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A Robust Interpolation Algorithm for
Spectral Analysis
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Abstract—We propose a robust interpolation algorithm for
model-based spectral analysis. Instead of estimating the spectral
model directly, the so-called half spectrum, which has a one-to-one
relationship with the spectrum through standard spectral de-
composition, is estimated using an interpolation approach. The
interpolation data consists of the values and the derivatives of
the half spectrum function at a set of user-specified points, and
can be easily estimated using an input-to-state filter. Our algo-
rithm allows a large number of noisy interpolation data to be
used to optimally fit a half spectrum function of a fixed order.
The capability of handling large number of interpolation data
makes our algorithm robust to the inherent finite sample noise
in the interpolation data. The algorithm involves solving some
least-squares problems and semidefinite programming problems,
and is thus numerically efficient. Numerical tests show that our
algorithm gives very reliable spectral estimates.

Index Terms—Autoregressive moving average (ARMA) mod-
eling, input-to-state filtering, Nevanlinna–Pick interpolation,
spectral analysis.

I. INTRODUCTION

THIS paper is concerned with the following standard spec-
tral estimation problem: Given samples of a real-valued

signal , find an th-order discrete-time
autoregressive moving average (ARMA) model with transfer
function such that the spectrum of is best approx-
imated by in some measure. To make this problem
more tractable and more meaningful technically, is often
assumed to be generated by an ARMA process but possibly cor-
rupted by noises, and is not necessarily large.

Estimation of ARMA models is a classical problem in time-
series analysis and signal processing. The maximum-likelihood
method (MLM) [1] is the most accurate among the available al-
gorithms. However, MLM requires to solve a nonlinear and non-
convex optimization problem, which is not tractable for models
of large order. An alternative is the instrumental variable method
(IVM); see [2] and references therein. IVM is computation-
ally efficient and yields accurate estimates of the autoregres-
sive (AR) part of the ARMA model. However, for the moving
average (MA) part, the estimation performance is often poor.
In addition, the estimated model is not guaranteed to be stable.
The approximate maximum-likelihood (AML) approach [3] re-
solves the accuracy issue, but the estimated spectrum may fail to

Manuscript received August 17, 2006; revised January 23, 2007. The asso-
ciate editor coordinating the review of this manuscript and approving it for pub-
lication was Dr. Antonio Napolitano. This work was supported by the Australian
Research Council.

The authors are with the Centre for Complex Dynamic Systems and Control,
University of Newcastle, Callaghan, NSW 2308, Australia (e-mail: Kaushik.
Mahata@newcastle.edu.au; Minyue.Fu@newcastle.edu.au).

Digital Object Identifier 10.1109/TSP.2007.896253

be positive. The AML approach is extended in [4] to address the
positivity issue, where a semidefinite programming approach is
presented. However, the semidefinite programming problem in
[4] may not admit a solution.

In this paper, we consider an interpolation approach to spec-
tral estimation initially proposed in [5]. The basic idea is as fol-
lows. Instead of estimating a model of directly, we compute
a model of the so-called half spectrum defined as

(1)

where . Here, denotes the mathe-
matical expectation operator. By definition of the spectrum, it
follows that

It is well known that is an th-order strictly positive-real
(SPR) rational function (i.e., is real-valued and stable and

for all ). We first estimate the
values of and possibly its derivatives at a set of user-spec-
ified locations , with . This can be done
using an input-to-state filter [6], [7]. These values are then used
to estimate the parameters of by solving an interpolation
problem. The advantage of this framework is the tunability [5].
By choosing the interpolation points appropriately, it is possible
to tune the estimation algorithm to achieve superior resolution
performance in a specified frequency interval.

The aim of this paper is to propose a robust interpolation algo-
rithm for spectral estimation. This is motivated by the following
observation. The interpolation approach [5], [8] computes an
order rational function by interpolating the half spectrum es-
timates at different user chosen points located outside the unit
circle in the complex plane. Clearly, if the solution exists, it is
nonunique, and the set of all solutions are parameterized by the
spectral zeros [5]. In order to use this approach in practical prob-
lems, it is required to estimate the spectral zeros. In addition, the
interpolation approach in [5] and [8] does not account for noise
in the interpolation data. The half spectrum values are estimated
from a finite number of samples of , thus are typically noisy.
One way of coping with this problem would be to use a large
number of interpolation data, where the number of interpolation
conditions exceeds the number of free parameters in the inter-
polating function, and subsequently fit a positive-real rational
function to the interpolation data by minimizing an appropriate
objective function. Strictly speaking, this is no longer an inter-
polation problem. However, this is a standard approach to incor-
porate some degree of robustness to the inherent noise in the in-
terpolation data. We will call this approach robust interpolation.
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In the proposed robust interpolation algorithm, we allow a
large set of noisy interpolation data to improve the estimation of
the half spectrum. Our algorithm also allows interpolation data
to include higher order derivatives of the half spectrum. This
feature is important for estimating the model order, although
this topic is not studied in this paper. Apart from being statisti-
cally accurate, the robust interpolation algorithm is numerically
efficient and it always guarantees a positive-definite spectrum
estimate.

