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Fig. 2. The deflection of the center of the beam with the LQG controller K.
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Fig. 3. The inclination at the center of the beam with the LQG controller Kj;.
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Fig. 4. The deflection of the center of the beam with the LQG controller K.

achievable robustness margin for a system, which is easily calculated
from its unstable part, is a useful index in controller design; in particular,
it tells you how well you must approximate your original system to avoid
spillover effects. By designing a maximally robust controller for the
approximation, one can minimize the chance of spillover. So as well as
providing qualitative insights into the spillover problem, we have also
given a design procedure which guarantees a priori no spillover. In fact,
this note is a particular interpretation of the results of Curtain and Glover
[12], but since the spillover problem has become such an issue in the
control of flexible systems, we felt it worthwhile to elaborate on this
aspect. We feel that our treatment of the example in Section IV illustrates
the advantages of our interpretation of the spillover problem.
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Fig. 5. The inclination at the center of the beam with the LQG controller K.
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Stability of a Polytope of Matrices: Counterexamples
B. ROSS BARMISH, M. FU, AND S. SALEH

Abstract—The problem of robust stability leads to a considerable body
of research on the stability of a polytope of polynomials and matrices.
Since Kharitonov’s seminal result on interval polynomials, there have
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been significant breakthroughs for the stability of a polytype of
polynomials. However, for a polytope of matrices, the stability problem
is far from completely resolved. In this paper, we provide counterexam-
ples for three conjectures which are directly motivated by the results in
the polynomial case. These counterexamples illustrate the fundamental
differences between the polynomial stability problem and the matrix
stability problem.

I. INTRODUCTION AND FORMULATION

The modeling of physical systems is a process which inherently
depends on making various approximations. In this paper, we focus on
linear systems and inaccuracies in the model which are attributable to
uncertain parameters. The uncertainties lead to perturbations in the
coefficients of the characteristic polynomial and subsequently jeopardize
the stability of the system.

If a state space approach is considered for modeling, the uncertainties
lead to perturbations of the elements of the various matrices relating the
state variables, the inputs, and the outputs of the system. In this paper, it is
assumed that these uncertain parameters are only known within given
bounds, and within this framework, the robust stability problem centers
on whether stability is preserved for all admissible variations of the
uncertain parameters. To motivate the mathematical formulation of the
problem discussed here, consider the state equation

x(O)=A(@x(®); 9€Q (1.1)
where x(f) € R" and g is a vector of uncertain parameters varying in the
prescribed set Q. Notice that if A(-) depends (affine) linearly on g, then
we can write

m
Al =Ao+ Y, Aig; (1.2)

i=1
where g; is the ith component of g,

Ao=A(0),
Ai=A(q:e),

and e; represents a unit vector in the /th coordinate direction. Further-
more, if an @ priori bound

|g:| =d;; qiz0 (1.3)
is available for the components of g, then it is easily shown that the set of
possible A(g) matrices {A(g):q € Q} is a polytope in R"*". This leads
us to study the following problem: Given n X n matrices My, M, -+,

M, let

M= {Mﬁi MM N0, i=1,2, o, m i >\,=1} )
i=1

i=1

Determine if all matrices M) € M have all their eigenvalues in the strict
left-half plane. This being the case, we call M a (strictly) Hurwitz
polytope of matrices.

An important special case of this problem is obtained by placing
additional restrictions on the matrices M;. To motivate this special case,
consider again state equation (1.1) and form the characteristic polynomial

