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a b s t r a c t

This paper addresses the stabilization problem for single-input Markov jump linear systems via mode-
dependent quantized state feedback. Given a measure of quantization coarseness, a mode-dependent
logarithmic quantizer and amode-dependent linear state feedback law can achieve optimal coarseness for
mean square quadratic stabilization of a Markov jump linear system, similar to existing results for linear
time-invariant systems. The sector bound approach is shown to be non-conservative in investigating the
corresponding quantized state feedback problem, and then a method of optimal quantizer/controller
design in terms of linear matrix inequalities is presented. Moreover, when the mode process is not
observed by the controller and quantizer, a mode estimation algorithm obtained by maximizing a certain
probability criterion is given. Finally, an application to networked control systems further demonstrates
the usefulness of the results.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Quantization of measurement and/or input signals has been
known to have an undesirable effect on system performance or
even stability, and therefore a lot of work has been carried out to
mitigate the effect. For systems engaging digital channels for signal
transmission, especially in the case where bandwidth and energy
are limited, quantization becomes indispensable. Elia and Mitter
(2001) first pointed out that quantization is ‘‘useful, if not essen-
tial, instead of undesirable’’, and also indicated that the coarsest
quantizer is logarithmic in quadratic stabilization of single-input
linear time-invariant (LTI) systems. A relationship between the op-
timal quantization density and unstable eigenvalues of the plant
under consideration is established. Fu and Xie (2005) showed that,
under quadratic stability, quantized stabilization is equivalent to
robust stabilization of an associated system with sector-bounded
uncertainty, and extended the results of Elia and Mitter (2001) to
multiple-input–multiple-output (MIMO) systems and output feed-
back control. Based on the result in Fu and Xie (2005), quantized
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stabilization is considered in Gao and Chen (2008), where a quanti-
zation error-dependent Lyapunov function is adoptedwhich offers
less conservative design.
The packet-drop behavior of a typical communication channel

is another important issue in networked control systems (NCSs),
as it induces information loss and consequently affects the perfor-
mance or even stability of the closed-loop system. There have been
many interesting studies on the packet-loss issue; see, e.g. Elia
(2005); Hu and Yan (2007) for networked control, Huang and
Dey (2007); Sinopoli, Schenato, Franceschetti, Poolla, Jordan, and
Sastry (2004) for networked estimation, and Schenato, Sinopoli,
Franceschetti, Poolla, and Sastry (2007) for a survey of recent re-
sults on estimation and control over lossy channels. In Hu and Yan
(2007), the stability robustness of NCSs is addressed, where the
packet losses are modeled according to an i.i.d. Bernoulli distri-
bution and the control input becomes zero when the data are lost
(so-called zero-control strategy). Elia (2005) considered the mean
square stabilization over a fading channel in the framework of ro-
bust control for deterministic systems with stochastic model un-
certainties. One of the interesting discoveries in Elia (2005) is that
the supremum of allowable packet-loss rate (probability of era-
sure) can be given in terms of the unstable poles of the single-input
plant under investigation.
As quantization and packet drops coexist in an NCS, it is natu-

ral and reasonable to take them into consideration simultaneously.
The stabilization problem over a channel containing both quanti-
zation and packet losses was first addressed in Hoshina, Tsumura,
and Ishii (2007), where the packet-loss phenomenon is modeled
as a binary i.i.d. process. It is shown that the upper bound of the
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quantization coarseness can be given in terms of the packet-loss
rate and the unstable eigenvalues of the plant. However, the results
of Hoshina et al. (2007) are not applicable for the case of binary
Markovian losses.
It is well known that NCSs with packet losses are related to