II. ESTIMATION OF HALF SPECTRUM

The first step in our robust interpolation algorithm is
to estimate the values of the half spectrum and
possibly its derivatives at a set of user-specified points

. The points are chosen to be self-conju-
gate with . Here, we propose a variation of the approach
outlined in [6] and [7]. The proposed approach is relatively
simpler to understand and implement.

Let us define

...
. . .

...
...

...
(2)

where are obtained from

(3)

In the above, is the multiplicity of and . For
convenience, we assume that with . Let be the
unit advance operator, i.e., . Consider

(4)

Then, it is straightforward that

(5)

We choose and in a controllable canonical form to avoid
complex numbers in the filtering operation and the covariance
computation, which are the most computationally intensive
steps in our algorithm.

Define , and

(6)

It is shown in Appendix A that

(7)

where is such that the pair is in
the Jordan canonical form, see (37). The expressions for the
matrices are also derived in Appendix A.

Using (7) we can estimate , from an
estimate of . However, if is very close to unity for some ,
then the corresponding pole of the filter in [4] is located very
close to the unit circle causing a very long impulse response.
Hence, the transient error in due the unknown initial condi-
tions decay slowly. This may induce a significant error in the es-
timate of . In order to keep the error within an acceptable limit
it is recommended to keep when . One
can, however, allow close to unity when is large enough.

Once the estimates of are made
available, we can address the robust Nevanlinna–Pick interpo-
lation problem [9], [10] below: Find an SPR rational function

of degree , such that

(8)

for all or that are as close to as possible
in some measure.

We require in the sequel in order to produce
a reliable spectral estimate. The technical difficulty with this
setting is that, on one hand, we tend to have an overdetermined
problem because has only free parameters, and on
the other hand, we may not necessarily have an SPR solution
that satisfies all the constraints [11].

III. INTERPOLATION CONDITIONS FOR HALF SPECTRUM

We assume in the sequel that for some
and that the set is self conjugate. In this section, we

assume that the interpolation data for
are perfect. That is, there exists a th-order rational SPR func-
tion that interpolates the given data. We want to know how
these interpolation conditions can be satisfied. This is done in
the following three steps:

1) we first parameterize all so that (8) holds for
;

2) we then give the constraints on the free parameters of
such that (8) is satisfied for ;

3) the final step is to consider the SPR requirement.
Some notation is in order:

. . .
...

...
. . .

. . .

(9)

The following is a generalization of a result in [11], where we
parameterize all such that the interpolation conditions (8)
at are satisfied.
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Lemma 1: All th-order rational transfer functions sat-
isfying the interpolation conditions (8) for , are pa-
rameterized in terms of a free parameter by

(10)

where and are given by (9), and are real-valued. In particular

See Appendix B for proof.
Our next result explores the relationship between and the

remaining interpolation data at . We define

(11)

For any vector , we denote

...
. . .

. . .
...

(12)

Lemma 2: Let

(13)

(14)

for . Then, in (10) satisfies the interpola-
tion conditions (8) for , if and only if

(15)

See Appendix C for proof.
Since the set

is self conjugate, we do not need to consider those with a
negative imaginary part. Without loss of generality, we assume
that is organized such that the first of the members
in are real-valued, the next elements are complex-valued
with a positive imaginary part, and the last elements are their
complex conjugates. We define

(16)

We also define , and in the same fashion. Using (15),
the interpolation conditions for can be written as

(17)

Finally, we consider the SPR constraint on .

