variance
continuous-time white noise, i.e., E{e(t + �)e(t)} = �(�). Note
that �(·) is the Dirac’s delta function. Let the process be sam-
pled at a sampling interval ts . We want to seek for an equiva-
lent discrete-time state space model such that the second-order
statistics of the discrete-time model output are the same as those
of the underlying continuous-time process at the sampling in-
stants. This discrete-time model is given by Larsson (2004),
Söderström (2002)

�{(k + 1)ts} = eActs �(kts) + ed(kts),

u(kts) = cc�(kts), (41)

where ed(kts) is a vector-valued discrete-time white noise se-
quence with E{ed(t)e′

d(t)} = Rd . The covariance matrix Rd is
related to the underlying continuous-time model via two Lya-
punov equations as follows:

AcQ + QA′
c + bcb

′
c = 0, (42)

Q = eActs QeA′
cts + Rd . (43)

More precisely, we need to solve for Q in (42), and subsequently
compute Rd from (43). We point out that Q = E{�(t)�′(t)},
which is easy to verify from (42).

In order to compute the estimates of the half-spectrum at the
selected interpolation points we need to compute the output of
the input-to-state filter using the samples u(kts) at the sampling
instants. This is done by a popular discretization technique
known as state variable filtering (SVF); see Garnier and Young
(2004) and references therein. In the discretization of the input-
to-state filter, the input signal is assumed to vary linearly in
between the sampling instants (commonly referred to as the
first-order hold).

In the simulations, we consider a CARMA model with (see
also (28))

a(s) = s3 + 0.3s2 + 9s + 0.9, c(s) = s2 + 0.5s + 6.

The observation time is 500 s, and the sampling interval is
0.05 s. This means that the total number of samples is 104.
We estimate the half-spectrum at the interpolation points
{1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 1±2i, 1±3i, 1±4i}. No derivative
constraint is used in the estimation process. The interpolation
data are then used to fit a CARMA model using the procedure
outlined in Section 4. The performance of the proposed algo-
rithm is compared with that of the so-called prediction error
method (PEM)-based approach (Larsson & Mossberg, 2003;
Söderström, 1991). PEM is an indirect method. Although PEM
is known as the most accurate estimator, it does not always
have a solution (Larsson & Mossberg, 2003; Söderström,
1991). Approximately 25% of our simulations fail to give a
PEM solution. The results presented here are based on only
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Fig. 1. Comparison of the mean of the estimated spectrum (dashed line)
and the true spectrum (solid line). The mean ± standard deviation of the
estimated spectrum is shown in dotted lines.

those realizations for which we get a PEM solution. The esti-
mation results obtained from 100 Monte-Carlo simulations are
shown in Fig. 1, where the true spectrum is compared with the
estimated mean value ± standard deviation. As can be seen
in Fig. 1, the estimation accuracy of the proposed approach is
comparable with the prediction error method. For about 2% of
the cases PEM deviates significantly from the true parameter
vector (the optimization routine fails to reach the global min-
imum). These special cases are excluded in the evaluation of
the statistical performance. In Table 1, we show the analytical
and empirical standard deviations of the proposed estimates.

The performance of the proposed approach is similar to PEM
as far as estimation of {ak}3

k=1 are concerned. However, PEM
is slightly better than the proposed method in estimation of
{ck}3

k=1 when it gives a solution. The analytical standard devi-
ations of the proposed estimates match well with the empirical
standard deviations in Table 1. The algorithms are implemented
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Table 1
Parameter estimation performance of the proposed algorithm

True Mean Std.-Dev. Std.-Dev.
value (empirical) (analytical)

a1 0.3 0.3186 0.0396 0.0408
a2 9 9.0331 0.1240 0.1126
a3 0.9 0.9961 0.2393 0.1876
c1 1 0.9740 0.0290 0.0224
c2 0.5 0.5887 0.1201 0.1152
c3 6 5.9368 0.2211 0.1792

using Matlab 6.1 on a 2.8 GHz Pentium IV processor with 1 GB
RAM. The discrete-time PEM estimate is computed using the
pem routine in the System Identification Toolbox (we do not
provide any initial guess to the pem routine in our simula-
tions; however the estimated model is constrained to be strictly
proper). The average time required to compute the proposed
estimate is 0.2 s, while it takes 1.0 s on average to compute the
PEM estimate.

6. Conclusions

In this paper, we have proposed a novel direct approach for
modeling continuous-time stochastic processes. The main idea
is to use an input-to-state filter to compute the half-spectrum in
some prescribed points in the right-half plane. The estimated
samples of the half-spectrum are then used to obtain a ratio-
nal model of the half-spectrum using linear interpolation with
a positivity constraint. This is done by solving a semidefinite
programming problem. The unique feature of the approach is
twofold. Firstly, it is not required to estimate an intermediate
discrete-time model. Thus, we can avoid many numerical dif-
ficulties associated with an indirect method. Secondly, it offers
estimates which are comparable to PEM in terms of accuracy.
However the PEM technique often fails to give a solution, which
is not the case with the proposed method. One important open
research question is to understand how the interpolation points
affect the estimation results. More interpolation points tend to
give better estimates (but at an expense of more computation).
However, it is not clear how to best choose their locations.
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