Markov jump linear systems (MJLSs), for which there have been
many existing results on stability, optimal control and robust
control; see Costa, Fragoso, and Marques (2005) and references
therein. The MJLS theory is applied to the H∞ control of NCSs with
binary stochastic packet losses in Seiler and Sengupta (2005), and
the stabilization of NCSs undergoing bounded consecutive Marko-
vian packet losses in Xiong and Lam (2007). Note that the so-called
currentmode observation (CMO) or nomode observation at the con-
troller side is commonly assumed in studying the control problem
of MJLSs (deSouza, 2006). Recently, for the linear quadratic regu-
lation of MJLSs with one-step-delayed mode observation (OSDMO),
it is shown that the optimal state feedback gain can be indexed
by the one-step-delayed mode (Matei, Martins, and Baras, 2008),
which inspires our study on the OSDMO case. Based on the hidden
Markov models (Elliott, Aggoun, & Moore, 1995; Rabiner, 1989;
Viterbi, 1967), the mode and/or state estimation with nomode ob-
servation is also considered in Elliott, Dufour, andMalcolm (2005);
Ho and Chen (2006),where themode estimation is not used to gen-
erate the control signal, and thus this is different from the situation
considered in Section 3.2 of the present paper.
The rest of this paper is organized as follows. The problemunder

consideration is formulated in Section 2. Section 3.1 answers the
following questions: (a) Is logarithmic quantization still optimal
for MJLSs under the notion of mean square quadratic stability?
(b) Is the sector bound approach still non-conservative in dealing
with quantized stabilization ofMJLSs in themean square quadratic
stability sense? (c) How does one design the optimal quantizer
and controller jointly? We reveal that under the mean square
quadratic stability, the smallest overall coarseness for MJLSs can
be approached by adopting a mode-dependent logarithmic law
operating on a mode-dependent linear state feedback similar to
that of LTI systems (Elia & Mitter, 2001; Fu & Xie, 2005). Again,
the sector bound approach is shown to be non-conservative in
investigating the quantized feedback stabilization problem under
the mean square quadratic stability. A linear matrix inequality
approach is then presented to compute the optimal quantizer and
the set of suitable state feedback gains. When there is no mode
observation at the controller and quantizer, a mode estimation
method is proposed in Section 3.2, which is further demonstrated
by a numerical example. We conclude the paper in Section 5 after
applying the results to the NCSs in Section 4.

Notation. ≡ means ‘‘defined as’’. The superscript ′ denotes the
transpose of a vector or matrix. Rn,R+ and Z+ stand for the n-
dimensional Euclidean space, the set of nonnegative real numbers
and integers, respectively. I is the identity matrix, and 0 denotes
the zeromatrix or zero vector. Furthermore, let Pr(·) and E(·) stand
for the probability and the mathematical expectation operators,
respectively. ‖ · ‖ represents the Euclidean norm for vectors. yt2t1
is the set {yt1 , yt1+1, . . . , yt2} for t1 ≤ t2, otherwise an empty set
by convention.

2. Problem formulation

As we can see from Fig. 1, a quantized feedback control system
comprises three parts: a system to be controlled (G), a controller
(K) and a quantizer (Q).
We consider a discrete-time single-input MJLS as follows:

G : xt+1 = Aθt xt + Bθtut + wt , t ≥ 0, (1)

where xt ∈ Rn is the state with x0 being a second-order random
variable, ut ∈ R is the control input, wt ∈ Rn is a second-order
Fig. 1. Typical quantized state feedback control system.

process noise with zero mean and covariance matrix Σθt > 0,
and θt ∈ Θ ≡ {0, 1, . . . ,N} is the system mode governed by
a time-homogeneous Markov chain with initial distribution π =
[π0 π1 · · ·πN ] and transition probability matrix Π = (πij)i,j∈Θ ,
where

πi ≡ Pr(θ0 = i), πij ≡ Pr(θt+1 = j|θt = i). (2)

Moreover, x0, θ t0, w
t
0 are independent of each other for all t ≥ 0.

Suppose xt is available at the controller, and the static quantized
state feedback is denoted by

K : vt = g(xt , γt), (3)

Q : ut = f (vt , γt), (4)

where γt ∈ Θ is a direct observation or an estimate of system
mode θt−d at the controller/quantizer side at time step t with d ∈
Z+ the constant mode observation/estimation delay. In this paper,
the initial γk, 0 ≤ k ≤ d− 1, are chosen arbitrarily fromΘ .
The closed-loop system of (1), (3) and (4) is described by

xt+1 = Aθt xt + Bθt f (g(xt , γt), γt)+ wt . (5)

It is worth mentioning that (5) is generally nonlinear, since the
control signal ut can be a nonlinear function of vt in (4). We adopt
the following definitions ofmean square stability andmean square
quadratic stability.