Lemma 3: The function in (10) is SPR if and only if
there exists such that

(18)

where . If is a free parameter, then there exists such
that in (10) is SPR if and only if

(19)

(20)

for some . Moreover, (19) and (20) holds for some
if and only if the following generalized Pick

matrix

(21)

where is the unique solution to the Lypunov
equation

(22)

See Appendix D for proof.
Remark 1: It is a classical result [9], [10] that is

the necessary and sufficient condition for the existence of an
admissible satisfying the interpolation conditions (8) for

.

IV. ROBUST INTERPOLATION

When the interpolation data are noisy, the interpolation re-
quirements given in the previous section typically fail. One may
face three potential problems, as follows:

• for the parameterization of in (10), there may not exist
any solution for such that is SPR;

• the same parameterization of may make the (17) for
unsolvable;

• even if (17) has a solution, the resulting may not be
SPR.

In this section, we propose a robust interpolation algorithm
which essentially relaxes the interpolation conditions but guar-
antees a SPR solution to .

Our algorithm involves four steps. The first three steps aim at
producing an that optimally fits the given data, and this is
done in a bootstrapping fashion. The fourth step addresses the
SPR requirement. More specifically, the first step computes an
initial estimate of where the parameter is chosen to satisfy
the first interpolation conditions and the parameter is
chosen to meet the remaining interpolation conditions in some
least-squares sense, but the SPR requirement is not considered.
This estimate of is used in the second step to produce a
more reliable estimate of . This is in turn used in step three to
improve the estimate of . By now, the new estimate of
typically fits the given data well, but still has the potential to be
not SPR. This is fixed in the final step where and are tuned
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again by solving some semidefinite programs to meet the SPR
requirement. The details are given below.

Assume that is estimated using

and this is used in (44) to produce the estimates of the interpo-
lation data . The corresponding and [see (16)] are
denoted by and , respectively.

The asymptotic covariance matrix of is defined as

which is characterized below.
Lemma 4: Let be a Gaussian random process with a

power spectral density , and

(23)

then

(24)

See Appendix F for a proof.

A. Step 1: Initial Estimation of

The initial takes the form of (10) with the estimates of
and given, respectively, by

(25)

(26)

B. Step 2: Approximate Gauss–Markov Estimation of

In this step, the same parameterization of is used, but
is estimated by solving

(27)

where is a weighting matrix to be chosen. We use
the so-called Gauss–Markov estimation approach [12] to deter-
mine , where the aim is to minimize the asymptotic covariance
matrix of the estimation error.

Denoting

and defining the asymptotic covariance matrix of as

the best linear estimation requires (see [12]). The dif-
ficulty, however, is that depends on the knowledge of the
true . In the following, we explain how this can be approx-
imated using the initial estimate of .

We note that is a linear function of for a fixed because
both and are linear functions of , i.e.,

(28)

for some matrix depending on . The expression for is given
in Appendix E. The above implies that

(29)

Since is not available, we use its approximation

where and is sufficiently large to avoid any
time domain aliasing is usually sufficient). In ad-
dition, is used in lieu of in computing . Naturally, the re-
sulting and in (29) are denoted by and , respectively.

Setting , we obtain

(30)

C. Step 3: Minimum Variance Estimation of and

Using , we obtain

where the last equality is valid for large with

Denoting and its initial estimate in Step 1 by , it
is clear that

(31)

for some (also to be derived in Appendix E). It follows that,
when is sufficiently large

In particular, and are correlated. Therefore, we can improve
the estimate of by minimizing its covariance. Since has zero
mean as , it follows that the minimum variance estimate
of is given by [13, pp. 26]

(32)

where denotes the Moore–Penrose pseudoinverse operator,
and
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The normalized covariance matrix of , when is sufficiently
large, can be estimated as

D. Step 4: SPR Regularization

We denote the estimate of so far by

There is a possibility that is not SPR. This may occur in
either of the following cases:

1) for , the solution set of all such that is SPR
may be empty;

2) even if is nonempty, .
In either case, the estimate of needs to be modified. This
can be done using Lemma 3.

Checking whether is nonempty can be easily done using
(21)–(22). If it fails, needs to be modified. One simple modi-
fication is to use the following:

subject to (19) and (20). This is equivalent to solving the fol-
lowing semidefinite program:

subject to

(33)

The second step is to re-estimate . Instead of doing it directly,
we estimate and (18) by solving the following optimization
problem:

subject to (18) with and replaced by and , respec-
tively. This is equivalent to solving the following semidefinite
program:

subject to

The resulting estimate of is given by

which gives the final SPR estimate of as

E. Asymptotic Accuracy

When is large, the interpolation data is accurate enough

to ensure is SPR, and hence the SPR regularization step
is not needed. Therefore, the asymptotic covariance matrix of

serves as a measure of the asymptotic accuracy of the
above estimation algorithm. In Appendix G it is shown that

(34)

Let

with interpolation conditions. Now, suppose we add an addi-
tional interpolation condition and the resulting normalized co-
variance matrix be . Then, (34) can be used to show that

is a positive-definite matrix. See [2, Lemma 2] for
a similar proof.

