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Abstract: A novel direct approach for modeling continuous-time stochastic processes is
proposed in this paper. First the observed data is passed through an input-to-state filter and
the covariance of the output state is computed. The properties of the state covariance matrix is
then exploited to estimate the positive real spectrum of the observed data at a set of prescribed
points on the right half plane. Finally, the continuous-time parameters are obtained from the
positive real spectrum estimates by solving a Nevanlinna-Pick interpolation problem. The
estimated model is stable. The analytical results are illustrated using numerical simulations.
Copyright c©2005 IFAC

Keywords: Positive real spectrum, continuous-time, stochastic process, Nevanlinna-Pick
interpolation.

1. BACKGROUND

Modeling of continuous-time stochastic processes is
a fundamental research question which has received
considerable interest recently. Although the signal is
continuous-time, in practice one works with sam-
pled data. One popular approach is to identify a
discrete-time system from uniformly sampled data,
see (Larsson, 2004) and references therein. Subse-
quently, the estimated discrete-time model is con-
verted back to a corresponding continuous-time model
by a nonlinear transformation. Apart from the obvi-
ous difficulty of solving nonlinear equations, this ap-
proach also suffers from three problems: (i) It does
not guarantee stability of the estimated model; (ii) At
fast sampling rate the associated discrete-time sys-
tem poles and zeros cluster close to unity in the
complex plane, leading to numerically ill-conditioned
identification problem; (iii) The continuous-time pa-
rameters can be very sensitive to the sampled data.
The second approach is to identify the continuous-
time parameter directly. This approach is advanta-

1 This work was supported by Australian Research Council

geous in many cases since one can avoid nonlinear
transformations and may benefit from non-uniform
sampling (Larsson, 2004). But unlike the discrete-time
counterpart, the mapping from the lagged covariance
estimates to the system parameters for continuous-
time systems are more complicated. Hence standard
discrete-time algorithms cannot be extended directly.
It is also difficult to ensure stability of the estimated
model.

In this paper, we propose a novel approach where we
first estimate the positive real spectrum and its deriva-
tives evaluated at some prespecified points in the right
half plane. This is achieved via a linear operation on
the covariance matrix of the output of an input-to-state
filter. Subsequently, we present a few possibilities of
estimating stable rational models from the estimates
of the positive real spectrum. In this step, we need to
solve a Nevanlinna-Pick interpolation problem using
either the classical Nevanlinna’s algorithm (Delsarte et
al., 1982), or a recent algorithm proposed in (Byrnes
et al., 2001). The algorithm proposed in (Byrnes et
al., 2001) proves to be more useful, because the user
enjoys the freedom to place the spectral zeros.
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2. INPUT-TO-STATE FILTERS

The discussion in this section is applicable to any
continuous-time wide sense stationary stochastic pro-
cess u(t). As a special application, we shall apply
the results derived in this section to continuous-time
ARMA and AR processes in later sections. Suppose
the real-valued 1 continuous-time stochastic process
u(t) has an autocorrelation function

rτ := E {u(t + τ) u(t)}.

Then, the spectrum of the process is defined as

f(s) :=
∫ ∞

−∞
dτ rτ e−sτ , s = iω, ω ∈ R.

In this work we shall use the so-called positive real
spectrum f (s) of u(t), which is defined as

f (s) :=
∫ ∞

0
dτ rτ e−sτ , Re(s) ≥ 0.

Consequently, it is readily verified that

f(s) = f (s)+ f (−s), s = iω, ω ∈ R. (1)

In the following we shall be concerned with esti-
mating f (s) and its derivatives at a predefined set
of points {sk}

m
k=1 from the observed continuous-time

signal u(t). The points {sk}
m
k=1 are chosen such that

Re(sk) > 0, ∀k. The main idea here is to use an input-
to-state filter. Consider the input-to-state filter

ż(t) = Fz(t)+gu(t), (2)

where F has eigenvalues at {−sk}
m
k=1 and the pair

(F,g) is controllable. We shall assume that the filter in
(2) has a pole of order nk at −sk, while the order of the
filter is n, i.e. F is a n×n matrix, and å m

k=1 nk = n. In
what follows next, we shall show that the covariance
matrix of the output z(t) can be used to extract the
estimates of f (sk) and its derivatives. In particular,
a pole of order nk at −sk enables us to extract the
derivatives of f (s) up to order nk − 1 evaluated at
sk. The following proposition is the first step in that
direction.