Definition 1. Forwt = 0 and every initial condition x0, θ0, γ0, the
equilibrium point at the origin of (5) is mean square (MS) stable if
limt→+∞ E[‖xt‖2|x0, θ0, γ0] = 0; it is mean square quadratically
(MSQ) stable if, ∀γt ∈ Θ , there exist a positive-definite function

V (xt , γt) ≡ x′tPγt xt (6)

and a positive-definite matrix Qγt such that, ∀t ≥ d,

∇V (xt , γt) ≡ E[V (xt+1, γt+1)− V (xt , γt)|xt0, γ
t
0 ]

= E[V (xt+1, γt+1)|xt0, γ
t
0 ] − V (xt , γt)

< −x′tQγt xt , ∀xt ∈ Rn, xt 6= 0. (7)

Note that the MSQ stability of the equilibrium point at the origin
of system (5) implies the MS stability by following a similar line of
arguments as in the proof of Theorem 1 in Boukas and Liu (2001).
By setting ut = 0,∀t < d, when d ≥ 1, it is easy to see that xd is
still a second-order random variable, and thus we consider t = d
as the starting point in (7) to simplify the treatment.

Remark 2. Imposing condition (7) in every system mode intro-
duces some degree of conservativeness but has the following ad-
vantages: (1) under the notion of MSQ stability, we can prove the
optimality of the logarithmic quantizer defined in the next section;
(2) it makes existing well-established results in robust control of
MJLSs applicable in quantized feedback control.

Note that f (·, ·) in (4) is assumed to be an odd function of vt ;
i.e., f (−vt , γt) = −f (vt , γt). We define the mode quantization
density with respect to mode i, i ∈ Θ , similarly to that of the
LTI case (Elia & Mitter, 2001) as ηf (i) ≡ lim supε→0

#l[ε,i]
− ln ε , where
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#l[ε, i] is the number of quantization levels in the interval [ε, 1/ε]
with the quantizer f (·, i). Evidently, themode quantization density
is reduced to the quantization density defined in Elia and Mitter
(2001) when N = 0. For N 6= 0, there is a set of mode quantization
densities ηf (i), i = 0, 1, . . . ,N , and we introduce the overall
coarseness for an observed/estimated-mode-dependent quantizer
as follows.

Definition 3. The overall coarseness of a mode-dependent quan-
tizer Q is defined as

Cf ≡ e(ηf (0), ηf (1), . . . , ηf (N)), (8)

where e is a scalar-valued function of ηf (i), i = 0, 1, . . . ,N ,
satisfying the following property: if ηf 1(i) ≤ ηf 2(i), ∀i ∈ Θ , then

e(ηf 1(0), ηf 1(1), . . . , ηf 1(N)) ≤ e(ηf 2(0), ηf 2(1), . . . , ηf 2(N)). (9)

The property (9) reveals that from a physical point of view the
overall coarseness should always be nondecreasing when any one
of the mode quantization densities is increasing and all the others
are fixed. Note that the smaller the value of Cf , the coarser the
quantizer. The form of e in (8) can be chosen according to physical
constraints or performance requirements of the quantizer. It is easy
to see that the set of ηf (i), i = 0, 1, . . . ,N , corresponding to the
globally optimal Cf may not be unique.
The main purpose of this paper is to find one possible combi-

nation of K and Q with the optimal Cf such that the closed-loop
system is MSQ stable.

3. Main results

Amode-dependent quantizer (Q) is said to be logarithmic if, for
any γt ∈ Θ , the corresponding set of quantization levels Uγt has
the following form:

Uγt = {±ul(γt) : ul(γt) = ρ
l(γt)u0, u0 > 0, for l ∈ ±1,±2, . . .}

∪ {±u0} ∪ {0}, (10)

where

ρ(γt) =
1− δ(γt)
1+ δ(γt)

. (11)

Specifically, the associated logarithmic quantizer is defined as
follows.
For the given γt :
• if δ(γt) = 0, then

f (vt , γt) = vt; (12)
• if 0 < δ(γt) < 1, then

f (vt , γt) =


ul(γt), if

1
1+δ(γt )

ul(γt) < vt

≤
1

1−δ(γt )
ul(γt),

0, if vt = 0,
−f (−vt , γt), if vt < 0;

(13)

• if δ(γt) = 1, then

f (vt , γt) =


u0, ifvt >

1
2
u0,

0, if 0 ≤ vt ≤
1
2
u0,

−f (−vt , γt), if vt < 0.