A(s, g)=det (sI-A(q)-

If A(-) depends linearly on g, the coefficient a;(q) of A(s, @) is, in
general, a multidimensional polynomial in the g;. In some special cases,
however, a;(g) turns out to depend (affine) linearly on the g;. For
example, this occurs when the g; only enter into a single row or a single
column of A(g); e.g., consider the companion canonical form. For such
special cases, with componentwise bounds on the g;, the set of possible
polynomials {A(s, g):g € Q} is a polytope in the space of nth-order
polynomials. This motivates the following problem: Given nth-order
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polynomials p,(s), p2(s), * ", Pm(S), let

~~~,m;§:)\,=l} .
i=1

Determine if all polynomials p)(s) € P have all their zeros in the strict
left half plane. This being the case, we call P a (strictly) Hurwitz
polytope of polynomials.

The discussion above sets the stage for the recent surge in the literature
dealing with the stability of polytopes of polynomials and matrices; e.g.,
see [1]-[9] and their bibliographies. It was Kharitonov’s paper [1] that
paved the way for the recent literature aimed at constructing computa-
tionally tractable methods to check the stability of a polytope of
polynomials. Although Kharitonov’s Theorem is restricted to the special
case of interval polynomials (a hyper-rectangle in the space of polynomi-
als), it is important largely because of the simplicity of its use.
Kharitonov’s Theorem states that the stability of four specially con-
structed extreme polynomials is both necessary and sufficient for the
stability of the entire hyper-rectangle. The motivation for further research
in this area stems from the fact that interval polynomials are to be
associated with the uncertainties which are independent. For the case of
linearly dependent uncertainties, the resulting polytope of polynomials is
no longer a hyper-rectangle. Hence, the desire to obtain similar results to
Kharitonov’s for the problem of a general polytope of polynomials leads
to a considerable body of research. A significant result in this new line of
research is given in a paper by Bartlett, Hollot, and Lin [8]. These authors
show that the strict stability of the exposed edges of a polytope of
polynomials is both necessary and sufficient for the stability of the entire
polytope. The significance of this.result is that checking the stability of an
edge involves a convex combination of two nth-order polynomials.
Hence, stability of an edge can be verified by varying only one parameter
and this task can be carried out using the classical root locus method, or
even more simply, using the result given by Bialas [13]; see also [5]. It is
shown that the convex combination of two nth-polynomials py(s) and
P1(s) is strictly stable if and only if po(s) is strictly stable and H; ' F; has
no eigenvalues in (— o, 0] where H; is the so-called Hurwitz testing
matrix of the polynomial p;(s).

The more general stability problem for a polytope of matrices is still
unresolved. Existing literature deals with special cases and/or sufficient
conditions. For example, in [9], interval matrices (M is a hyper-
rectangle) are considered and the strong assumption of symmetry is
imposed. In [5], a complete solution to the problem is given but only for
the case m = 2; see also [3] and [10] for sufficient conditions. To date,
general results for the stability of an arbitrary polytope of matrices (or
even the special case of interval matrices) have not been published. Given
the lack of results for the matrix case, one is tempted to argue that the
stability problem for a polytope of matrices can be solved using known
results for a polytope of polynomials. In fact, a result quite similar to
Kharitonov’s was published for interval matrices [11], but was later found
to be false [12]. Our objective in this paper is to provide counterexamples
to the most ‘‘tempting’’ conjectures in the matrix case. These conjectures
are motivated by the recent literature and it is interesting to note that these
conjectures are true for 2 X 2 matrices.

Conjecture 1 (Checking the Edges): In view of the ‘‘Edge Theorem”’
for polynomials [8], a conjecture is made for the matrix case. Namely, i
is strictly Hurwitz if and only if the edges of M are strictly Hurwitz; i.e.,