Proposition 1. Assume that f (∞) < ∞. Let E be the
unique positive definite solution to the Lyapunov
equation

FE +EF ′ +gg′ = 0. (3)

Then there exist scalar-valued functions {wk}
n−1
k=0 of F

and f (s) such that

P := E {z(t)z′(t)} = WE +EW ′, (4)

where

W =
n−1

å
k=0

wkFk. (5)

1 However, the results in this section can be generalized for a
complex-valued stochastic process in a fairly straightforward man-
ner.

Proof: First note from (3) that

[sI −F]−1gg′[−sI −F ′]−1

= [sI −F]−1{FE +EF ′}[sI +F ′]−1

= [sI −F]−1E −E[sI +F ′]−1.

Hence, using Perseval’s relation we have

P =
−1
2π

∫ ∞

−∞
dωf( iω)[ iωI −F]−1gg′[iωI +F ′]−1

= WE +EW ′,

where

W :=
1

2π

∫ ∞

−∞
dωf( iω) {[iωI −F]−1.

=
1

2πi

∮
CR

ds f (−s)[sI−F]−1, (6)

where CR is the infinite semicircular contour encir-
cling the entire right half plane traversed in the clock-
wise direction. Note that, the second equality in (6)
follows from (1); the fact that lims→∞ [sI −F]−1 = 0,
and f (∞) is bounded. Also the contribution due to the
term [sI−F ]−1 f (s) vanishes, since it is analytic in the
entire right half plane. Now we know that the matrix
[sI−F ]−1 commutes with F . Hence there exists poly-
nomials {α k(s)}n−1

k=0 such that

[sI −F ]−1 =
n−1

å
k=0

α k(s)
D( s)

Fk,

where D( s) is the characteristic polynomial of F .
Therefore, by setting

wk =
1

2πi

∮
CL

ds
α k(s) f (−s)

D( s)
,

the proposition follows.
Remark: The Proposition 1 gives a way to compute
{wk}

n−1
k=0 from P. Note that P is available from the

observed data. The matrix E is known to the user since
F and g are user defined matrices. Computation of
{wk}

n−1
k=0 from P amounts to solving a least-squares

problem. Also, {wk}
n−1
k=0 are invariant of the choice of

co-ordinates of z(t). To see that, consider the output
state sequence z1(t) of the input-to-state filter (F1,g1),
where

F1 = T FT−1, g1 = T−1g

for some nonsingular matrix T . Let the covariance
matrix of z1(t) be P1. Then it follows that P1 = T PT ′

and the unique positive definite solution E1 of the
Lyapunov equation F1E1 + E1F ′

1 + g1g′1 satisfy E1 =
T ET ′. Then (4) gives

P1 = W1E1 +E1W ′
1,

where W1 = TWT−1. Now from (5) we can verify our
assertion that

W1 =
n−1

å
k=0

wkFk
1 .
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To proceed further, we need some notations. Let us de-
fine the sequence of p× p matrices {Ik

p}
p−1
k=0 element-

wise as
[Ik

p]i j = δ j−i,k,

where δ i j denotes the Kronecker’s delta function. It is
readily verified that

Ik
pIℓ

p =
{

Ik+ℓ
p , k + ℓ < p
0, otherwise.

(7)

We shall also use the notation C
ℓ
j = ℓ!

j!(ℓ− j)! . Now we
are ready for the next theorem, where we explore the
way to compute { f (sk)}m

k=1 and its derivatives from
{wk}

n−1
k=0 .