(14)

There is no loss of generality by choosing the same u0 for every
γt ∈ Θ; see Lemma 2.1 in Elia and Mitter (2001). For a logarithmic
quantizer, it is easy to verify that ηf (i) = −2/ ln ρ(i),∀i ∈ Θ .
Thus, the coarser the quantizer for mode i, the smaller the ηf (i) ∈
R+∪{+∞} and ρ(i) ∈ [0, 1], or equivalently the larger the sector
bound δ(i) ∈ [0, 1].
3.1. Quantized stabilization

Since in this subsection we only focus on global stabilization,
we let wt = 0 without loss of generality. The next assumption is
essential to the existence of an optimal memoryless quantization
strategy in the MSQ stability sense.

Assumption 1. (a). System (1) is not MS stable with ut = 0 but
can be MS stabilized via a linear state feedback law:

ut = K̄γt xt . (15)

(b). ∀i1, i2, i3 ∈ Θ , and ∀t ≥ d,

Pr{θt = i1, γt+1 = i2|xt0, γ
t−1
0 , γt = i3}

= Pr{θt = i1, γt+1 = i2|γt = i3}. (16)

Moreover, the conditional probability (16) denoted by qi1i2i3 is
constant over time and known to the controller/quantizer.

Remark 4. Assumption 1(a) clearly avoids triviality and imposes
a necessary restriction for ensuring the solvability of the stabiliza-
tion problem. A systemic way to find a stabilizing state feedback
law for anMJLS can be found in Costa et al. (2005). Assumption 1(b)
facilitates an explicit evaluation of (7), and can be justified by sev-
eral practical situations, as follows.
• Scheme I (CMO): γt = θt . In this situation,

qi1 i2 i3 =
{
πi3 i2 , if i1 = i3,
0, otherwise.

• Scheme II (OSDMO): γt = θt−1. In this situation,

qi1 i2 i3 =
{
πi3 i2 , if i1 = i2,
0, otherwise.

• Scheme III (Mode-independent manner): γt = φ with φ rep-
resenting a void signal. Assumption 1(b) is reduced to ‘‘∀i1 ∈
Θ, Pr{θt = i1|xt0} = Pr{θt = i1} is constant over time and
known to the controller/quantizer’’, which is true if the under-
lying Markov chain is an i.i.d. process, i.e., πij = π̄j,∀i, j ∈
Θ (Xiao, Xie, & Fu, 2009), or the Markov chain is ergodic and
the initial distribution π is equal to its limiting distribution.

As the first result of this section, it will be shown that, for a fixed
set of Pi > 0,Qi > 0, i = 0, 1, . . . ,N , the coarsest quantization
in the sense of MSQ stability can be approached by a linear state
feedback law and a logarithmic quantizer. To this end, let us first
define ∀i ∈ Θ , the row vector ai ≡

∑
i1∈Θ,i2∈Θ

[qi1 i2 iB
′

i1
Pi2Ai1 ],

the matrix Fi ≡
∑
i1∈Θ,i2∈Θ

[qi1 i2 iA
′

i1
Pi2Ai1 ] ≥ 0, and two scalars

bi ≡
∑
i1∈Θ,i2∈Θ

[qi1i2 iB
′

i1
Pi2Bi1 ] ≥ 0,

δm(i) ≡


+∞, if bi = 0,

1√
KmiM−1i K

′

mi

, otherwise,

where

Kmi ≡ −
ai
bi
, Mi ≡

a′iai
b2i
−
Fi − Pi + Qi

bi
. (17)

Theorem 5. Consider the MSQ stabilization with a given set of Pi >
0,Qi > 0, i = 0, 1, . . . ,N in (7) for system (1) using quantized
state feedback (3) and (4). Then, under Assumption 1, the smallest
C f defined in (8) can be approached by a linear state feedback law
vt = Kγt xt and a logarithmic quantizer (12)–(14)with controller and
quantizer parameters chosen below:

Ki =
{
0, if δm(i) > 1,
Kmi, otherwise, δ(i) =

{
1, if δm(i) > 1,
δm(i), otherwise.