V. ILLUSTRATIVE EXAMPLE

To show how the proposed algorithm works, we test it on
an ARMA process generated by filtering a Gaussian white
noise through

(35)

It can be verified that the poles and zeros of are very close
to each other. In addition, the zeros are located very close to
the unit circle. This makes it a difficult problem to identify
accurately. In addition, the algorithms where positivity of the
estimated spectrum is not guaranteed may often give a nonpos-
itive spectrum estimate or an unstable estimate of .

We take , and

with for all . The performance of the proposed al-
gorithm is compared with the maximum-likelihood approach.
Simulation results based on 100 independent runs are shown in
Fig. 1, where we plot the true spectrum (solid) with the mean
(dashed) the standard deviation (dashed–dotted) of the esti-
mated spectrum for each approach. In each run, 1000 points of
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Fig. 1. Comparison between the proposed approach and maximum-likelihood
method: (a) Proposed approach, N = 1000, (b) maximum-likelihood method,
N = 1000, (c) proposed approach, N = 200, and (d) maximum-likelihood
method, N = 200.

are used. Simulation results for are shown in
Fig. 1(a) and (b), where we notice that the performance of the
proposed estimator is very close to that of the maximum-likeli-
hood approach. Fig. 1(c) and (d) depicts the simulation results
for . In this case, the proposed estimate has larger bias
but smaller variance than the maximum-likelihood approach.
The small sample bias effect is mainly because the initial con-
ditions in the filtering operation (4) are unknown. This transient
effects disappear as we increase . In fact, the performance of
the interpolation approach improves with the increase in the in-
terpolation data, and may achieve the optimal performance limit
asymptotically (however, we do not yet have a theoretical jus-
tification supporting this statement). This makes our algorithm
an attractive alternative for spectral analysis because we solve
a convex problem to arrive at the final estimates but, unlike the
maximum-likelihood approach, do not encounter problems due
to nonlinear optimization.

VI. CONCLUSION

In this paper we have proposed a robust interpolation algo-
rithm for spectral estimation. The problem considered here can
be seen as a generalization of the classical Nevanlinna-Pick
interpolation problem. Our algorithm has three main features.
Firstly, we allow noise-corrupted interpolation data. Secondly,
we can incorporate a large number of interpolation data points
to reduce the estimation error. Finally, an SPR solution is al-
ways guaranteed. Since SPR functions are stable, the stability
of the estimated model is also automatically guaranteed. In ad-
dition, our algorithm employs semidefinite programming and is
thus computationally efficient in the sense that the solution is
obtained in polynomial time.

The robust spectral estimation approach can be easily gener-
alized to multivariable processes. It is also possible to estimate
the model order by using high order derivatives of at ap-
propriate interpolation points. A similar robust algorithm for co-
variance extension can also be derived.

APPENDIX A
PROOF OF (7)

There exists such that

(36)

with in Jordan canonical form. Thus

...
...

. . .
...

...
(37)

where and are given by

. . .
...

...
. . .

. . .

... (38)
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Using (5) and (36), it follows that

(39)

Now, partition

(40)

Since and , we have . Hence, (37) and
(39) gives

Also for using (1), (37), and (39), it follows that

(41)

Consequently, for , we have [14, pp. 557 and 565]

(42)

Defining , it is also straightfor-
ward to show that

(43)

for all . Now, setting in (43) and using (42), we
get

where is the permutation matrix having ones along
the antidiagonal and zeros elsewhere, , and

is given by

if
otherwise

Now, is invertible since it is lower triangular with nonzero
diagonal entries. Hence, we get

(44)

where

...

. . .
...

...
. . .

. . .
(45)

APPENDIX B
PROOF OF LEMMA 1

It is clear that in (10) can be rewritten (through the state
transformation ) as

(46)

where . It suffices to show that the in (46) inter-
polates the given data for .