Theorem 1. Suppose {sk}
m
k=1 are distinct, and F is

chosen such that its Jordan form has the block-
diagonal structure

diag
{

J(−s1,n1) · · · J(sm,nm)
}

, (8)

where for each k satisfying 1 ≤ k ≤ m, the matrix
J(−sk,nk) is an elementary nk ×nk Jordan block

J(−sk,nk) = −skI0
nk

+ I1
nk

.

Define the polynomial

w(s) :=
n−1

å
k=0

wksn−k.

Denote the rth derivative of f (s) evaluated at s = sk by
f (r)(sk). Then

w(r)(−sk) = (−1)r f (r)(sk), 0 ≤ r < nk

1 ≤ k ≤ m. (9)

Proof: Since the coefficients {wk}
n−1
k=0 are independent

of the choice of the co-ordinates of z(t), we shall
assume, without any loss of generality, that F is in the
Jordan canonical form (8). Now

Fℓ = diag
{

Jℓ(−s1,n1) · · · Jℓ(−sm,nm)
}

,

and using binomial theorem and (7) gives

Jℓ(−sk,nk) =
min(nk−1,ℓ)

å
j=0

(−sk)ℓ− j
C

ℓ
jI

j
nk

.

Therefore, from (5) we see that W also is block-
diagonal: W = diag

{
W1 · · · Wm

}
, where Wk is a nk×

nk block given by

Wk =
n−1

å
ℓ=0

wℓ

min(nk−1,ℓ)

å
j=0

(−sk)ℓ− j
C

ℓ
jI

j
nk

. (10)

However, from the definition of W in (6) we see

Wk =
1

2πi

∮
CR

ds f (−s)[(s+ sk)I0
nk
− I1

nk
]−1

=
−1
2πi

∮
CR

ds f (−s)
nk

å
j=0

1
(s+ sk) j+1 I j

nk

=
nk

å
j=0

(1/ j!)(−1) j f ( j)(sk)I j
nk

, (11)

where the second equality can be verified after a few
steps of straightforward algebra and third equality fol-
lows from Cauchy’s residue theorem. Note that Wk is
a Toeplitz, upper triangular matrix, with the coeffi-
cients of I j

nk appearing along the jth upper diagonal.
Therefore, we can equate the coefficients of I j

nk for
0 ≤ j ≤ nk −1 in (10) and (11) to get (9).
Remark: The result in Theorem 1 can be seen as the
continuous-time counterparts of some of the results in
(Georgiou, 2001; Georgiou, 2002b; Georgiou, 2002a)
for discrete-time processes. Compared to these results,
our proofs are simpler, and our results are more gen-
eral in the sense that Theorem 1 gives explicit expres-
sions for the derivatives of f (s) evaluated at sk. An
analogous proof as above can also be used to establish
the corresponding results in (Georgiou, 2001; Geor-
giou, 2002b). Theorem 1 is perhaps more important to
continuous-time processes than its counterpart [results
in (Georgiou, 2001; Georgiou, 2002b)] to discrete-
time processes. This is because there are numerous al-
ternative approaches available for modeling discrete-
time processes (Ljung, 1999), whereas few such re-
sults are known for the continuous-time case.

3. ESTIMATION OF RATIONAL MODELS

In this section we explore some possibilities of esti-
mating rational transfer function models from the esti-
mates of f (s) and its derivatives evaluated at {sk}

m
k=1.

Assume that u(t) has a strictly proper rational spec-
trum of order ν, i.e.,

f(s) =
c(s)c(−s)
a(s)a(−s)

,

where

a(s) = sν +
ν

å
k=1

aksν−k , c(s) =
ν

å
k=1

cksν−k .