strict stability of AM; + (1 — MM, foralli, j € {1,2, ---, m} and all
N\ € [0, 1] is a necesary and sufficient condition for strict stability of M.

Conjecture 2 (Checking Edges of a Hyper-Rectangle): Given the
failure of the first conjecture, the obvious question to ask is whether the
conjecture holds if the hypothesis is strengthened so that M is a hyper-
rectangle rather than an arbitrary polytope; i.e., we consider the case of
interval matrices.

Conjecture 3 (Mapping into Polynomials): Consider the case of
interval matrices (¥l is a hyper-rectangle) and form the set of characteris-
tic polynomials.

i=1

P= {p)\(s)— 3 Npids) : Nz0,i=1, 2,

Pu={p(s) : p(s)=det (sI—M,) for some M, € M}.

Now, it is conjectured that il is strictly Hurwitz if and only if the convex
hull, conv Py is strictly Hurwitz.
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Remark: The motivation for this conjecture comes from the fact that
conv [Py is easily shown to be the polytope whose extreme points are
generated by computing the characteristic polynomials associated with the
extreme points of (Y. Hence, the objective is to reduce the matrix problem
to one involving a polytope of polynomials for which there are strong
results.

II. THE FIRST COUNTEREXAMPLE: CHECKING THE EDGES OF A
POLYTOPE

This counterexample is generated by taking

-1.0 0 1.0
M, = 0 -1.0 0 H
-1.0 0 0.1
-10 0 0
M,= 0 -1.0 1.0 ];
0 -1.0 0.1
-1.0 0 -1.0
M;= 0 -1.0 -1.0
1.0 1.0 0.1

Now, we check the edges of the polytope M obtained by taking the convex
hull of M, M,, and M;. Indeed, the convex combination of M, and M, is
strictly Hurwitz since for any X € [0, 1]

det [sT— (AM + (1 = N)My)] = (s + 1)(s>+0.9s+ (A2 + (1 = \)2=0.1))

is strictly Hurwitz (notice that the coefficients of the second factor are
always positive). Also, the convex combination of M, and M; is strictly
Hurwitz since for any A € [0, 1]
det [s]— (AM; + (1 - N)M3)]
=(s+1(s2+0.9s+((1-N)2+(1-2))2-0.1))
is strictly Hurwitz. Finally, the convex combination of M, and M, is also
strictly Hurwitz since for any A € [0, 1]
det [s/— (MM, + (1 —N)M3)]
=(s+1D(s?+0.95+ (1 -N)2+(1-2)1)2-0.1))

is also strictly Hurwitz, Hence, the edges of the polytope are strictly
Hurwitz. However, note that the matrix

1 1 1 1.0 0 0
§M1+§M2+3M3= 0 -10 0
0 0 0.1

is unstable!

III. THE SECOND COUNTEREXAMPLE: CHECKING EDGES OF A
HYPER-RECTANGLE

In view of the previous counterexample, we strengthen the hypothesis
from ‘‘polytope of matrices’’ to ‘‘hyper-rectangle of matrices.”” As in
Section II, we show here that the sufficiency condition in the conjecture
above is false. Indeed, consider the interval matrix described by

m, —12.06 —0.06 0
o | —025 -003 1.00 0.5
B 025 -4.0 -1.03 0
0 0.5 0 My
where
—1.5=m,=<-0.5;

—4.0<my=—1.0.
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Writing
m,=-05-q;
my=—-10-q,

with ¢, € [0, 1] and ¢, € [0, 3], the characteristic polynomial is
computed to be

A(s, g1, @2)=5*+(2.56+q,+ q)s?
+(2.871+2.06q,+ 1.561q,+ q,4,)s*
+(3.164+4.841q, + 1.56q,+ 1.06q,q5)s
+(1.853+3.773q,+ 1.985¢,+ 4.032q,q,).

Next, we investigate the stability of the four edges of this hyper-rectangle;
i.e., we consider the following four cases:
Case I: q, = 0, g, € [0, 3]. We obtain
A(s, 0, @) =5*+(2.56 + g2)s> +(2.871 + 1.56 ;) s?
+(3.164+ 1.561g,)s + (1.853 + 1.985q,).

Case 2: q, € [0, 1], g, = 0. We obtain

A(s, 1, 0)=5*+(2.56 + q,)s* + (2.871 + 2.064,)s?
+(3.164+4.841¢q,)s+ (1.853 +3.773q,).

Case 3: q; = 1, g; € [0, 3]. We obtain

A(S, 1, ¢2)=5*+(3.56+@,)s° +(4.931 + 2.564,)s?
+(8.005 +2.621g,)s + (5.626 + 6.017q,).

Case 4: g, € [0, 1], g = 3. We obtain

A(S, q1, 3)=5*+(5.56+q,)s’ +(7.551 + 5.06q,)s*
+(7.847+8.021q,)s+ (7.808 + 15.869¢,).

Now, for each of these four cases, we construct the Routh table
parametrically in g, and g,. By varying g, and g, within their bounds, it is
easy to verify that there are no sign changes in the first column and hence
all four edges are strictly Hurwitz. However, the interior point obtained
by setting g; = 0.5 and g, = 1.0 leads to the characteristic polynomial

A(s, 0.5, 1.0)=s*+4.065% + 5.96152 + 7.6765 + 7.741
=(s+2.2389)(s + 1.8263)(s — 0.0026 +,1.376)
- (s—0.0026— j1.376)

which is unstable

IV. THE THIRD COUNTEREXAMPLE: MAPPING INTO POLYNOMIALS

Let M be a hyper-rectangle in R"*" associated with an interval matrix