It is easy to see that , which satisfies the interpo-
lation condition for . Consider the partial fraction expansions

Since , applying Leib-
nitz’s theorem of successive differentiation yields

Evaluating at , we have

(47)

where we use the standard formula

for . Denoting

we can rewrite (47) as

(48)

Defining , we can write

We also partition as
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It follows that

In the above, we have used . Now, equating coeffi-
cients of , and using (48), we get

If is nonsingular, (8) holds. It remains to exclude the
possibility that is singular. If this happens, then

[see (48)], implying that both and have at least one
common zero at . This is not because is of order .
Hence, must be nonsingular.

It remains to show the properties of and . It is known
[15, pp. 109] that is real-valued and . To see

is real-valued, let us partition with
. Clearly, . In addition, due to block diagonal

structure of it follows that

(49)

Express . If is real-valued, then is real-valued.
Also by (49) is real-valued. This implies that .

Now, assume is complex-valued and express
. Then, there exists such that is the complex

conjugate of . Consequently, is the complex conjugate of
. Also by (49) is the complex conjugate of . Hence

which implies

or . It follows that . Since are distinct, is
nonsingular. Hence, .

Whenever is complex conjugate of is complex
conjugate of . Hence, the coefficients in must be real-
valued. Since and are real-valued, the above implies that

is real-valued.

APPENDIX C
PROOF OF LEMMA 2

Denoting

then (10) implies

(50)

Note that

(51)

Using (51), Leibnitz’s theorem of successive differentiation in
(50), we get

(52)

Rearranging (50) and (52) in a matrix form, we obtain

Evaluating the above at for yields (15).

APPENDIX D
PROOF OF LEMMA 3

Let us define

(53)

Note that is SPR if and only if is stable and

(54)

for all . By the KYP lemma [16], the above holds if and
only if there exists such that

(55)

Rewriting (55) as

and applying Schur complement, (55) is equivalent to (18).
We can rewrite (18) as

where
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It is straightforward to construct full-rank matrices and
such that and . One possible choice is

Using the elimination lemma ([17, pp. 22], there exists such
that (18) holds if and only if and .
It can be verified that is equivalent to (20), while

is equivalent to

which can be transformed via Schur complement into

Next, we show that (19), (20), and are equivalent to
(21). We first show the sufficiency. Suppose that is positive
definite. Then, , implying since is stable
and thus invertible. Set in (19) and (20). Comparing with
(22), we see that (19) becomes an equality, while the inequality
(20) is satisfied. Therefore, it is possible to find (by
perturbing from slightly) such that both the inequalities (19)
and (20) hold.

Conversely, suppose that there exists such that (19)
and (20) hold. Then, using (22) and (19), we get

(56)

However, from (21) and (22)

Hence, (56) and (20) imply .

APPENDIX E
DERIVATION OF IN (28) AND IN (31)

Using (44), (25) and denoting , we have

Defining for , then (13) and
(14) becomes

(57)

Using (11) and (12), the identity for and
with compatible dimensions, and

we can rewrite (57) as

(58)

where is obtained using (44) and (31) and is given by

Now, using the definition for in (16) and a similar definition
for , we get

where

Hence, from (58), we get (28) with

...
...

APPENDIX F
PROOF OF LEMMA 4

In this Appendix, we write

Note that . For two stationary vector
valued processes and , we denote

Using a standard formula for the fourth-order moments of
Gaussian random vectors [18], we get

(59)

Note that the inner summation in the right-hand side of (59) is
independent of . In addition, the magnitudes of the correla-
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tion functions , etc., decay exponentially with .
Hence, for large , we can simplify (59) as

(60)

We know that

Hence, using Poisson’s summation formula, it follows that

(61)

Also, a similar calculation gives

(62)

Hence, by combining (60), (61), and (62), we get

(63)

Note that , and is an odd
function. Using these observations, it is straightforward to de-
rive (24) from (63).

APPENDIX G
PROOF OF (34)

In this Appendix, we denote

It can be verified that

(64)

and

Hence

(65)

For large , it holds that , etc. Conse-
quently, it follows from (27) that

(66)

Similarly, using (31) and (32), it follows that

(67)

Consequently, by (66), we have

(68)

while by (67) and (65), we get

(69)

where

(70)

In addition, using (64)–(67), it follows that

(71)

Combining (68), (69), (70), and (71), and using a standard block
matrix inversion formula [12, pp. 512], we get

which is same as (34).
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