Then the positive real spectrum f (s) also admits a
strictly proper rational representation as

f (s) =
b(s)
a(s)

, b(s) =
ν

å
k=1

bksν−k .

such that

c(s)c(−s) = a(s)b(−s)+b(s)a(−s). (12)

Our approach in this work is to identify the parameters
{ak}

ν
k=1 and {bk}

ν
k=1 from the data. Subsequently we

can evaluate the right-hand side of the equation (12).
Then a spectral factorization of (12) would lead to the
parameters {ck}

ν
k=1. Note that the right-hand side of

(12) needs to be positive real in order to ensure the
existence of a stable spectral factor. Another impor-
tant issue is to ensure the stability of the estimated
polynomial a(s). The problem of computing a(s), b(s)
and c(s) from the interpolation conditions originating
from f (s) and its derivatives evaluated at {sk}

m
k=1 is

in fact a linear problem. However, when we impose
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the stability constraint on a(s) and positivity con-
straint on the right-hand side of (12), we have to solve
a Nevanlinna-Pick interpolation problem with a de-
gree constraint (Delsarte et al., 1982; Kimura, 1987),
which is more difficult to solve. In this section, we
shall give a brief account of the different possibili-
ties for obtaining a rational model (with and without
constraints) from the interpolants obtained using the
method proposed in the previous section.

3.1 Method 1: linear interpolation

The simplest method for estimating {ak}
ν
k=1 and

{bk}
ν
k=1 from the interpolants is to solve a linear sys-

tem of equations. Here to keep the description simple,
we shall assume that the eigenvalues of F are distinct
and we have estimates f̂k of f (sk) for 1 ≤ k ≤ n. The
generalization for interpolation conditions involving
derivatives of f (s) is straightforward. For this ap-
proach we need n ≥ 2ν. Recall that, we are required
to solve

f̂ka(sk) = b(sk), 1 ≤ k ≤ n. (13)

Let us define

V =




sν−1
1 · · · s1 1

sν−1
2 · · · s2 1
...

. . .
...

sν−1
n · · · sn 1


 , v =




aν
1

aν
2
...

aν
n


 ,

and D = diag{ f̂1 · · · f̂n }. Then (13) gives

Dv = −DV a+V b, (14)

where

a =




a1
...

aν


 , b =




b1
...

bν


 .

Hence the estimates of b and a are obtained by solving
(14). If n > 2ν, we need to solve (14) in a least-squares
sense. We point out that if the estimates { f̂k}

n
k=1 are

consistent, then estimates of a and b obtained by solv-
ing (14) are also consistent. However, if { f̂k}

n
k=1 are

not accurate enough due to small-sample estimation
errors, it is not possible to guarantee the stability of the
estimated a(s) polynomial. Also, one cannot ensure
the positive realness condition in (12).

3.2 Method 2: Nevanlinna-Pick interpolation

The classical way of solving the Nevanlinna-Pick in-
terpolation problem is to employ the Nevanlinna’s al-
gorithm for solving interpolation in a rational Schur
function 2 (Delsarte et al., 1982). The popular way

2 A rational function analytic inside the unit disc having modulus
not larger than unity is called a Schur function.

of mapping the Nevanlinna-Pick interpolation prob-
lem in our context to the Schur function interpolation
problem is to use a bilinear transform

z =
1+ s
1− s

⇔ s =
z−1
z+1

. (15)

For all z satisfying |z| > 1 in (15), it is readily ver-
ified that Re(s) > 0. The idea here is to convert the
continuous-time problem to an equivalent discrete-
time problem of finding a rational function h(z) of de-
gree ν analytic outside the unit disc such that h(zk) =
f̂k, for 1 ≤ k ≤ ν + 1, where zk = (1 + sk)/(1− sk).
Note that in this framework we need n = ν + 1. Once
we know h(z), we can map it back to f (s) using

f (s) = h
{

1+ s
1− s

}
. (16)

Next, the equivalent discrete-time Nevanlinna-Pick
problem is converted to a Schur function interpo-
lation problem by mapping the positive real inter-
polants { f̂k}

ν+1
k=1 into the interior of unit disc: xk = (1−

f̂k)/(1+ f̂k), where we seek for a rational Schur func-
tion σ( z) such that σ( z−1

k ) = xk. The Schur function
σ( z) can then be used to get h(z) as

h(z) =
1− σ( z−1)
1+ σ( z−1)

. (17)

A solution to the above problem exists if and only if
the Nevanlinna-Pick Hermitian matrix

N =

[
¯̂fi + f̂ j

1− z̄−1
i z−1

j
: i, j = 1,2, . . . , ν

]

is non-negative definite, while the solution is unique if
and only if N is rank deficient. Note that x̄ denotes the
conjugate of x. Nevanlinna’s algorithm for computing
a solution σ 1(z) is described as follows.