having entries

m_<mysm}?; L, j=1,2,,n

i "
where m; and m ,;' are prescribed bounds for the ijth element of the
matrix 1\/{ Let M,, M,, ---, M, be the vertexes of M obtained by
considering only the extreme values of the m;, and consider the
characteristic polynomials p;(s), p2(s), - - -, pm(s) associated with these
extreme points. Now, as indicated in the remark in Section I,

i=1

conv Py = {px(5)=2 Npi(s) : =20, i=1,2, -+, m; E )\,._1} ,
i=1

We now provide an example to show that Y] might be strictly Hurwitz but
conv [Py might contain unstable polynomials. Indeed, consider the
interval matrix described by

m, 0 0
M=| 0 myn my
0 my my
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where
—2.4780<m, < —1.4471;

—0.0518 <my =< —0.0194;
2.000 < m,; < 3.4370;
my=—0.7115;
—0.0026 < my; < —0.0012.

We first show that this hyper-rectangle is strictly Hurwitz, i.e., that every
matrix M € WM is strictly Hurwitz. Since M is block diagonal, we can
write

| My O
M=1" Mu]’
where

My =my;

Mmyn My
M; 2= .
my  Ms

Next note that the eigenvalues of M are the union of eigenvalues of M,
and the eigenvalues of M,,, and moreover, the eigenvalue of M,; is
negative real for all admissible variations of m,;. Also, a straightforward
calculation yields

det (I~ M) =52 — (Myy + M33) S+ My Miy3 — My M.

Using the given bounds on the my;, it is easy to verify that the coefficients
of det (s/-M,) remain positive over the allowable range of variation.
Hence, the hyper-rectangle M is strictly Hurwitz.

To show that conv [Py, is not strictly Hurwitz, consider the extreme
matrices

—2.478 0 0
M, = 0 —-0.0194 3.437 H
0 -0.7115  -0.0026
—1.4471 0 0
M, = 0 —0.0518 2.0
0 -0.7115  -0.0012

in M. Now it is easily verified that the characteristic polynomials of M,
and M, are given by

P, (s)=det (SI-M\)=5%+2.552+2.55+6.06;
Puy(s) =det (sI— M) =5+ 1.552+1.55+2.06

and the convex combination
1 1
3 Pmy (s)+ 3 Py (s)=s+2.0s*+2.0s+4.06

is unstable. Hence, the polytope conv [Py contains an unstable polyno-
mial.
V. CONCLUSION

The three counterexamples presented in this paper indicate that some

obvious lines of attack on the matrix polytope stability problem will fail.
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Asymptotic Stability for a Class of Linear Discrete
Systems with Bounded Uncertainties

MAGDI S. MAHMOUD aND AHMED A. BAHNASAWI

Abstract—The problem of stabilizing linear discrete systems with
additive-type bounded uncertainties is considered. It is established that
when matching conditions hold a two-part feedback control can be
designed: a linear part to assign the eigenvalues within the unit circle and
a nonlinear part to ensure the uniform asymptotic stability for arbitrary
initial conditions and bounded admissible uncertainties.

I. INTRODUCTION

Regulation of discrete systems with unknown bounded parameters and/
or parasitic elements (henceforth termed uncertain systems) is a problem
of paramount importance in computer control applications [1], [2].
Several approaches have been developed [2]-[5] to characterize the
uncertainty, and subsequently, deal with different aspects of the cited
problem. In [2], an overview of adaptive control techniques has been
presented. Stability properties of reduced-order adaptive systems for
singularly perturbed discrete plants with bounded fast parasitics has been
investigated in [4]. An in-depth study of adaptive model-reference
identification schemes and their performance behavior has been carried
out in [5]. The present work extends the idea of [3] and examines the
problem of stabilizing linear discrete systems with a class of additive-type
uncertainties. This class belongs to the set of unknown but bounded
parameters of the system and input matrices. When matching conditions
hold, it is established that unstable discrete systems can be stabilized by a
two-part feedback control: a linear part to move the eigenvalues into the
unit disk and a nonlinear part to ensure the uniform asymptotic stability of
the original system.

II. PROBLEM STATEMENT
Consider a dynamical system that has an additive type of uncertainty
shown in Fig. 1 and described by the following difference equation:
x(k+ 1)=[A+AA(r(k)]x(k)+[B+AB(s(kNu(k)+cv(k)
x(ko)=x, (8))
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