Proof. Suppose that γt = i,∀i ∈ Θ , and drop the time index t ≥ d
when no confusion is caused. Then, for (1) withwt = 0, we have
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∇V (x, i) =
∑

i1∈Θ,i2∈Θ

[
qi1i2i(Ai1x+ Bi1u)

′Pi2(Ai1x+ Bi1u)
]
− x′Pix

= biu2 + 2aixu+ x′(Fi − Pi)x. (18)

For Case 1: bi = 0. Based on the definition of bi, it is direct to get
qi1 i2 iB

′

i1
= 0,∀i1, i2 ∈ Θ since Pi2 > 0, which further implies that

ai = 0. The MSQ stabilization guarantees that Fi− Pi+Qi < 0, and
thus Ki = 0, i.e., u = 0 can be adopted, which renders ηf (i) = 0. In
this situation, we may set δm(i) = +∞without loss of generality.
For Case 2: bi 6= 0. From (18), it is easy to get

∇V (x, i)+ x′Qix = {−x′Mix+ (u− Kmix)2}bi,

and therefore the MSQ stabilization ensures that Mi > 0. Then
∇V (x, i) < −x′Qix,∀x 6= 0 if and only if u = f (v, i) ∈
(u1(i), u2(i)), where u1(i) = Kmix −

√
x′Mix, u2(i) = Kmix +

√
x′Mix. By applying the orthogonal decomposition method,M

1/2
i x

can be decomposed into

M1/2i x = α(i)M
−1/2
i K ′mi + z(i), (19)

where α(i) is a scalar and vector z(i) is orthogonal to M−1/2i K ′mi.
Therefore, u1(i), u2(i) can be rewritten with respect to the new
coordinate system (19) as

u1(i) =
α(i)
δm(i)2

−

√
α(i)2

δm(i)2
+ z ′(i)z(i),

u2(i) =
α(i)
δm(i)2

+

√
α(i)2

δm(i)2
+ z ′(i)z(i).

Moreover, if δm(i) > 1, then we can again choose u = 0 similarly
to Case 1, since u = 0 belongs to the interval (u1(i), u2(i)); if
δm(i) ≤ 1, then it can be proved that the optimal quantization
strategy with the smallest ηf (i) for mode i is logarithmic, as shown
in (13) and (14), with δ(i) = δm(i) (Elia & Mitter, 2001).
By combining the above two cases and taking note of the

property (9), we can conclude that the logarithmic quantizer stated
in this theorem can achieve the smallest Cf for a given set of Pi >
0,Qi > 0, i = 0, 1, . . . ,N . The technique in the proof of Lemma
2.1 in Fu and Xie (2005) can still be used to prove that a linear
state feedback law vt = Kγt xt is sufficient to obtain the coarsest
quantization for Case 2 with δm(i) ≤ 1, while, for Case 2 with
δm(i) > 1 and Case 1, the argument is trivial, since Ki = 0 is
adopted. This completes the proof. �

The quantization error of a logarithmic quantizer is et ≡ ut −
vt = f (vt , γt) − vt = ∆(vt , γt)vt , where ∆(vt , γt) ∈
[−δ(γt), δ(γt)]. The closed-loop quantized feedback system with
vt = Kγt xt becomes the following uncertain MJLS:

xt+1 = Aθt xt + Bθt (1+∆(Kγt xt , γt))Kγt xt . (20)

Before optimizing the overall coarseness with respect to all possi-
ble Pi > 0, Qi > 0, i ∈ Θ such that (20) isMSQ stable in part (b) of
the theorem that follows, we note that the uncertainty in (20) is a
nonlinear function of vt = Kγt xt , which cannot be handled directly.
The validity of the sector bound approach proved in part (a) shows
that quantized stabilization is equivalent to robust MSQ stabiliza-
tion of an uncertain system with time-varying uncertainties.