(1) Compute the Fenyves array of complex numbers

xi,k =
(1− z̄−1

k−1z−1
i )(xi,k−1 − xk−1,k−1)

(z−1
i − z−1

k−1)(1− x̄k−1,k−1xi,k−1)

for 1 ≤ i < ν + 1, i ≤ k < ν + 1, where xi,1 = xi
for 1 ≤ i ≤ ν +1.

(2) Initialize 3 σ ν+1 (z) = xν+1,ν+1 . From the diago-
nal entries xk,k of Fenyves array compute recur-
sively the general solution σ( z) as

σ k(z) =
xk,k(1− zz̄−1

k )+(z− z−1
k )σ k+1(z)

1− zz̄−1
k + x̄k,k(z− z−1

k )σ k+1(z)
,

Taking σ( z) = σ 1(z) we can use the mappings in (16)
and (17) to reconstruct the corresponding continuous-
time function f (s). The function f (s) derived in this
way satisfies the positivity and stability constraints.
However, it can be shown that the associated spectrum

3 We emphasize that without the degree constraint, one is free to
choose any Schur function for σ ν+1 (z) such that σ ν+1 (zν+1 ) =
xν+1, ν+1 . This provides a way of seeing the non-unique nature of
the solution.
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has zeros in the locations {−sk}
ν
k=1. Recall that we

need f (∞) = 0. Now note from (16) and (17) that

f (∞) = 0 ⇔ h(−1) = 0 ⇔ σ( −1) = 1.

One way to incorporate this constraint would be to
evaluate ν interpolants from the data and include the
final interpolation condition in the form

xν+1 = 1, zν+1 = −1.

However, it can shown in this case that Nevanlinna’s
algorithm gives a degenerate spectrum which is identi-
cally zero. This limits the application of Nevanlinna’s
algorithm where the underlying spectrum is strictly
proper. Another main disadvantage of Nevanlinna’s
algorithm is that it assigns spectral zeros at {−sk}

ν
k=1.

This can be inconvenient for practical purposes. The
reason is that the values of sk are typically chosen near
the frequency points of interest, and that forcing spec-
tral zeros at −sk would seriously distort the spectral
information at these frequency points. This problem
will be illustrated in the next section.

One alternative is Byrnes-Georgiou-Lindquist algo-
rithm. The idea here is to use use so-called spectral
zero assignability theorem as stated below.

Theorem 2. Let a set of points {zk}
ν
k=1 and { f̂k}

ν
k=1

be given so that |zk| > 0 and Re( f̂k) > 0, and the
matrix N is non-negative definite. Then for every
monic polynomial cd(z) of order ν, there exists a
unique order ν monic Schur stable polynomial ad(z)
and an associated order ν monic polynomial bd(z)
such that

λc d(z)cd(z−1) = ad(z)bd(z−1)+bd(z)ad(z−1),

bd(zk)/ad(zk) = f̂k, 1 ≤ k ≤ ν,

where the gain factor λ is determined by another pre-
specified interpolation condition [ f0 = bd(∞) /ad(∞)
for example].

Proof: See (Byrnes et al., 2001) and references
therein.

It is shown in (Byrnes et al., 2001) that the problem of
solving ad(z) and bd(z) can be formulated as a convex
optimization problem. Moreover, an iterative algo-
rithm is given in (Byrnes et al., 2001). We propose to
solve for h(z) using Byrnes-Georgiou-Lindquist algo-
rithm and then use (16) get f (s). For every presumed
locations of spectral zeros, Theorem 2 guarantees a
stable denominator polynomial. If we are interested in
an AR process, we can set spectral zeros at s = −∞
(equivalently, z =−1). For ARMA processes, we need
to estimate the spectral zeros using a suitable method,
e,g, the method in Section 3.1.