Theorem 6. (a). Given a logarithmic quantizer (12)–(14) with a set
of fixed δ(i) ∈ [0, 1], i = 0, 1, . . . ,N, system (1) under Assump-
tion 1 is MSQ stabilizable via quantized linear state feedback if and
only if the following uncertain system,

xt+1 = Aθt xt + Bθt (1+∆(γt))vt , (21)

is robustly MSQ stabilizable for uncertainty∆(γt) ∈ [−δ(γt), δ(γt)]
via a linear state feedback law vt = Kγt xt .
(b). Under Assumption 1, the optimal overall coarseness for sys-
tem (1) to be MSQ stabilizable via quantized linear state feedback can
be obtained by the following optimization:

C f ≡ min
Si>0,Wi>0,Yi,τ (i)>0, ∀i∈Θ

C f

over the constraint

−Si Si Y ′i Φ0i Φ1i · · · ΦNi
∗ −Wi 0 0 0 · · · 0
∗ ∗ −τ(i) 0 0 · · · 0
∗ ∗ ∗ Ξ0i 0 · · · 0
∗ ∗ ∗ ∗ Ξ1i · · · 0
...

...
...

...
...

. . .
...

∗ ∗ ∗ ∗ ∗ ∗ ΞNi


< 0, (22)

where Φji,Ξji are given as (23) and (24) in Box I. Moreover, a
logarithmic quantizer (12)–(14) and a linear state feedback law vt =
Kγt xt are sufficient to achieve the C f , and a set of suitable state
feedback gains is given by Ki = YiS−1i , i = 0, 1, . . . ,N.

Proof. (a). Again, suppose that γt = i, i ∈ Θ; then, for (20), we
have

∇V (x, i) =
∑

i1∈Θ,i2∈Θ

[
qi1 i2 i(Ai1x+ Bi1(1+∆(Kix, i))Kix)

′Pi2

× (Ai1x+ Bi1(1+∆(Kix, i))Kix)
]
− x′Pix. (25)

Following a similar proof as that of Lemma 2.2 in Fu and Xie (2005),
it can be shown that ∇V (x, i) < −x′Qix, ∀x 6= 0 is equivalent to∑
i1∈Θ,i2∈Θ

[
qi1 i2i(Ai1x+ Bi1(1+∆(i))Kix)

′Pi2

× (Ai1x+ Bi1(1+∆(i))Kix)
]
− x′Pix < −x′Qix (26)

for x 6= 0, where ∆(i) is defined as in (21) for γt = i. This kind
of equivalence is true for any i ∈ Θ , and thus, by Definition 1,
inequality (26) is the condition for robust MSQ stabilization of
system (21).
(b). The constraint (22) is obtained by using the Schur complement
over inequality (26) and taking Si = P−1i , Wi = Q−1i , Yi =
KiSi, where τ(i) > 0 is the scaling variable. From the proof in
part (a), we see that the quantized stabilization for (20) and the
robust stabilization for (21) can share the same set of Pi, Qi, i =
0, 1, . . . ,N , as well as the same set of feedback gains. Then the
result follows directly from Theorem 5. �

For a logarithmic quantizer, the overall coarseness Cf can also
be defined in terms of the set of δ(i) or ρ(i), i = 0, 1, . . . ,N .
For example, one possible choice is Cf 1 ≡ −mini∈Θ{δ(i)},
which captures the worst-case mode with the smallest sector
bound (equivalently the largestmode quantization density) among
all system modes. In this case, the optimization in part (b) of
Theorem 6 becomes maxSi,Wi,Yi,τ (i) δ over (22) with δ(i) = δ,∀i ∈
Θ . Moreover, suppose that θt is driven by an ergodic Markov chain
which admits a limiting probability distribution {π̄i; π̄i > 0, i ∈

Θ}; then another choice could be Cf 2 ≡ −
√∑N

i=0 π̄iδ(i)2, which
characterizes the weighted average quantization performance.
Since, for any fixed set of δ(i), (22) is convex in Si,Wi, Yi and τ(i),
Cf can be obtained by searching the space of δ(i), i = 0, 1, . . . ,N .
Note that such a method may be time-consuming especially when
the number of system modes N is large.

3.2. Mode estimation

When the system mode is not observed at the quantizer and
controller, one may formK andQ in a mode-independent manner
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3)

4)
Φji =
[√
qj0i(SiA′j + Y

′

i B
′

j)
√
qj1i(SiA′j + Y

′

i B
′

j) · · ·
√
qjNi(SiA′j + Y

′

i B
′

j)
]
, j = 0, 1, . . . ,N. (2

Ξji =


−S0 + τ(i)δ(i)2qj0iBjB′j τ(i)δ(i)2

√
qj0iqj1iBjB′j · · · τ(i)δ(i)2

√
qj0iqjNiBjB′j

∗ −S1 + τ(i)δ(i)2qj1iBjB′j · · · τ(i)δ(i)2
√
qj1iqjNiBjB′j

...
...

. . .
...

∗ ∗ · · · −SN + τ(i)δ(i)2qjNiBjB′j

 , j = 0, 1, . . . ,N. (2

Box I.
as in Scheme III of Section 3.1, which, however, could be conserva-
tive. More generally, we can try to estimate themode process. First
of all, a special case of mode estimation is given below.

• Scheme IV (Mode estimation without process noise): wt = 0
and ∀x 6= 0, i1, i2, i3 ∈ Θ, i1 6= i2,

Ai1x+ Bi1 f (g(x, i3), i3) 6= Ai2x+ Bi2 f (g(x, i3), i3). (27)

In this situation, the next estimation,

γt = θ̂t−1

= argmini∈Θ‖xt − Aixt−1 − Bif (g(xt−1, γt−1), γt−1)‖
2,

with arbitrary γ0 ∈ Θ , can ensure that γt = θt−1,∀t ≥ 1. Thus,
the result on OSDMO (Scheme II) can be applied directly.

With nonzero process noise wt , one can still estimate the
previous mode θt−1 at time t based on xt0, γ

t−1
0 and closed-loop

system model (5). Assume that x0 is white Gaussian and that wt
is zero-mean white Gaussian. Denote Ω(x, µ,Σ) as the vector-
valued Gaussian probability density function with mean vector µ
and covariancematrixΣ . Suppose the initial distributionπ and the
transition probability matrixΠ of the underlying Markov process
as well as the set of covariance matrices Σi, i = 0, 1, . . . ,N , of
process noise wt are exactly known to the controller. The next
algorithm gives an estimate of θt−1 by maximizing the probability

L(θt−1) ≡ Pr{θt−1|xt0, γ
t−1
0 } (28)

with respect to θt−1 ∈ Θ .

Algorithm 1. A recursive procedure for finding γt = θ̂t−1 at time
t ≥ 1 for quantized system (5), such that L defined in (28) is
maximized, is stated as follows.
(a). Choose γ0 as an arbitrary element inΘ and set u0 = 0.
(b). For t = 1, γ1 = argmaxi∈Θ [a1(i)] with a1(i) = πiΩ(x1,
Aix0,Σi).
(c). For t ≥ 2, γt = argmaxi∈Θ [at(i)], where at(i) can be computed
iteratively as

at(i) =
∑
j∈Θ

at−1(j)πji

×Ω(xt , Aixt−1 + Bif (g(xt−1, γt−1), γt−1),Σi).

The above algorithm is modified from the well-known Viterbi al-
gorithm (Rabiner, 1989; Viterbi, 1967), where the optimality crite-
rion, different from (28), is to find the single best mode sequence.
Moreover, themaximum likelihood estimation can be used to iter-
atively update the parameters such as π,Π,Σi, if some or all of
them are unknown to the controller. For more complicated cases,
e.g., partial state observation with corrupted noise, approaches
for mode estimation based on more sophisticated hidden Markov
model may be constructed; see Elliott et al. (1995, 2005).

Remark 7. Note that, for direct mode observation γt = θt−d with
d ≥ 2, and general cases of Algorithm 1, the probability on the
left-hand side of Eq. (16) becomes a function of state x and thus
Fig. 2. Original and estimated mode processes for one sample of simulation using
Algorithm 1.

dynamic, which renders an optimal memoryless quantization
strategy impossible. In this situation, some dynamic or state-
dependent quantization strategy would be an interesting research
topic.

The next numerical example demonstrates the usefulness of
Algorithm 1.