4. CASE STUDIES

In this section we present the estimation results ob-
tained using the proposed algorithms in numerical
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Fig. 1. Comparison of the mean of estimated spectrum
(dashed line) and the true spectrum (solid line).
The mean ± standard deviation of the estimated
spectrum is shown in dotted lines.

simulation experiments. In our first example, we con-
sider a continuous-time AR process with

a(s) = s3 +0.3s2 +9s+0.9, c(s) = 4. (18)

The stochastic process is sampled at 20 Hz. The sam-
pled version of the stochastic process is simulated
such that the second order statistics of the sampled
process resembles that of the original continuous-time
process, see (Söderström, 2002; Larsson, 2004) for
details. The output of input-to-state filter is computed
using the discretization technique known as state vari-
able filter (SVF), see (Garnier and Young, 2004) and
references therein. In the discretization of the input-to-
state filters, the input signal is assumed to vary linearly
in between the sampling instants [commonly referred
to as the first order hold]. The estimation is carried out
using Byrnes-Georgiou-Lindquist algorithm by pre-
specifying all the spectral zeros at the infinity. The in-
terpolation points are chosen as {1,1+3i,1−3i,1.5}.
The observation time of the precess is taken as 5
minuits. This means that 6000 samples are used for
estimation. In Figure 1 we compare the mean and
standard deviation of the estimated spectrum with the
true spectrum. The numerical mean and standard de-
viations are based on 100 Monte-Carlo simulations 4 .

In the next example we consider an ARMA model
with a(s) same as in (18), and

c(s) = s2 +0.5s+6.

At the first stage a preliminary estimate of the pa-
rameters are obtained using the least-squares based
approach in (14). Then the spectral zeros so obtained
are used in Byrnes-Georgiou-Lindquist’s algorithm to
determine the associated stable denominator and gain
factor. The interpolation points for the least-squares
based approach in (14) are chosen as {1,1 + 3i,1−

4 Note that due to estimation errors in the interpolants f̂k the
Nevanlinna-Pick matrix N may fail to be non-negative definite.
However, such situation is not encountered in this example.
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Fig. 2. Comparison of the mean of estimated spectrum
(dashed line) and the true spectrum (solid line).
The mean ± standard deviation of the estimated
spectrum is shown in dotted lines.
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Fig. 3. Comparison of the mean of estimated spec-
trum (dashed line) and the true spectrum (solid
line)using Nevanlinna’s algorithm. The mean ±
standard deviation of the estimated spectrum is
shown in dotted lines.

3i,1 + 2i,1− 2i,1.5}, among which the first four are
used in Byrnes-Georgiou-Lindquist algorithm. The
number of data samples, sampling frequency and ob-
servation time is the same as the previous example. A
comparison between the estimated spectrum and the
true spectrum is depicted in Figure 2. In about 25%
cases the least-squares based failed to give a positive
real f (s). Finally, in Figure 3 we show the spectrum
estimation results obtained using Nevanlinna’s algo-
rithm. The interpolation points are chosen as {1,0.5+
5i,0.5−5i,0.5}. As mentioned earlier, we can see the
estimated spectral zeros are located at the interpola-
tion points, which seriously distorts the spectrum.

5. CONCLUSIONS

In this paper we have proposed a novel direct ap-
proach for modeling continuous-time stochastic pro-
cesses. The main idea is to use an input-to-state fil-

ters to sample the positive real spectrum in some pre-
scribed points in the right half plane. Subsequently, a
suitable prescribed method can be used to interpolate
these data to obtain the required model. The Byrnes-
Georgiou-Lindquist’s algorithm can be used to obtain
stable AR models with a high degree of accuracy. For
ARMA models, we estimate the spectral zeros us-
ing a least-squares method, and subsequently compute
the poles and the gain factor using Byrnes-Georgiou-
Lindquist’s algorithm. We caution that this method of
estimating spectral zeros is ad-hoc. Thus, the problem
of estimating both the numerator and denominator
polynomials from the interpolation data satisfying the
stability and positivity constraint is an open research
problem.
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