Example 8. Consider an MJLS (1) with A0 = 1.2, A1 = −1.2,
B0 = B1 = 1 and transition probability matrix Π = [0.1 0.9;
0.9 0.1].
First, suppose that direct mode observation is available at K

and Q. Then, for CMO (Scheme I), the smallest allowable Cf 1 ≡
−mini∈Θ{δ(i)} is −0.8333 with K0 = −1.2, K1 = 1.2; for
OSDMO (Scheme II), the smallest achievable Cf 1 is −0.7229 with
K0 = 0.9600, K1 = −0.9600.
Second, if the system mode is not observed at K and Q, then

we can easily verify that the mode-independent strategy (Scheme
III) cannot stabilize the system. Furthermore, assume that the
covariance ofwt is given byW0 = W1 = 1 and the initial state x0 is
Gaussian distributed with mean 20 and variance 10; then the first
30mode estimates for one sample of simulation using Algorithm 1
are shown in Fig. 2. The parameters of the controller and quantizer
are chosen as in OSDMO: K0 = 0.9600, K1 = −0.9600, δ(0) =
δ(1) = 0.7229. Fig. 3 further gives the empirical norm of state
by averaging 10,000 Monte Carlo simulations. As we can see from
Figs. 2 and 3, there exist somemode estimation errors, but the error
rate is low, and the empirical normof state by applyingAlgorithm1
is convergent.

4. Application to NCSs

Next, we apply the results presented in Section 3 to a quantized
feedback NCS as shown in Fig. 4, where an LTI plant (P) is described
in discrete-time form as
P : xt+1 = Axt + Bzt , (29)
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Fig. 3. The empirical norm of state by averaging 10,000 Monte Carlo simulations
using Algorithm 1.

Fig. 4. Quantized control over a lossy network.

which may be obtained through discretization of a continuous-
time system. Suppose a zero-control strategy is adopted in dealing
with the binary dropouts over the network (N):

N : zt = θtut , θt ∈ Θ = {0, 1}. (30)

Then, the system (G) as a combination of the network and the
discrete plant can bemodeled as a jump system (1)withA0 = A1 =
A, B0 = 0, B1 = B. For a TCP-like channel (see Imer, Yüksel, and
Başar (2006); Schenato et al. (2007) formore details on the TCP-like
and UDP-like protocols), γt = θt−1, and θt is driven by a Markov
chain with transition probability matrix Π =

[
1− q q
p 1− p

]
. In

this situation, the OSDMO result (Scheme II) is applicable. Note
that the CMO result (Scheme I) is of theoretical importance in the
quantization of MJLSs but may not be practical in the NCS depicted
in Fig. 2, since it is unrealistic for the quantizer to know whether
the current packet will be lost or not before the packet is sent over
the network.
For the UDP-like protocol, we can easily verify that inequality

(27) is true, and thus Scheme IV can be used directly whenwt = 0.
If θt is assumed to be an i.i.d. random variable:

Pr(θt = 0) = α, Pr(θt = 1) = 1− α, (31)

i.e., the system adopts an unreliable network with packet-dropout
rate α, then Scheme III is applicable, and the inequality (22) is
reduced to the following modified Riccati inequality:

A′PA− P + Q − (1− α)(1− δ2)A′PB(B′PB)−1B′PA < 0. (32)
Based on Lemma5.4 in Schenato et al. (2007) formodified algebraic
Riccati equation, (1−α)(1−δ2) > 1−Πi|λui (A) |

−2 can ensure the
existence of P > 0 to (32), where λui (A) denotes the i-th unstable
pole of A. It is easy to check that the above result is consistent with
Theorem 2.1 of Hoshina et al. (2007), which can be seen as a special
case of Theorem 6(b) in this paper.

5. Conclusions

This paper has shown that, for linear systems with Markovian
jump parameters, a mode-dependent logarithmic quantizer is still
optimal in the MSQ stability sense, and the sector bound approach
again provides a non-conservative way for studying the corre-
sponding quantized state feedback stabilization problem. In addi-
tion, a mode estimation algorithm is presented to deal with the
unknown mode process at the controller and quantizer side. Pos-
sible future work includes mode-dependent quantized feedback
stabilization via a switching system approach, quantized output
feedback stabilization, quantized performance control, generaliza-
tion to the MIMO system case, and dynamic quantization.
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